std/
process.rs

1//! A module for working with processes.
2//!
3//! This module is mostly concerned with spawning and interacting with child
4//! processes, but it also provides [`abort`] and [`exit`] for terminating the
5//! current process.
6//!
7//! # Spawning a process
8//!
9//! The [`Command`] struct is used to configure and spawn processes:
10//!
11//! ```no_run
12//! use std::process::Command;
13//!
14//! let output = Command::new("echo")
15//!     .arg("Hello world")
16//!     .output()
17//!     .expect("Failed to execute command");
18//!
19//! assert_eq!(b"Hello world\n", output.stdout.as_slice());
20//! ```
21//!
22//! Several methods on [`Command`], such as [`spawn`] or [`output`], can be used
23//! to spawn a process. In particular, [`output`] spawns the child process and
24//! waits until the process terminates, while [`spawn`] will return a [`Child`]
25//! that represents the spawned child process.
26//!
27//! # Handling I/O
28//!
29//! The [`stdout`], [`stdin`], and [`stderr`] of a child process can be
30//! configured by passing an [`Stdio`] to the corresponding method on
31//! [`Command`]. Once spawned, they can be accessed from the [`Child`]. For
32//! example, piping output from one command into another command can be done
33//! like so:
34//!
35//! ```no_run
36//! use std::process::{Command, Stdio};
37//!
38//! // stdout must be configured with `Stdio::piped` in order to use
39//! // `echo_child.stdout`
40//! let echo_child = Command::new("echo")
41//!     .arg("Oh no, a tpyo!")
42//!     .stdout(Stdio::piped())
43//!     .spawn()
44//!     .expect("Failed to start echo process");
45//!
46//! // Note that `echo_child` is moved here, but we won't be needing
47//! // `echo_child` anymore
48//! let echo_out = echo_child.stdout.expect("Failed to open echo stdout");
49//!
50//! let mut sed_child = Command::new("sed")
51//!     .arg("s/tpyo/typo/")
52//!     .stdin(Stdio::from(echo_out))
53//!     .stdout(Stdio::piped())
54//!     .spawn()
55//!     .expect("Failed to start sed process");
56//!
57//! let output = sed_child.wait_with_output().expect("Failed to wait on sed");
58//! assert_eq!(b"Oh no, a typo!\n", output.stdout.as_slice());
59//! ```
60//!
61//! Note that [`ChildStderr`] and [`ChildStdout`] implement [`Read`] and
62//! [`ChildStdin`] implements [`Write`]:
63//!
64//! ```no_run
65//! use std::process::{Command, Stdio};
66//! use std::io::Write;
67//!
68//! let mut child = Command::new("/bin/cat")
69//!     .stdin(Stdio::piped())
70//!     .stdout(Stdio::piped())
71//!     .spawn()
72//!     .expect("failed to execute child");
73//!
74//! // If the child process fills its stdout buffer, it may end up
75//! // waiting until the parent reads the stdout, and not be able to
76//! // read stdin in the meantime, causing a deadlock.
77//! // Writing from another thread ensures that stdout is being read
78//! // at the same time, avoiding the problem.
79//! let mut stdin = child.stdin.take().expect("failed to get stdin");
80//! std::thread::spawn(move || {
81//!     stdin.write_all(b"test").expect("failed to write to stdin");
82//! });
83//!
84//! let output = child
85//!     .wait_with_output()
86//!     .expect("failed to wait on child");
87//!
88//! assert_eq!(b"test", output.stdout.as_slice());
89//! ```
90//!
91//! # Windows argument splitting
92//!
93//! On Unix systems arguments are passed to a new process as an array of strings,
94//! but on Windows arguments are passed as a single commandline string and it is
95//! up to the child process to parse it into an array. Therefore the parent and
96//! child processes must agree on how the commandline string is encoded.
97//!
98//! Most programs use the standard C run-time `argv`, which in practice results
99//! in consistent argument handling. However, some programs have their own way of
100//! parsing the commandline string. In these cases using [`arg`] or [`args`] may
101//! result in the child process seeing a different array of arguments than the
102//! parent process intended.
103//!
104//! Two ways of mitigating this are:
105//!
106//! * Validate untrusted input so that only a safe subset is allowed.
107//! * Use [`raw_arg`] to build a custom commandline. This bypasses the escaping
108//!   rules used by [`arg`] so should be used with due caution.
109//!
110//! `cmd.exe` and `.bat` files use non-standard argument parsing and are especially
111//! vulnerable to malicious input as they may be used to run arbitrary shell
112//! commands. Untrusted arguments should be restricted as much as possible.
113//! For examples on handling this see [`raw_arg`].
114//!
115//! ### Batch file special handling
116//!
117//! On Windows, `Command` uses the Windows API function [`CreateProcessW`] to
118//! spawn new processes. An undocumented feature of this function is that
119//! when given a `.bat` file as the application to run, it will automatically
120//! convert that into running `cmd.exe /c` with the batch file as the next argument.
121//!
122//! For historical reasons Rust currently preserves this behavior when using
123//! [`Command::new`], and escapes the arguments according to `cmd.exe` rules.
124//! Due to the complexity of `cmd.exe` argument handling, it might not be
125//! possible to safely escape some special characters, and using them will result
126//! in an error being returned at process spawn. The set of unescapeable
127//! special characters might change between releases.
128//!
129//! Also note that running batch scripts in this way may be removed in the
130//! future and so should not be relied upon.
131//!
132//! [`spawn`]: Command::spawn
133//! [`output`]: Command::output
134//!
135//! [`stdout`]: Command::stdout
136//! [`stdin`]: Command::stdin
137//! [`stderr`]: Command::stderr
138//!
139//! [`Write`]: io::Write
140//! [`Read`]: io::Read
141//!
142//! [`arg`]: Command::arg
143//! [`args`]: Command::args
144//! [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
145//!
146//! [`CreateProcessW`]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw
147
148#![stable(feature = "process", since = "1.0.0")]
149#![deny(unsafe_op_in_unsafe_fn)]
150
151#[cfg(all(
152    test,
153    not(any(
154        target_os = "emscripten",
155        target_os = "wasi",
156        target_env = "sgx",
157        target_os = "xous",
158        target_os = "trusty",
159    ))
160))]
161mod tests;
162
163use crate::convert::Infallible;
164use crate::ffi::OsStr;
165use crate::io::prelude::*;
166use crate::io::{self, BorrowedCursor, IoSlice, IoSliceMut};
167use crate::num::NonZero;
168use crate::path::Path;
169use crate::sys::pipe::{AnonPipe, read2};
170use crate::sys::process as imp;
171#[stable(feature = "command_access", since = "1.57.0")]
172pub use crate::sys_common::process::CommandEnvs;
173use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};
174use crate::{fmt, fs, str};
175
176/// Representation of a running or exited child process.
177///
178/// This structure is used to represent and manage child processes. A child
179/// process is created via the [`Command`] struct, which configures the
180/// spawning process and can itself be constructed using a builder-style
181/// interface.
182///
183/// There is no implementation of [`Drop`] for child processes,
184/// so if you do not ensure the `Child` has exited then it will continue to
185/// run, even after the `Child` handle to the child process has gone out of
186/// scope.
187///
188/// Calling [`wait`] (or other functions that wrap around it) will make
189/// the parent process wait until the child has actually exited before
190/// continuing.
191///
192/// # Warning
193///
194/// On some systems, calling [`wait`] or similar is necessary for the OS to
195/// release resources. A process that terminated but has not been waited on is
196/// still around as a "zombie". Leaving too many zombies around may exhaust
197/// global resources (for example process IDs).
198///
199/// The standard library does *not* automatically wait on child processes (not
200/// even if the `Child` is dropped), it is up to the application developer to do
201/// so. As a consequence, dropping `Child` handles without waiting on them first
202/// is not recommended in long-running applications.
203///
204/// # Examples
205///
206/// ```should_panic
207/// use std::process::Command;
208///
209/// let mut child = Command::new("/bin/cat")
210///     .arg("file.txt")
211///     .spawn()
212///     .expect("failed to execute child");
213///
214/// let ecode = child.wait().expect("failed to wait on child");
215///
216/// assert!(ecode.success());
217/// ```
218///
219/// [`wait`]: Child::wait
220#[stable(feature = "process", since = "1.0.0")]
221#[cfg_attr(not(test), rustc_diagnostic_item = "Child")]
222pub struct Child {
223    pub(crate) handle: imp::Process,
224
225    /// The handle for writing to the child's standard input (stdin), if it
226    /// has been captured. You might find it helpful to do
227    ///
228    /// ```ignore (incomplete)
229    /// let stdin = child.stdin.take().expect("handle present");
230    /// ```
231    ///
232    /// to avoid partially moving the `child` and thus blocking yourself from calling
233    /// functions on `child` while using `stdin`.
234    #[stable(feature = "process", since = "1.0.0")]
235    pub stdin: Option<ChildStdin>,
236
237    /// The handle for reading from the child's standard output (stdout), if it
238    /// has been captured. You might find it helpful to do
239    ///
240    /// ```ignore (incomplete)
241    /// let stdout = child.stdout.take().expect("handle present");
242    /// ```
243    ///
244    /// to avoid partially moving the `child` and thus blocking yourself from calling
245    /// functions on `child` while using `stdout`.
246    #[stable(feature = "process", since = "1.0.0")]
247    pub stdout: Option<ChildStdout>,
248
249    /// The handle for reading from the child's standard error (stderr), if it
250    /// has been captured. You might find it helpful to do
251    ///
252    /// ```ignore (incomplete)
253    /// let stderr = child.stderr.take().expect("handle present");
254    /// ```
255    ///
256    /// to avoid partially moving the `child` and thus blocking yourself from calling
257    /// functions on `child` while using `stderr`.
258    #[stable(feature = "process", since = "1.0.0")]
259    pub stderr: Option<ChildStderr>,
260}
261
262/// Allows extension traits within `std`.
263#[unstable(feature = "sealed", issue = "none")]
264impl crate::sealed::Sealed for Child {}
265
266impl AsInner<imp::Process> for Child {
267    #[inline]
268    fn as_inner(&self) -> &imp::Process {
269        &self.handle
270    }
271}
272
273impl FromInner<(imp::Process, imp::StdioPipes)> for Child {
274    fn from_inner((handle, io): (imp::Process, imp::StdioPipes)) -> Child {
275        Child {
276            handle,
277            stdin: io.stdin.map(ChildStdin::from_inner),
278            stdout: io.stdout.map(ChildStdout::from_inner),
279            stderr: io.stderr.map(ChildStderr::from_inner),
280        }
281    }
282}
283
284impl IntoInner<imp::Process> for Child {
285    fn into_inner(self) -> imp::Process {
286        self.handle
287    }
288}
289
290#[stable(feature = "std_debug", since = "1.16.0")]
291impl fmt::Debug for Child {
292    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
293        f.debug_struct("Child")
294            .field("stdin", &self.stdin)
295            .field("stdout", &self.stdout)
296            .field("stderr", &self.stderr)
297            .finish_non_exhaustive()
298    }
299}
300
301/// A handle to a child process's standard input (stdin).
302///
303/// This struct is used in the [`stdin`] field on [`Child`].
304///
305/// When an instance of `ChildStdin` is [dropped], the `ChildStdin`'s underlying
306/// file handle will be closed. If the child process was blocked on input prior
307/// to being dropped, it will become unblocked after dropping.
308///
309/// [`stdin`]: Child::stdin
310/// [dropped]: Drop
311#[stable(feature = "process", since = "1.0.0")]
312pub struct ChildStdin {
313    inner: AnonPipe,
314}
315
316// In addition to the `impl`s here, `ChildStdin` also has `impl`s for
317// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
318// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
319// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
320// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
321
322#[stable(feature = "process", since = "1.0.0")]
323impl Write for ChildStdin {
324    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
325        (&*self).write(buf)
326    }
327
328    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
329        (&*self).write_vectored(bufs)
330    }
331
332    fn is_write_vectored(&self) -> bool {
333        io::Write::is_write_vectored(&&*self)
334    }
335
336    #[inline]
337    fn flush(&mut self) -> io::Result<()> {
338        (&*self).flush()
339    }
340}
341
342#[stable(feature = "write_mt", since = "1.48.0")]
343impl Write for &ChildStdin {
344    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
345        self.inner.write(buf)
346    }
347
348    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
349        self.inner.write_vectored(bufs)
350    }
351
352    fn is_write_vectored(&self) -> bool {
353        self.inner.is_write_vectored()
354    }
355
356    #[inline]
357    fn flush(&mut self) -> io::Result<()> {
358        Ok(())
359    }
360}
361
362impl AsInner<AnonPipe> for ChildStdin {
363    #[inline]
364    fn as_inner(&self) -> &AnonPipe {
365        &self.inner
366    }
367}
368
369impl IntoInner<AnonPipe> for ChildStdin {
370    fn into_inner(self) -> AnonPipe {
371        self.inner
372    }
373}
374
375impl FromInner<AnonPipe> for ChildStdin {
376    fn from_inner(pipe: AnonPipe) -> ChildStdin {
377        ChildStdin { inner: pipe }
378    }
379}
380
381#[stable(feature = "std_debug", since = "1.16.0")]
382impl fmt::Debug for ChildStdin {
383    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
384        f.debug_struct("ChildStdin").finish_non_exhaustive()
385    }
386}
387
388/// A handle to a child process's standard output (stdout).
389///
390/// This struct is used in the [`stdout`] field on [`Child`].
391///
392/// When an instance of `ChildStdout` is [dropped], the `ChildStdout`'s
393/// underlying file handle will be closed.
394///
395/// [`stdout`]: Child::stdout
396/// [dropped]: Drop
397#[stable(feature = "process", since = "1.0.0")]
398pub struct ChildStdout {
399    inner: AnonPipe,
400}
401
402// In addition to the `impl`s here, `ChildStdout` also has `impl`s for
403// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
404// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
405// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
406// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
407
408#[stable(feature = "process", since = "1.0.0")]
409impl Read for ChildStdout {
410    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
411        self.inner.read(buf)
412    }
413
414    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> io::Result<()> {
415        self.inner.read_buf(buf)
416    }
417
418    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
419        self.inner.read_vectored(bufs)
420    }
421
422    #[inline]
423    fn is_read_vectored(&self) -> bool {
424        self.inner.is_read_vectored()
425    }
426
427    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
428        self.inner.read_to_end(buf)
429    }
430}
431
432impl AsInner<AnonPipe> for ChildStdout {
433    #[inline]
434    fn as_inner(&self) -> &AnonPipe {
435        &self.inner
436    }
437}
438
439impl IntoInner<AnonPipe> for ChildStdout {
440    fn into_inner(self) -> AnonPipe {
441        self.inner
442    }
443}
444
445impl FromInner<AnonPipe> for ChildStdout {
446    fn from_inner(pipe: AnonPipe) -> ChildStdout {
447        ChildStdout { inner: pipe }
448    }
449}
450
451#[stable(feature = "std_debug", since = "1.16.0")]
452impl fmt::Debug for ChildStdout {
453    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
454        f.debug_struct("ChildStdout").finish_non_exhaustive()
455    }
456}
457
458/// A handle to a child process's stderr.
459///
460/// This struct is used in the [`stderr`] field on [`Child`].
461///
462/// When an instance of `ChildStderr` is [dropped], the `ChildStderr`'s
463/// underlying file handle will be closed.
464///
465/// [`stderr`]: Child::stderr
466/// [dropped]: Drop
467#[stable(feature = "process", since = "1.0.0")]
468pub struct ChildStderr {
469    inner: AnonPipe,
470}
471
472// In addition to the `impl`s here, `ChildStderr` also has `impl`s for
473// `AsFd`/`From<OwnedFd>`/`Into<OwnedFd>` and
474// `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and
475// `AsHandle`/`From<OwnedHandle>`/`Into<OwnedHandle>` and
476// `AsRawHandle`/`IntoRawHandle`/`FromRawHandle` on Windows.
477
478#[stable(feature = "process", since = "1.0.0")]
479impl Read for ChildStderr {
480    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
481        self.inner.read(buf)
482    }
483
484    fn read_buf(&mut self, buf: BorrowedCursor<'_>) -> io::Result<()> {
485        self.inner.read_buf(buf)
486    }
487
488    fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
489        self.inner.read_vectored(bufs)
490    }
491
492    #[inline]
493    fn is_read_vectored(&self) -> bool {
494        self.inner.is_read_vectored()
495    }
496
497    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
498        self.inner.read_to_end(buf)
499    }
500}
501
502impl AsInner<AnonPipe> for ChildStderr {
503    #[inline]
504    fn as_inner(&self) -> &AnonPipe {
505        &self.inner
506    }
507}
508
509impl IntoInner<AnonPipe> for ChildStderr {
510    fn into_inner(self) -> AnonPipe {
511        self.inner
512    }
513}
514
515impl FromInner<AnonPipe> for ChildStderr {
516    fn from_inner(pipe: AnonPipe) -> ChildStderr {
517        ChildStderr { inner: pipe }
518    }
519}
520
521#[stable(feature = "std_debug", since = "1.16.0")]
522impl fmt::Debug for ChildStderr {
523    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
524        f.debug_struct("ChildStderr").finish_non_exhaustive()
525    }
526}
527
528/// A process builder, providing fine-grained control
529/// over how a new process should be spawned.
530///
531/// A default configuration can be
532/// generated using `Command::new(program)`, where `program` gives a path to the
533/// program to be executed. Additional builder methods allow the configuration
534/// to be changed (for example, by adding arguments) prior to spawning:
535///
536/// ```
537/// use std::process::Command;
538///
539/// let output = if cfg!(target_os = "windows") {
540///     Command::new("cmd")
541///         .args(["/C", "echo hello"])
542///         .output()
543///         .expect("failed to execute process")
544/// } else {
545///     Command::new("sh")
546///         .arg("-c")
547///         .arg("echo hello")
548///         .output()
549///         .expect("failed to execute process")
550/// };
551///
552/// let hello = output.stdout;
553/// ```
554///
555/// `Command` can be reused to spawn multiple processes. The builder methods
556/// change the command without needing to immediately spawn the process.
557///
558/// ```no_run
559/// use std::process::Command;
560///
561/// let mut echo_hello = Command::new("sh");
562/// echo_hello.arg("-c").arg("echo hello");
563/// let hello_1 = echo_hello.output().expect("failed to execute process");
564/// let hello_2 = echo_hello.output().expect("failed to execute process");
565/// ```
566///
567/// Similarly, you can call builder methods after spawning a process and then
568/// spawn a new process with the modified settings.
569///
570/// ```no_run
571/// use std::process::Command;
572///
573/// let mut list_dir = Command::new("ls");
574///
575/// // Execute `ls` in the current directory of the program.
576/// list_dir.status().expect("process failed to execute");
577///
578/// println!();
579///
580/// // Change `ls` to execute in the root directory.
581/// list_dir.current_dir("/");
582///
583/// // And then execute `ls` again but in the root directory.
584/// list_dir.status().expect("process failed to execute");
585/// ```
586#[stable(feature = "process", since = "1.0.0")]
587#[cfg_attr(not(test), rustc_diagnostic_item = "Command")]
588pub struct Command {
589    inner: imp::Command,
590}
591
592/// Allows extension traits within `std`.
593#[unstable(feature = "sealed", issue = "none")]
594impl crate::sealed::Sealed for Command {}
595
596impl Command {
597    /// Constructs a new `Command` for launching the program at
598    /// path `program`, with the following default configuration:
599    ///
600    /// * No arguments to the program
601    /// * Inherit the current process's environment
602    /// * Inherit the current process's working directory
603    /// * Inherit stdin/stdout/stderr for [`spawn`] or [`status`], but create pipes for [`output`]
604    ///
605    /// [`spawn`]: Self::spawn
606    /// [`status`]: Self::status
607    /// [`output`]: Self::output
608    ///
609    /// Builder methods are provided to change these defaults and
610    /// otherwise configure the process.
611    ///
612    /// If `program` is not an absolute path, the `PATH` will be searched in
613    /// an OS-defined way.
614    ///
615    /// The search path to be used may be controlled by setting the
616    /// `PATH` environment variable on the Command,
617    /// but this has some implementation limitations on Windows
618    /// (see issue #37519).
619    ///
620    /// # Platform-specific behavior
621    ///
622    /// Note on Windows: For executable files with the .exe extension,
623    /// it can be omitted when specifying the program for this Command.
624    /// However, if the file has a different extension,
625    /// a filename including the extension needs to be provided,
626    /// otherwise the file won't be found.
627    ///
628    /// # Examples
629    ///
630    /// ```no_run
631    /// use std::process::Command;
632    ///
633    /// Command::new("sh")
634    ///     .spawn()
635    ///     .expect("sh command failed to start");
636    /// ```
637    ///
638    /// # Caveats
639    ///
640    /// [`Command::new`] is only intended to accept the path of the program. If you pass a program
641    /// path along with arguments like `Command::new("ls -l").spawn()`, it will try to search for
642    /// `ls -l` literally. The arguments need to be passed separately, such as via [`arg`] or
643    /// [`args`].
644    ///
645    /// ```no_run
646    /// use std::process::Command;
647    ///
648    /// Command::new("ls")
649    ///     .arg("-l") // arg passed separately
650    ///     .spawn()
651    ///     .expect("ls command failed to start");
652    /// ```
653    ///
654    /// [`arg`]: Self::arg
655    /// [`args`]: Self::args
656    #[stable(feature = "process", since = "1.0.0")]
657    pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
658        Command { inner: imp::Command::new(program.as_ref()) }
659    }
660
661    /// Adds an argument to pass to the program.
662    ///
663    /// Only one argument can be passed per use. So instead of:
664    ///
665    /// ```no_run
666    /// # std::process::Command::new("sh")
667    /// .arg("-C /path/to/repo")
668    /// # ;
669    /// ```
670    ///
671    /// usage would be:
672    ///
673    /// ```no_run
674    /// # std::process::Command::new("sh")
675    /// .arg("-C")
676    /// .arg("/path/to/repo")
677    /// # ;
678    /// ```
679    ///
680    /// To pass multiple arguments see [`args`].
681    ///
682    /// [`args`]: Command::args
683    ///
684    /// Note that the argument is not passed through a shell, but given
685    /// literally to the program. This means that shell syntax like quotes,
686    /// escaped characters, word splitting, glob patterns, variable substitution,
687    /// etc. have no effect.
688    ///
689    /// <div class="warning">
690    ///
691    /// On Windows, use caution with untrusted inputs. Most applications use the
692    /// standard convention for decoding arguments passed to them. These are safe to
693    /// use with `arg`. However, some applications such as `cmd.exe` and `.bat` files
694    /// use a non-standard way of decoding arguments. They are therefore vulnerable
695    /// to malicious input.
696    ///
697    /// In the case of `cmd.exe` this is especially important because a malicious
698    /// argument can potentially run arbitrary shell commands.
699    ///
700    /// See [Windows argument splitting][windows-args] for more details
701    /// or [`raw_arg`] for manually implementing non-standard argument encoding.
702    ///
703    /// [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
704    /// [windows-args]: crate::process#windows-argument-splitting
705    ///
706    /// </div>
707    ///
708    /// # Examples
709    ///
710    /// ```no_run
711    /// use std::process::Command;
712    ///
713    /// Command::new("ls")
714    ///     .arg("-l")
715    ///     .arg("-a")
716    ///     .spawn()
717    ///     .expect("ls command failed to start");
718    /// ```
719    #[stable(feature = "process", since = "1.0.0")]
720    pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
721        self.inner.arg(arg.as_ref());
722        self
723    }
724
725    /// Adds multiple arguments to pass to the program.
726    ///
727    /// To pass a single argument see [`arg`].
728    ///
729    /// [`arg`]: Command::arg
730    ///
731    /// Note that the arguments are not passed through a shell, but given
732    /// literally to the program. This means that shell syntax like quotes,
733    /// escaped characters, word splitting, glob patterns, variable substitution, etc.
734    /// have no effect.
735    ///
736    /// <div class="warning">
737    ///
738    /// On Windows, use caution with untrusted inputs. Most applications use the
739    /// standard convention for decoding arguments passed to them. These are safe to
740    /// use with `arg`. However, some applications such as `cmd.exe` and `.bat` files
741    /// use a non-standard way of decoding arguments. They are therefore vulnerable
742    /// to malicious input.
743    ///
744    /// In the case of `cmd.exe` this is especially important because a malicious
745    /// argument can potentially run arbitrary shell commands.
746    ///
747    /// See [Windows argument splitting][windows-args] for more details
748    /// or [`raw_arg`] for manually implementing non-standard argument encoding.
749    ///
750    /// [`raw_arg`]: crate::os::windows::process::CommandExt::raw_arg
751    /// [windows-args]: crate::process#windows-argument-splitting
752    ///
753    /// </div>
754    ///
755    /// # Examples
756    ///
757    /// ```no_run
758    /// use std::process::Command;
759    ///
760    /// Command::new("ls")
761    ///     .args(["-l", "-a"])
762    ///     .spawn()
763    ///     .expect("ls command failed to start");
764    /// ```
765    #[stable(feature = "process", since = "1.0.0")]
766    pub fn args<I, S>(&mut self, args: I) -> &mut Command
767    where
768        I: IntoIterator<Item = S>,
769        S: AsRef<OsStr>,
770    {
771        for arg in args {
772            self.arg(arg.as_ref());
773        }
774        self
775    }
776
777    /// Inserts or updates an explicit environment variable mapping.
778    ///
779    /// This method allows you to add an environment variable mapping to the spawned process or
780    /// overwrite a previously set value. You can use [`Command::envs`] to set multiple environment
781    /// variables simultaneously.
782    ///
783    /// Child processes will inherit environment variables from their parent process by default.
784    /// Environment variables explicitly set using [`Command::env`] take precedence over inherited
785    /// variables. You can disable environment variable inheritance entirely using
786    /// [`Command::env_clear`] or for a single key using [`Command::env_remove`].
787    ///
788    /// Note that environment variable names are case-insensitive (but
789    /// case-preserving) on Windows and case-sensitive on all other platforms.
790    ///
791    /// # Examples
792    ///
793    /// ```no_run
794    /// use std::process::Command;
795    ///
796    /// Command::new("ls")
797    ///     .env("PATH", "/bin")
798    ///     .spawn()
799    ///     .expect("ls command failed to start");
800    /// ```
801    #[stable(feature = "process", since = "1.0.0")]
802    pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
803    where
804        K: AsRef<OsStr>,
805        V: AsRef<OsStr>,
806    {
807        self.inner.env_mut().set(key.as_ref(), val.as_ref());
808        self
809    }
810
811    /// Inserts or updates multiple explicit environment variable mappings.
812    ///
813    /// This method allows you to add multiple environment variable mappings to the spawned process
814    /// or overwrite previously set values. You can use [`Command::env`] to set a single environment
815    /// variable.
816    ///
817    /// Child processes will inherit environment variables from their parent process by default.
818    /// Environment variables explicitly set using [`Command::envs`] take precedence over inherited
819    /// variables. You can disable environment variable inheritance entirely using
820    /// [`Command::env_clear`] or for a single key using [`Command::env_remove`].
821    ///
822    /// Note that environment variable names are case-insensitive (but case-preserving) on Windows
823    /// and case-sensitive on all other platforms.
824    ///
825    /// # Examples
826    ///
827    /// ```no_run
828    /// use std::process::{Command, Stdio};
829    /// use std::env;
830    /// use std::collections::HashMap;
831    ///
832    /// let filtered_env : HashMap<String, String> =
833    ///     env::vars().filter(|&(ref k, _)|
834    ///         k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
835    ///     ).collect();
836    ///
837    /// Command::new("printenv")
838    ///     .stdin(Stdio::null())
839    ///     .stdout(Stdio::inherit())
840    ///     .env_clear()
841    ///     .envs(&filtered_env)
842    ///     .spawn()
843    ///     .expect("printenv failed to start");
844    /// ```
845    #[stable(feature = "command_envs", since = "1.19.0")]
846    pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
847    where
848        I: IntoIterator<Item = (K, V)>,
849        K: AsRef<OsStr>,
850        V: AsRef<OsStr>,
851    {
852        for (ref key, ref val) in vars {
853            self.inner.env_mut().set(key.as_ref(), val.as_ref());
854        }
855        self
856    }
857
858    /// Removes an explicitly set environment variable and prevents inheriting it from a parent
859    /// process.
860    ///
861    /// This method will remove the explicit value of an environment variable set via
862    /// [`Command::env`] or [`Command::envs`]. In addition, it will prevent the spawned child
863    /// process from inheriting that environment variable from its parent process.
864    ///
865    /// After calling [`Command::env_remove`], the value associated with its key from
866    /// [`Command::get_envs`] will be [`None`].
867    ///
868    /// To clear all explicitly set environment variables and disable all environment variable
869    /// inheritance, you can use [`Command::env_clear`].
870    ///
871    /// # Examples
872    ///
873    /// Prevent any inherited `GIT_DIR` variable from changing the target of the `git` command,
874    /// while allowing all other variables, like `GIT_AUTHOR_NAME`.
875    ///
876    /// ```no_run
877    /// use std::process::Command;
878    ///
879    /// Command::new("git")
880    ///     .arg("commit")
881    ///     .env_remove("GIT_DIR")
882    ///     .spawn()?;
883    /// # std::io::Result::Ok(())
884    /// ```
885    #[stable(feature = "process", since = "1.0.0")]
886    pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
887        self.inner.env_mut().remove(key.as_ref());
888        self
889    }
890
891    /// Clears all explicitly set environment variables and prevents inheriting any parent process
892    /// environment variables.
893    ///
894    /// This method will remove all explicitly added environment variables set via [`Command::env`]
895    /// or [`Command::envs`]. In addition, it will prevent the spawned child process from inheriting
896    /// any environment variable from its parent process.
897    ///
898    /// After calling [`Command::env_clear`], the iterator from [`Command::get_envs`] will be
899    /// empty.
900    ///
901    /// You can use [`Command::env_remove`] to clear a single mapping.
902    ///
903    /// # Examples
904    ///
905    /// The behavior of `sort` is affected by `LANG` and `LC_*` environment variables.
906    /// Clearing the environment makes `sort`'s behavior independent of the parent processes' language.
907    ///
908    /// ```no_run
909    /// use std::process::Command;
910    ///
911    /// Command::new("sort")
912    ///     .arg("file.txt")
913    ///     .env_clear()
914    ///     .spawn()?;
915    /// # std::io::Result::Ok(())
916    /// ```
917    #[stable(feature = "process", since = "1.0.0")]
918    pub fn env_clear(&mut self) -> &mut Command {
919        self.inner.env_mut().clear();
920        self
921    }
922
923    /// Sets the working directory for the child process.
924    ///
925    /// # Platform-specific behavior
926    ///
927    /// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
928    /// whether it should be interpreted relative to the parent's working
929    /// directory or relative to `current_dir`. The behavior in this case is
930    /// platform specific and unstable, and it's recommended to use
931    /// [`canonicalize`] to get an absolute program path instead.
932    ///
933    /// # Examples
934    ///
935    /// ```no_run
936    /// use std::process::Command;
937    ///
938    /// Command::new("ls")
939    ///     .current_dir("/bin")
940    ///     .spawn()
941    ///     .expect("ls command failed to start");
942    /// ```
943    ///
944    /// [`canonicalize`]: crate::fs::canonicalize
945    #[stable(feature = "process", since = "1.0.0")]
946    pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
947        self.inner.cwd(dir.as_ref().as_ref());
948        self
949    }
950
951    /// Configuration for the child process's standard input (stdin) handle.
952    ///
953    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
954    /// defaults to [`piped`] when used with [`output`].
955    ///
956    /// [`inherit`]: Stdio::inherit
957    /// [`piped`]: Stdio::piped
958    /// [`spawn`]: Self::spawn
959    /// [`status`]: Self::status
960    /// [`output`]: Self::output
961    ///
962    /// # Examples
963    ///
964    /// ```no_run
965    /// use std::process::{Command, Stdio};
966    ///
967    /// Command::new("ls")
968    ///     .stdin(Stdio::null())
969    ///     .spawn()
970    ///     .expect("ls command failed to start");
971    /// ```
972    #[stable(feature = "process", since = "1.0.0")]
973    pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
974        self.inner.stdin(cfg.into().0);
975        self
976    }
977
978    /// Configuration for the child process's standard output (stdout) handle.
979    ///
980    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
981    /// defaults to [`piped`] when used with [`output`].
982    ///
983    /// [`inherit`]: Stdio::inherit
984    /// [`piped`]: Stdio::piped
985    /// [`spawn`]: Self::spawn
986    /// [`status`]: Self::status
987    /// [`output`]: Self::output
988    ///
989    /// # Examples
990    ///
991    /// ```no_run
992    /// use std::process::{Command, Stdio};
993    ///
994    /// Command::new("ls")
995    ///     .stdout(Stdio::null())
996    ///     .spawn()
997    ///     .expect("ls command failed to start");
998    /// ```
999    #[stable(feature = "process", since = "1.0.0")]
1000    pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
1001        self.inner.stdout(cfg.into().0);
1002        self
1003    }
1004
1005    /// Configuration for the child process's standard error (stderr) handle.
1006    ///
1007    /// Defaults to [`inherit`] when used with [`spawn`] or [`status`], and
1008    /// defaults to [`piped`] when used with [`output`].
1009    ///
1010    /// [`inherit`]: Stdio::inherit
1011    /// [`piped`]: Stdio::piped
1012    /// [`spawn`]: Self::spawn
1013    /// [`status`]: Self::status
1014    /// [`output`]: Self::output
1015    ///
1016    /// # Examples
1017    ///
1018    /// ```no_run
1019    /// use std::process::{Command, Stdio};
1020    ///
1021    /// Command::new("ls")
1022    ///     .stderr(Stdio::null())
1023    ///     .spawn()
1024    ///     .expect("ls command failed to start");
1025    /// ```
1026    #[stable(feature = "process", since = "1.0.0")]
1027    pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
1028        self.inner.stderr(cfg.into().0);
1029        self
1030    }
1031
1032    /// Executes the command as a child process, returning a handle to it.
1033    ///
1034    /// By default, stdin, stdout and stderr are inherited from the parent.
1035    ///
1036    /// # Examples
1037    ///
1038    /// ```no_run
1039    /// use std::process::Command;
1040    ///
1041    /// Command::new("ls")
1042    ///     .spawn()
1043    ///     .expect("ls command failed to start");
1044    /// ```
1045    #[stable(feature = "process", since = "1.0.0")]
1046    pub fn spawn(&mut self) -> io::Result<Child> {
1047        self.inner.spawn(imp::Stdio::Inherit, true).map(Child::from_inner)
1048    }
1049
1050    /// Executes the command as a child process, waiting for it to finish and
1051    /// collecting all of its output.
1052    ///
1053    /// By default, stdout and stderr are captured (and used to provide the
1054    /// resulting output). Stdin is not inherited from the parent and any
1055    /// attempt by the child process to read from the stdin stream will result
1056    /// in the stream immediately closing.
1057    ///
1058    /// # Examples
1059    ///
1060    /// ```should_panic
1061    /// use std::process::Command;
1062    /// use std::io::{self, Write};
1063    /// let output = Command::new("/bin/cat")
1064    ///     .arg("file.txt")
1065    ///     .output()?;
1066    ///
1067    /// println!("status: {}", output.status);
1068    /// io::stdout().write_all(&output.stdout)?;
1069    /// io::stderr().write_all(&output.stderr)?;
1070    ///
1071    /// assert!(output.status.success());
1072    /// # io::Result::Ok(())
1073    /// ```
1074    #[stable(feature = "process", since = "1.0.0")]
1075    pub fn output(&mut self) -> io::Result<Output> {
1076        let (status, stdout, stderr) = self.inner.output()?;
1077        Ok(Output { status: ExitStatus(status), stdout, stderr })
1078    }
1079
1080    /// Executes a command as a child process, waiting for it to finish and
1081    /// collecting its status.
1082    ///
1083    /// By default, stdin, stdout and stderr are inherited from the parent.
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```should_panic
1088    /// use std::process::Command;
1089    ///
1090    /// let status = Command::new("/bin/cat")
1091    ///     .arg("file.txt")
1092    ///     .status()
1093    ///     .expect("failed to execute process");
1094    ///
1095    /// println!("process finished with: {status}");
1096    ///
1097    /// assert!(status.success());
1098    /// ```
1099    #[stable(feature = "process", since = "1.0.0")]
1100    pub fn status(&mut self) -> io::Result<ExitStatus> {
1101        self.inner
1102            .spawn(imp::Stdio::Inherit, true)
1103            .map(Child::from_inner)
1104            .and_then(|mut p| p.wait())
1105    }
1106
1107    /// Returns the path to the program that was given to [`Command::new`].
1108    ///
1109    /// # Examples
1110    ///
1111    /// ```
1112    /// use std::process::Command;
1113    ///
1114    /// let cmd = Command::new("echo");
1115    /// assert_eq!(cmd.get_program(), "echo");
1116    /// ```
1117    #[must_use]
1118    #[stable(feature = "command_access", since = "1.57.0")]
1119    pub fn get_program(&self) -> &OsStr {
1120        self.inner.get_program()
1121    }
1122
1123    /// Returns an iterator of the arguments that will be passed to the program.
1124    ///
1125    /// This does not include the path to the program as the first argument;
1126    /// it only includes the arguments specified with [`Command::arg`] and
1127    /// [`Command::args`].
1128    ///
1129    /// # Examples
1130    ///
1131    /// ```
1132    /// use std::ffi::OsStr;
1133    /// use std::process::Command;
1134    ///
1135    /// let mut cmd = Command::new("echo");
1136    /// cmd.arg("first").arg("second");
1137    /// let args: Vec<&OsStr> = cmd.get_args().collect();
1138    /// assert_eq!(args, &["first", "second"]);
1139    /// ```
1140    #[stable(feature = "command_access", since = "1.57.0")]
1141    pub fn get_args(&self) -> CommandArgs<'_> {
1142        CommandArgs { inner: self.inner.get_args() }
1143    }
1144
1145    /// Returns an iterator of the environment variables explicitly set for the child process.
1146    ///
1147    /// Environment variables explicitly set using [`Command::env`], [`Command::envs`], and
1148    /// [`Command::env_remove`] can be retrieved with this method.
1149    ///
1150    /// Note that this output does not include environment variables inherited from the parent
1151    /// process.
1152    ///
1153    /// Each element is a tuple key/value pair `(&OsStr, Option<&OsStr>)`. A [`None`] value
1154    /// indicates its key was explicitly removed via [`Command::env_remove`]. The associated key for
1155    /// the [`None`] value will no longer inherit from its parent process.
1156    ///
1157    /// An empty iterator can indicate that no explicit mappings were added or that
1158    /// [`Command::env_clear`] was called. After calling [`Command::env_clear`], the child process
1159    /// will not inherit any environment variables from its parent process.
1160    ///
1161    /// # Examples
1162    ///
1163    /// ```
1164    /// use std::ffi::OsStr;
1165    /// use std::process::Command;
1166    ///
1167    /// let mut cmd = Command::new("ls");
1168    /// cmd.env("TERM", "dumb").env_remove("TZ");
1169    /// let envs: Vec<(&OsStr, Option<&OsStr>)> = cmd.get_envs().collect();
1170    /// assert_eq!(envs, &[
1171    ///     (OsStr::new("TERM"), Some(OsStr::new("dumb"))),
1172    ///     (OsStr::new("TZ"), None)
1173    /// ]);
1174    /// ```
1175    #[stable(feature = "command_access", since = "1.57.0")]
1176    pub fn get_envs(&self) -> CommandEnvs<'_> {
1177        self.inner.get_envs()
1178    }
1179
1180    /// Returns the working directory for the child process.
1181    ///
1182    /// This returns [`None`] if the working directory will not be changed.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// use std::path::Path;
1188    /// use std::process::Command;
1189    ///
1190    /// let mut cmd = Command::new("ls");
1191    /// assert_eq!(cmd.get_current_dir(), None);
1192    /// cmd.current_dir("/bin");
1193    /// assert_eq!(cmd.get_current_dir(), Some(Path::new("/bin")));
1194    /// ```
1195    #[must_use]
1196    #[stable(feature = "command_access", since = "1.57.0")]
1197    pub fn get_current_dir(&self) -> Option<&Path> {
1198        self.inner.get_current_dir()
1199    }
1200}
1201
1202#[stable(feature = "rust1", since = "1.0.0")]
1203impl fmt::Debug for Command {
1204    /// Format the program and arguments of a Command for display. Any
1205    /// non-utf8 data is lossily converted using the utf8 replacement
1206    /// character.
1207    ///
1208    /// The default format approximates a shell invocation of the program along with its
1209    /// arguments. It does not include most of the other command properties. The output is not guaranteed to work
1210    /// (e.g. due to lack of shell-escaping or differences in path resolution).
1211    /// On some platforms you can use [the alternate syntax] to show more fields.
1212    ///
1213    /// Note that the debug implementation is platform-specific.
1214    ///
1215    /// [the alternate syntax]: fmt#sign0
1216    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1217        self.inner.fmt(f)
1218    }
1219}
1220
1221impl AsInner<imp::Command> for Command {
1222    #[inline]
1223    fn as_inner(&self) -> &imp::Command {
1224        &self.inner
1225    }
1226}
1227
1228impl AsInnerMut<imp::Command> for Command {
1229    #[inline]
1230    fn as_inner_mut(&mut self) -> &mut imp::Command {
1231        &mut self.inner
1232    }
1233}
1234
1235/// An iterator over the command arguments.
1236///
1237/// This struct is created by [`Command::get_args`]. See its documentation for
1238/// more.
1239#[must_use = "iterators are lazy and do nothing unless consumed"]
1240#[stable(feature = "command_access", since = "1.57.0")]
1241#[derive(Debug)]
1242pub struct CommandArgs<'a> {
1243    inner: imp::CommandArgs<'a>,
1244}
1245
1246#[stable(feature = "command_access", since = "1.57.0")]
1247impl<'a> Iterator for CommandArgs<'a> {
1248    type Item = &'a OsStr;
1249    fn next(&mut self) -> Option<&'a OsStr> {
1250        self.inner.next()
1251    }
1252    fn size_hint(&self) -> (usize, Option<usize>) {
1253        self.inner.size_hint()
1254    }
1255}
1256
1257#[stable(feature = "command_access", since = "1.57.0")]
1258impl<'a> ExactSizeIterator for CommandArgs<'a> {
1259    fn len(&self) -> usize {
1260        self.inner.len()
1261    }
1262    fn is_empty(&self) -> bool {
1263        self.inner.is_empty()
1264    }
1265}
1266
1267/// The output of a finished process.
1268///
1269/// This is returned in a Result by either the [`output`] method of a
1270/// [`Command`], or the [`wait_with_output`] method of a [`Child`]
1271/// process.
1272///
1273/// [`output`]: Command::output
1274/// [`wait_with_output`]: Child::wait_with_output
1275#[derive(PartialEq, Eq, Clone)]
1276#[stable(feature = "process", since = "1.0.0")]
1277pub struct Output {
1278    /// The status (exit code) of the process.
1279    #[stable(feature = "process", since = "1.0.0")]
1280    pub status: ExitStatus,
1281    /// The data that the process wrote to stdout.
1282    #[stable(feature = "process", since = "1.0.0")]
1283    pub stdout: Vec<u8>,
1284    /// The data that the process wrote to stderr.
1285    #[stable(feature = "process", since = "1.0.0")]
1286    pub stderr: Vec<u8>,
1287}
1288
1289impl Output {
1290    /// Returns an error if a nonzero exit status was received.
1291    ///
1292    /// If the [`Command`] exited successfully,
1293    /// `self` is returned.
1294    ///
1295    /// This is equivalent to calling [`exit_ok`](ExitStatus::exit_ok)
1296    /// on [`Output.status`](Output::status).
1297    ///
1298    /// Note that this will throw away the [`Output::stderr`] field in the error case.
1299    /// If the child process outputs useful informantion to stderr, you can:
1300    /// * Use `cmd.stderr(Stdio::inherit())` to forward the
1301    ///   stderr child process to the parent's stderr,
1302    ///   usually printing it to console where the user can see it.
1303    ///   This is usually correct for command-line applications.
1304    /// * Capture `stderr` using a custom error type.
1305    ///   This is usually correct for libraries.
1306    ///
1307    /// # Examples
1308    ///
1309    /// ```
1310    /// #![feature(exit_status_error)]
1311    /// # #[cfg(unix)] {
1312    /// use std::process::Command;
1313    /// assert!(Command::new("false").output().unwrap().exit_ok().is_err());
1314    /// # }
1315    /// ```
1316    #[unstable(feature = "exit_status_error", issue = "84908")]
1317    pub fn exit_ok(self) -> Result<Self, ExitStatusError> {
1318        self.status.exit_ok()?;
1319        Ok(self)
1320    }
1321}
1322
1323// If either stderr or stdout are valid utf8 strings it prints the valid
1324// strings, otherwise it prints the byte sequence instead
1325#[stable(feature = "process_output_debug", since = "1.7.0")]
1326impl fmt::Debug for Output {
1327    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1328        let stdout_utf8 = str::from_utf8(&self.stdout);
1329        let stdout_debug: &dyn fmt::Debug = match stdout_utf8 {
1330            Ok(ref s) => s,
1331            Err(_) => &self.stdout,
1332        };
1333
1334        let stderr_utf8 = str::from_utf8(&self.stderr);
1335        let stderr_debug: &dyn fmt::Debug = match stderr_utf8 {
1336            Ok(ref s) => s,
1337            Err(_) => &self.stderr,
1338        };
1339
1340        fmt.debug_struct("Output")
1341            .field("status", &self.status)
1342            .field("stdout", stdout_debug)
1343            .field("stderr", stderr_debug)
1344            .finish()
1345    }
1346}
1347
1348/// Describes what to do with a standard I/O stream for a child process when
1349/// passed to the [`stdin`], [`stdout`], and [`stderr`] methods of [`Command`].
1350///
1351/// [`stdin`]: Command::stdin
1352/// [`stdout`]: Command::stdout
1353/// [`stderr`]: Command::stderr
1354#[stable(feature = "process", since = "1.0.0")]
1355pub struct Stdio(imp::Stdio);
1356
1357impl Stdio {
1358    /// A new pipe should be arranged to connect the parent and child processes.
1359    ///
1360    /// # Examples
1361    ///
1362    /// With stdout:
1363    ///
1364    /// ```no_run
1365    /// use std::process::{Command, Stdio};
1366    ///
1367    /// let output = Command::new("echo")
1368    ///     .arg("Hello, world!")
1369    ///     .stdout(Stdio::piped())
1370    ///     .output()
1371    ///     .expect("Failed to execute command");
1372    ///
1373    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "Hello, world!\n");
1374    /// // Nothing echoed to console
1375    /// ```
1376    ///
1377    /// With stdin:
1378    ///
1379    /// ```no_run
1380    /// use std::io::Write;
1381    /// use std::process::{Command, Stdio};
1382    ///
1383    /// let mut child = Command::new("rev")
1384    ///     .stdin(Stdio::piped())
1385    ///     .stdout(Stdio::piped())
1386    ///     .spawn()
1387    ///     .expect("Failed to spawn child process");
1388    ///
1389    /// let mut stdin = child.stdin.take().expect("Failed to open stdin");
1390    /// std::thread::spawn(move || {
1391    ///     stdin.write_all("Hello, world!".as_bytes()).expect("Failed to write to stdin");
1392    /// });
1393    ///
1394    /// let output = child.wait_with_output().expect("Failed to read stdout");
1395    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "!dlrow ,olleH");
1396    /// ```
1397    ///
1398    /// Writing more than a pipe buffer's worth of input to stdin without also reading
1399    /// stdout and stderr at the same time may cause a deadlock.
1400    /// This is an issue when running any program that doesn't guarantee that it reads
1401    /// its entire stdin before writing more than a pipe buffer's worth of output.
1402    /// The size of a pipe buffer varies on different targets.
1403    ///
1404    #[must_use]
1405    #[stable(feature = "process", since = "1.0.0")]
1406    pub fn piped() -> Stdio {
1407        Stdio(imp::Stdio::MakePipe)
1408    }
1409
1410    /// The child inherits from the corresponding parent descriptor.
1411    ///
1412    /// # Examples
1413    ///
1414    /// With stdout:
1415    ///
1416    /// ```no_run
1417    /// use std::process::{Command, Stdio};
1418    ///
1419    /// let output = Command::new("echo")
1420    ///     .arg("Hello, world!")
1421    ///     .stdout(Stdio::inherit())
1422    ///     .output()
1423    ///     .expect("Failed to execute command");
1424    ///
1425    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1426    /// // "Hello, world!" echoed to console
1427    /// ```
1428    ///
1429    /// With stdin:
1430    ///
1431    /// ```no_run
1432    /// use std::process::{Command, Stdio};
1433    /// use std::io::{self, Write};
1434    ///
1435    /// let output = Command::new("rev")
1436    ///     .stdin(Stdio::inherit())
1437    ///     .stdout(Stdio::piped())
1438    ///     .output()?;
1439    ///
1440    /// print!("You piped in the reverse of: ");
1441    /// io::stdout().write_all(&output.stdout)?;
1442    /// # io::Result::Ok(())
1443    /// ```
1444    #[must_use]
1445    #[stable(feature = "process", since = "1.0.0")]
1446    pub fn inherit() -> Stdio {
1447        Stdio(imp::Stdio::Inherit)
1448    }
1449
1450    /// This stream will be ignored. This is the equivalent of attaching the
1451    /// stream to `/dev/null`.
1452    ///
1453    /// # Examples
1454    ///
1455    /// With stdout:
1456    ///
1457    /// ```no_run
1458    /// use std::process::{Command, Stdio};
1459    ///
1460    /// let output = Command::new("echo")
1461    ///     .arg("Hello, world!")
1462    ///     .stdout(Stdio::null())
1463    ///     .output()
1464    ///     .expect("Failed to execute command");
1465    ///
1466    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1467    /// // Nothing echoed to console
1468    /// ```
1469    ///
1470    /// With stdin:
1471    ///
1472    /// ```no_run
1473    /// use std::process::{Command, Stdio};
1474    ///
1475    /// let output = Command::new("rev")
1476    ///     .stdin(Stdio::null())
1477    ///     .stdout(Stdio::piped())
1478    ///     .output()
1479    ///     .expect("Failed to execute command");
1480    ///
1481    /// assert_eq!(String::from_utf8_lossy(&output.stdout), "");
1482    /// // Ignores any piped-in input
1483    /// ```
1484    #[must_use]
1485    #[stable(feature = "process", since = "1.0.0")]
1486    pub fn null() -> Stdio {
1487        Stdio(imp::Stdio::Null)
1488    }
1489
1490    /// Returns `true` if this requires [`Command`] to create a new pipe.
1491    ///
1492    /// # Example
1493    ///
1494    /// ```
1495    /// #![feature(stdio_makes_pipe)]
1496    /// use std::process::Stdio;
1497    ///
1498    /// let io = Stdio::piped();
1499    /// assert_eq!(io.makes_pipe(), true);
1500    /// ```
1501    #[unstable(feature = "stdio_makes_pipe", issue = "98288")]
1502    pub fn makes_pipe(&self) -> bool {
1503        matches!(self.0, imp::Stdio::MakePipe)
1504    }
1505}
1506
1507impl FromInner<imp::Stdio> for Stdio {
1508    fn from_inner(inner: imp::Stdio) -> Stdio {
1509        Stdio(inner)
1510    }
1511}
1512
1513#[stable(feature = "std_debug", since = "1.16.0")]
1514impl fmt::Debug for Stdio {
1515    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1516        f.debug_struct("Stdio").finish_non_exhaustive()
1517    }
1518}
1519
1520#[stable(feature = "stdio_from", since = "1.20.0")]
1521impl From<ChildStdin> for Stdio {
1522    /// Converts a [`ChildStdin`] into a [`Stdio`].
1523    ///
1524    /// # Examples
1525    ///
1526    /// `ChildStdin` will be converted to `Stdio` using `Stdio::from` under the hood.
1527    ///
1528    /// ```rust,no_run
1529    /// use std::process::{Command, Stdio};
1530    ///
1531    /// let reverse = Command::new("rev")
1532    ///     .stdin(Stdio::piped())
1533    ///     .spawn()
1534    ///     .expect("failed reverse command");
1535    ///
1536    /// let _echo = Command::new("echo")
1537    ///     .arg("Hello, world!")
1538    ///     .stdout(reverse.stdin.unwrap()) // Converted into a Stdio here
1539    ///     .output()
1540    ///     .expect("failed echo command");
1541    ///
1542    /// // "!dlrow ,olleH" echoed to console
1543    /// ```
1544    fn from(child: ChildStdin) -> Stdio {
1545        Stdio::from_inner(child.into_inner().into())
1546    }
1547}
1548
1549#[stable(feature = "stdio_from", since = "1.20.0")]
1550impl From<ChildStdout> for Stdio {
1551    /// Converts a [`ChildStdout`] into a [`Stdio`].
1552    ///
1553    /// # Examples
1554    ///
1555    /// `ChildStdout` will be converted to `Stdio` using `Stdio::from` under the hood.
1556    ///
1557    /// ```rust,no_run
1558    /// use std::process::{Command, Stdio};
1559    ///
1560    /// let hello = Command::new("echo")
1561    ///     .arg("Hello, world!")
1562    ///     .stdout(Stdio::piped())
1563    ///     .spawn()
1564    ///     .expect("failed echo command");
1565    ///
1566    /// let reverse = Command::new("rev")
1567    ///     .stdin(hello.stdout.unwrap())  // Converted into a Stdio here
1568    ///     .output()
1569    ///     .expect("failed reverse command");
1570    ///
1571    /// assert_eq!(reverse.stdout, b"!dlrow ,olleH\n");
1572    /// ```
1573    fn from(child: ChildStdout) -> Stdio {
1574        Stdio::from_inner(child.into_inner().into())
1575    }
1576}
1577
1578#[stable(feature = "stdio_from", since = "1.20.0")]
1579impl From<ChildStderr> for Stdio {
1580    /// Converts a [`ChildStderr`] into a [`Stdio`].
1581    ///
1582    /// # Examples
1583    ///
1584    /// ```rust,no_run
1585    /// use std::process::{Command, Stdio};
1586    ///
1587    /// let reverse = Command::new("rev")
1588    ///     .arg("non_existing_file.txt")
1589    ///     .stderr(Stdio::piped())
1590    ///     .spawn()
1591    ///     .expect("failed reverse command");
1592    ///
1593    /// let cat = Command::new("cat")
1594    ///     .arg("-")
1595    ///     .stdin(reverse.stderr.unwrap()) // Converted into a Stdio here
1596    ///     .output()
1597    ///     .expect("failed echo command");
1598    ///
1599    /// assert_eq!(
1600    ///     String::from_utf8_lossy(&cat.stdout),
1601    ///     "rev: cannot open non_existing_file.txt: No such file or directory\n"
1602    /// );
1603    /// ```
1604    fn from(child: ChildStderr) -> Stdio {
1605        Stdio::from_inner(child.into_inner().into())
1606    }
1607}
1608
1609#[stable(feature = "stdio_from", since = "1.20.0")]
1610impl From<fs::File> for Stdio {
1611    /// Converts a [`File`](fs::File) into a [`Stdio`].
1612    ///
1613    /// # Examples
1614    ///
1615    /// `File` will be converted to `Stdio` using `Stdio::from` under the hood.
1616    ///
1617    /// ```rust,no_run
1618    /// use std::fs::File;
1619    /// use std::process::Command;
1620    ///
1621    /// // With the `foo.txt` file containing "Hello, world!"
1622    /// let file = File::open("foo.txt")?;
1623    ///
1624    /// let reverse = Command::new("rev")
1625    ///     .stdin(file)  // Implicit File conversion into a Stdio
1626    ///     .output()?;
1627    ///
1628    /// assert_eq!(reverse.stdout, b"!dlrow ,olleH");
1629    /// # std::io::Result::Ok(())
1630    /// ```
1631    fn from(file: fs::File) -> Stdio {
1632        Stdio::from_inner(file.into_inner().into())
1633    }
1634}
1635
1636#[stable(feature = "stdio_from_stdio", since = "1.74.0")]
1637impl From<io::Stdout> for Stdio {
1638    /// Redirect command stdout/stderr to our stdout
1639    ///
1640    /// # Examples
1641    ///
1642    /// ```rust
1643    /// #![feature(exit_status_error)]
1644    /// use std::io;
1645    /// use std::process::Command;
1646    ///
1647    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
1648    /// let output = Command::new("whoami")
1649    // "whoami" is a command which exists on both Unix and Windows,
1650    // and which succeeds, producing some stdout output but no stderr.
1651    ///     .stdout(io::stdout())
1652    ///     .output()?;
1653    /// output.status.exit_ok()?;
1654    /// assert!(output.stdout.is_empty());
1655    /// # Ok(())
1656    /// # }
1657    /// #
1658    /// # if cfg!(unix) {
1659    /// #     test().unwrap();
1660    /// # }
1661    /// ```
1662    fn from(inherit: io::Stdout) -> Stdio {
1663        Stdio::from_inner(inherit.into())
1664    }
1665}
1666
1667#[stable(feature = "stdio_from_stdio", since = "1.74.0")]
1668impl From<io::Stderr> for Stdio {
1669    /// Redirect command stdout/stderr to our stderr
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```rust
1674    /// #![feature(exit_status_error)]
1675    /// use std::io;
1676    /// use std::process::Command;
1677    ///
1678    /// # fn test() -> Result<(), Box<dyn std::error::Error>> {
1679    /// let output = Command::new("whoami")
1680    ///     .stdout(io::stderr())
1681    ///     .output()?;
1682    /// output.status.exit_ok()?;
1683    /// assert!(output.stdout.is_empty());
1684    /// # Ok(())
1685    /// # }
1686    /// #
1687    /// # if cfg!(unix) {
1688    /// #     test().unwrap();
1689    /// # }
1690    /// ```
1691    fn from(inherit: io::Stderr) -> Stdio {
1692        Stdio::from_inner(inherit.into())
1693    }
1694}
1695
1696#[stable(feature = "anonymous_pipe", since = "1.87.0")]
1697impl From<io::PipeWriter> for Stdio {
1698    fn from(pipe: io::PipeWriter) -> Self {
1699        Stdio::from_inner(pipe.into_inner().into())
1700    }
1701}
1702
1703#[stable(feature = "anonymous_pipe", since = "1.87.0")]
1704impl From<io::PipeReader> for Stdio {
1705    fn from(pipe: io::PipeReader) -> Self {
1706        Stdio::from_inner(pipe.into_inner().into())
1707    }
1708}
1709
1710/// Describes the result of a process after it has terminated.
1711///
1712/// This `struct` is used to represent the exit status or other termination of a child process.
1713/// Child processes are created via the [`Command`] struct and their exit
1714/// status is exposed through the [`status`] method, or the [`wait`] method
1715/// of a [`Child`] process.
1716///
1717/// An `ExitStatus` represents every possible disposition of a process.  On Unix this
1718/// is the **wait status**.  It is *not* simply an *exit status* (a value passed to `exit`).
1719///
1720/// For proper error reporting of failed processes, print the value of `ExitStatus` or
1721/// `ExitStatusError` using their implementations of [`Display`](crate::fmt::Display).
1722///
1723/// # Differences from `ExitCode`
1724///
1725/// [`ExitCode`] is intended for terminating the currently running process, via
1726/// the `Termination` trait, in contrast to `ExitStatus`, which represents the
1727/// termination of a child process. These APIs are separate due to platform
1728/// compatibility differences and their expected usage; it is not generally
1729/// possible to exactly reproduce an `ExitStatus` from a child for the current
1730/// process after the fact.
1731///
1732/// [`status`]: Command::status
1733/// [`wait`]: Child::wait
1734//
1735// We speak slightly loosely (here and in various other places in the stdlib docs) about `exit`
1736// vs `_exit`.  Naming of Unix system calls is not standardised across Unices, so terminology is a
1737// matter of convention and tradition.  For clarity we usually speak of `exit`, even when we might
1738// mean an underlying system call such as `_exit`.
1739#[derive(PartialEq, Eq, Clone, Copy, Debug)]
1740#[stable(feature = "process", since = "1.0.0")]
1741pub struct ExitStatus(imp::ExitStatus);
1742
1743/// The default value is one which indicates successful completion.
1744#[stable(feature = "process_exitstatus_default", since = "1.73.0")]
1745impl Default for ExitStatus {
1746    fn default() -> Self {
1747        // Ideally this would be done by ExitCode::default().into() but that is complicated.
1748        ExitStatus::from_inner(imp::ExitStatus::default())
1749    }
1750}
1751
1752/// Allows extension traits within `std`.
1753#[unstable(feature = "sealed", issue = "none")]
1754impl crate::sealed::Sealed for ExitStatus {}
1755
1756impl ExitStatus {
1757    /// Was termination successful?  Returns a `Result`.
1758    ///
1759    /// # Examples
1760    ///
1761    /// ```
1762    /// #![feature(exit_status_error)]
1763    /// # if cfg!(unix) {
1764    /// use std::process::Command;
1765    ///
1766    /// let status = Command::new("ls")
1767    ///     .arg("/dev/nonexistent")
1768    ///     .status()
1769    ///     .expect("ls could not be executed");
1770    ///
1771    /// println!("ls: {status}");
1772    /// status.exit_ok().expect_err("/dev/nonexistent could be listed!");
1773    /// # } // cfg!(unix)
1774    /// ```
1775    #[unstable(feature = "exit_status_error", issue = "84908")]
1776    pub fn exit_ok(&self) -> Result<(), ExitStatusError> {
1777        self.0.exit_ok().map_err(ExitStatusError)
1778    }
1779
1780    /// Was termination successful? Signal termination is not considered a
1781    /// success, and success is defined as a zero exit status.
1782    ///
1783    /// # Examples
1784    ///
1785    /// ```rust,no_run
1786    /// use std::process::Command;
1787    ///
1788    /// let status = Command::new("mkdir")
1789    ///     .arg("projects")
1790    ///     .status()
1791    ///     .expect("failed to execute mkdir");
1792    ///
1793    /// if status.success() {
1794    ///     println!("'projects/' directory created");
1795    /// } else {
1796    ///     println!("failed to create 'projects/' directory: {status}");
1797    /// }
1798    /// ```
1799    #[must_use]
1800    #[stable(feature = "process", since = "1.0.0")]
1801    pub fn success(&self) -> bool {
1802        self.0.exit_ok().is_ok()
1803    }
1804
1805    /// Returns the exit code of the process, if any.
1806    ///
1807    /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
1808    /// process finished by calling `exit`.  Note that on Unix the exit status is truncated to 8
1809    /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
1810    /// runtime system (often, for example, 255, 254, 127 or 126).
1811    ///
1812    /// On Unix, this will return `None` if the process was terminated by a signal.
1813    /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt) is an
1814    /// extension trait for extracting any such signal, and other details, from the `ExitStatus`.
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```no_run
1819    /// use std::process::Command;
1820    ///
1821    /// let status = Command::new("mkdir")
1822    ///     .arg("projects")
1823    ///     .status()
1824    ///     .expect("failed to execute mkdir");
1825    ///
1826    /// match status.code() {
1827    ///     Some(code) => println!("Exited with status code: {code}"),
1828    ///     None => println!("Process terminated by signal")
1829    /// }
1830    /// ```
1831    #[must_use]
1832    #[stable(feature = "process", since = "1.0.0")]
1833    pub fn code(&self) -> Option<i32> {
1834        self.0.code()
1835    }
1836}
1837
1838impl AsInner<imp::ExitStatus> for ExitStatus {
1839    #[inline]
1840    fn as_inner(&self) -> &imp::ExitStatus {
1841        &self.0
1842    }
1843}
1844
1845impl FromInner<imp::ExitStatus> for ExitStatus {
1846    fn from_inner(s: imp::ExitStatus) -> ExitStatus {
1847        ExitStatus(s)
1848    }
1849}
1850
1851#[stable(feature = "process", since = "1.0.0")]
1852impl fmt::Display for ExitStatus {
1853    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1854        self.0.fmt(f)
1855    }
1856}
1857
1858/// Allows extension traits within `std`.
1859#[unstable(feature = "sealed", issue = "none")]
1860impl crate::sealed::Sealed for ExitStatusError {}
1861
1862/// Describes the result of a process after it has failed
1863///
1864/// Produced by the [`.exit_ok`](ExitStatus::exit_ok) method on [`ExitStatus`].
1865///
1866/// # Examples
1867///
1868/// ```
1869/// #![feature(exit_status_error)]
1870/// # if cfg!(unix) {
1871/// use std::process::{Command, ExitStatusError};
1872///
1873/// fn run(cmd: &str) -> Result<(), ExitStatusError> {
1874///     Command::new(cmd).status().unwrap().exit_ok()?;
1875///     Ok(())
1876/// }
1877///
1878/// run("true").unwrap();
1879/// run("false").unwrap_err();
1880/// # } // cfg!(unix)
1881/// ```
1882#[derive(PartialEq, Eq, Clone, Copy, Debug)]
1883#[unstable(feature = "exit_status_error", issue = "84908")]
1884// The definition of imp::ExitStatusError should ideally be such that
1885// Result<(), imp::ExitStatusError> has an identical representation to imp::ExitStatus.
1886pub struct ExitStatusError(imp::ExitStatusError);
1887
1888#[unstable(feature = "exit_status_error", issue = "84908")]
1889impl ExitStatusError {
1890    /// Reports the exit code, if applicable, from an `ExitStatusError`.
1891    ///
1892    /// In Unix terms the return value is the **exit status**: the value passed to `exit`, if the
1893    /// process finished by calling `exit`.  Note that on Unix the exit status is truncated to 8
1894    /// bits, and that values that didn't come from a program's call to `exit` may be invented by the
1895    /// runtime system (often, for example, 255, 254, 127 or 126).
1896    ///
1897    /// On Unix, this will return `None` if the process was terminated by a signal.  If you want to
1898    /// handle such situations specially, consider using methods from
1899    /// [`ExitStatusExt`](crate::os::unix::process::ExitStatusExt).
1900    ///
1901    /// If the process finished by calling `exit` with a nonzero value, this will return
1902    /// that exit status.
1903    ///
1904    /// If the error was something else, it will return `None`.
1905    ///
1906    /// If the process exited successfully (ie, by calling `exit(0)`), there is no
1907    /// `ExitStatusError`.  So the return value from `ExitStatusError::code()` is always nonzero.
1908    ///
1909    /// # Examples
1910    ///
1911    /// ```
1912    /// #![feature(exit_status_error)]
1913    /// # #[cfg(unix)] {
1914    /// use std::process::Command;
1915    ///
1916    /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
1917    /// assert_eq!(bad.code(), Some(1));
1918    /// # } // #[cfg(unix)]
1919    /// ```
1920    #[must_use]
1921    pub fn code(&self) -> Option<i32> {
1922        self.code_nonzero().map(Into::into)
1923    }
1924
1925    /// Reports the exit code, if applicable, from an `ExitStatusError`, as a [`NonZero`].
1926    ///
1927    /// This is exactly like [`code()`](Self::code), except that it returns a <code>[NonZero]<[i32]></code>.
1928    ///
1929    /// Plain `code`, returning a plain integer, is provided because it is often more convenient.
1930    /// The returned value from `code()` is indeed also nonzero; use `code_nonzero()` when you want
1931    /// a type-level guarantee of nonzeroness.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```
1936    /// #![feature(exit_status_error)]
1937    ///
1938    /// # if cfg!(unix) {
1939    /// use std::num::NonZero;
1940    /// use std::process::Command;
1941    ///
1942    /// let bad = Command::new("false").status().unwrap().exit_ok().unwrap_err();
1943    /// assert_eq!(bad.code_nonzero().unwrap(), NonZero::new(1).unwrap());
1944    /// # } // cfg!(unix)
1945    /// ```
1946    #[must_use]
1947    pub fn code_nonzero(&self) -> Option<NonZero<i32>> {
1948        self.0.code()
1949    }
1950
1951    /// Converts an `ExitStatusError` (back) to an `ExitStatus`.
1952    #[must_use]
1953    pub fn into_status(&self) -> ExitStatus {
1954        ExitStatus(self.0.into())
1955    }
1956}
1957
1958#[unstable(feature = "exit_status_error", issue = "84908")]
1959impl From<ExitStatusError> for ExitStatus {
1960    fn from(error: ExitStatusError) -> Self {
1961        Self(error.0.into())
1962    }
1963}
1964
1965#[unstable(feature = "exit_status_error", issue = "84908")]
1966impl fmt::Display for ExitStatusError {
1967    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1968        write!(f, "process exited unsuccessfully: {}", self.into_status())
1969    }
1970}
1971
1972#[unstable(feature = "exit_status_error", issue = "84908")]
1973impl crate::error::Error for ExitStatusError {}
1974
1975/// This type represents the status code the current process can return
1976/// to its parent under normal termination.
1977///
1978/// `ExitCode` is intended to be consumed only by the standard library (via
1979/// [`Termination::report()`]). For forwards compatibility with potentially
1980/// unusual targets, this type currently does not provide `Eq`, `Hash`, or
1981/// access to the raw value. This type does provide `PartialEq` for
1982/// comparison, but note that there may potentially be multiple failure
1983/// codes, some of which will _not_ compare equal to `ExitCode::FAILURE`.
1984/// The standard library provides the canonical `SUCCESS` and `FAILURE`
1985/// exit codes as well as `From<u8> for ExitCode` for constructing other
1986/// arbitrary exit codes.
1987///
1988/// # Portability
1989///
1990/// Numeric values used in this type don't have portable meanings, and
1991/// different platforms may mask different amounts of them.
1992///
1993/// For the platform's canonical successful and unsuccessful codes, see
1994/// the [`SUCCESS`] and [`FAILURE`] associated items.
1995///
1996/// [`SUCCESS`]: ExitCode::SUCCESS
1997/// [`FAILURE`]: ExitCode::FAILURE
1998///
1999/// # Differences from `ExitStatus`
2000///
2001/// `ExitCode` is intended for terminating the currently running process, via
2002/// the `Termination` trait, in contrast to [`ExitStatus`], which represents the
2003/// termination of a child process. These APIs are separate due to platform
2004/// compatibility differences and their expected usage; it is not generally
2005/// possible to exactly reproduce an `ExitStatus` from a child for the current
2006/// process after the fact.
2007///
2008/// # Examples
2009///
2010/// `ExitCode` can be returned from the `main` function of a crate, as it implements
2011/// [`Termination`]:
2012///
2013/// ```
2014/// use std::process::ExitCode;
2015/// # fn check_foo() -> bool { true }
2016///
2017/// fn main() -> ExitCode {
2018///     if !check_foo() {
2019///         return ExitCode::from(42);
2020///     }
2021///
2022///     ExitCode::SUCCESS
2023/// }
2024/// ```
2025#[derive(Clone, Copy, Debug, PartialEq)]
2026#[stable(feature = "process_exitcode", since = "1.61.0")]
2027pub struct ExitCode(imp::ExitCode);
2028
2029/// Allows extension traits within `std`.
2030#[unstable(feature = "sealed", issue = "none")]
2031impl crate::sealed::Sealed for ExitCode {}
2032
2033#[stable(feature = "process_exitcode", since = "1.61.0")]
2034impl ExitCode {
2035    /// The canonical `ExitCode` for successful termination on this platform.
2036    ///
2037    /// Note that a `()`-returning `main` implicitly results in a successful
2038    /// termination, so there's no need to return this from `main` unless
2039    /// you're also returning other possible codes.
2040    #[stable(feature = "process_exitcode", since = "1.61.0")]
2041    pub const SUCCESS: ExitCode = ExitCode(imp::ExitCode::SUCCESS);
2042
2043    /// The canonical `ExitCode` for unsuccessful termination on this platform.
2044    ///
2045    /// If you're only returning this and `SUCCESS` from `main`, consider
2046    /// instead returning `Err(_)` and `Ok(())` respectively, which will
2047    /// return the same codes (but will also `eprintln!` the error).
2048    #[stable(feature = "process_exitcode", since = "1.61.0")]
2049    pub const FAILURE: ExitCode = ExitCode(imp::ExitCode::FAILURE);
2050
2051    /// Exit the current process with the given `ExitCode`.
2052    ///
2053    /// Note that this has the same caveats as [`process::exit()`][exit], namely that this function
2054    /// terminates the process immediately, so no destructors on the current stack or any other
2055    /// thread's stack will be run. Also see those docs for some important notes on interop with C
2056    /// code. If a clean shutdown is needed, it is recommended to simply return this ExitCode from
2057    /// the `main` function, as demonstrated in the [type documentation](#examples).
2058    ///
2059    /// # Differences from `process::exit()`
2060    ///
2061    /// `process::exit()` accepts any `i32` value as the exit code for the process; however, there
2062    /// are platforms that only use a subset of that value (see [`process::exit` platform-specific
2063    /// behavior][exit#platform-specific-behavior]). `ExitCode` exists because of this; only
2064    /// `ExitCode`s that are supported by a majority of our platforms can be created, so those
2065    /// problems don't exist (as much) with this method.
2066    ///
2067    /// # Examples
2068    ///
2069    /// ```
2070    /// #![feature(exitcode_exit_method)]
2071    /// # use std::process::ExitCode;
2072    /// # use std::fmt;
2073    /// # enum UhOhError { GenericProblem, Specific, WithCode { exit_code: ExitCode, _x: () } }
2074    /// # impl fmt::Display for UhOhError {
2075    /// #     fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result { unimplemented!() }
2076    /// # }
2077    /// // there's no way to gracefully recover from an UhOhError, so we just
2078    /// // print a message and exit
2079    /// fn handle_unrecoverable_error(err: UhOhError) -> ! {
2080    ///     eprintln!("UH OH! {err}");
2081    ///     let code = match err {
2082    ///         UhOhError::GenericProblem => ExitCode::FAILURE,
2083    ///         UhOhError::Specific => ExitCode::from(3),
2084    ///         UhOhError::WithCode { exit_code, .. } => exit_code,
2085    ///     };
2086    ///     code.exit_process()
2087    /// }
2088    /// ```
2089    #[unstable(feature = "exitcode_exit_method", issue = "97100")]
2090    pub fn exit_process(self) -> ! {
2091        exit(self.to_i32())
2092    }
2093}
2094
2095impl ExitCode {
2096    // This is private/perma-unstable because ExitCode is opaque; we don't know that i32 will serve
2097    // all usecases, for example windows seems to use u32, unix uses the 8-15th bits of an i32, we
2098    // likely want to isolate users anything that could restrict the platform specific
2099    // representation of an ExitCode
2100    //
2101    // More info: https://internals.rust-lang.org/t/mini-pre-rfc-redesigning-process-exitstatus/5426
2102    /// Converts an `ExitCode` into an i32
2103    #[unstable(
2104        feature = "process_exitcode_internals",
2105        reason = "exposed only for libstd",
2106        issue = "none"
2107    )]
2108    #[inline]
2109    #[doc(hidden)]
2110    pub fn to_i32(self) -> i32 {
2111        self.0.as_i32()
2112    }
2113}
2114
2115/// The default value is [`ExitCode::SUCCESS`]
2116#[stable(feature = "process_exitcode_default", since = "1.75.0")]
2117impl Default for ExitCode {
2118    fn default() -> Self {
2119        ExitCode::SUCCESS
2120    }
2121}
2122
2123#[stable(feature = "process_exitcode", since = "1.61.0")]
2124impl From<u8> for ExitCode {
2125    /// Constructs an `ExitCode` from an arbitrary u8 value.
2126    fn from(code: u8) -> Self {
2127        ExitCode(imp::ExitCode::from(code))
2128    }
2129}
2130
2131impl AsInner<imp::ExitCode> for ExitCode {
2132    #[inline]
2133    fn as_inner(&self) -> &imp::ExitCode {
2134        &self.0
2135    }
2136}
2137
2138impl FromInner<imp::ExitCode> for ExitCode {
2139    fn from_inner(s: imp::ExitCode) -> ExitCode {
2140        ExitCode(s)
2141    }
2142}
2143
2144impl Child {
2145    /// Forces the child process to exit. If the child has already exited, `Ok(())`
2146    /// is returned.
2147    ///
2148    /// The mapping to [`ErrorKind`]s is not part of the compatibility contract of the function.
2149    ///
2150    /// This is equivalent to sending a SIGKILL on Unix platforms.
2151    ///
2152    /// # Examples
2153    ///
2154    /// ```no_run
2155    /// use std::process::Command;
2156    ///
2157    /// let mut command = Command::new("yes");
2158    /// if let Ok(mut child) = command.spawn() {
2159    ///     child.kill().expect("command couldn't be killed");
2160    /// } else {
2161    ///     println!("yes command didn't start");
2162    /// }
2163    /// ```
2164    ///
2165    /// [`ErrorKind`]: io::ErrorKind
2166    /// [`InvalidInput`]: io::ErrorKind::InvalidInput
2167    #[stable(feature = "process", since = "1.0.0")]
2168    #[cfg_attr(not(test), rustc_diagnostic_item = "child_kill")]
2169    pub fn kill(&mut self) -> io::Result<()> {
2170        self.handle.kill()
2171    }
2172
2173    /// Returns the OS-assigned process identifier associated with this child.
2174    ///
2175    /// # Examples
2176    ///
2177    /// ```no_run
2178    /// use std::process::Command;
2179    ///
2180    /// let mut command = Command::new("ls");
2181    /// if let Ok(child) = command.spawn() {
2182    ///     println!("Child's ID is {}", child.id());
2183    /// } else {
2184    ///     println!("ls command didn't start");
2185    /// }
2186    /// ```
2187    #[must_use]
2188    #[stable(feature = "process_id", since = "1.3.0")]
2189    #[cfg_attr(not(test), rustc_diagnostic_item = "child_id")]
2190    pub fn id(&self) -> u32 {
2191        self.handle.id()
2192    }
2193
2194    /// Waits for the child to exit completely, returning the status that it
2195    /// exited with. This function will continue to have the same return value
2196    /// after it has been called at least once.
2197    ///
2198    /// The stdin handle to the child process, if any, will be closed
2199    /// before waiting. This helps avoid deadlock: it ensures that the
2200    /// child does not block waiting for input from the parent, while
2201    /// the parent waits for the child to exit.
2202    ///
2203    /// # Examples
2204    ///
2205    /// ```no_run
2206    /// use std::process::Command;
2207    ///
2208    /// let mut command = Command::new("ls");
2209    /// if let Ok(mut child) = command.spawn() {
2210    ///     child.wait().expect("command wasn't running");
2211    ///     println!("Child has finished its execution!");
2212    /// } else {
2213    ///     println!("ls command didn't start");
2214    /// }
2215    /// ```
2216    #[stable(feature = "process", since = "1.0.0")]
2217    pub fn wait(&mut self) -> io::Result<ExitStatus> {
2218        drop(self.stdin.take());
2219        self.handle.wait().map(ExitStatus)
2220    }
2221
2222    /// Attempts to collect the exit status of the child if it has already
2223    /// exited.
2224    ///
2225    /// This function will not block the calling thread and will only
2226    /// check to see if the child process has exited or not. If the child has
2227    /// exited then on Unix the process ID is reaped. This function is
2228    /// guaranteed to repeatedly return a successful exit status so long as the
2229    /// child has already exited.
2230    ///
2231    /// If the child has exited, then `Ok(Some(status))` is returned. If the
2232    /// exit status is not available at this time then `Ok(None)` is returned.
2233    /// If an error occurs, then that error is returned.
2234    ///
2235    /// Note that unlike `wait`, this function will not attempt to drop stdin.
2236    ///
2237    /// # Examples
2238    ///
2239    /// ```no_run
2240    /// use std::process::Command;
2241    ///
2242    /// let mut child = Command::new("ls").spawn()?;
2243    ///
2244    /// match child.try_wait() {
2245    ///     Ok(Some(status)) => println!("exited with: {status}"),
2246    ///     Ok(None) => {
2247    ///         println!("status not ready yet, let's really wait");
2248    ///         let res = child.wait();
2249    ///         println!("result: {res:?}");
2250    ///     }
2251    ///     Err(e) => println!("error attempting to wait: {e}"),
2252    /// }
2253    /// # std::io::Result::Ok(())
2254    /// ```
2255    #[stable(feature = "process_try_wait", since = "1.18.0")]
2256    pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
2257        Ok(self.handle.try_wait()?.map(ExitStatus))
2258    }
2259
2260    /// Simultaneously waits for the child to exit and collect all remaining
2261    /// output on the stdout/stderr handles, returning an `Output`
2262    /// instance.
2263    ///
2264    /// The stdin handle to the child process, if any, will be closed
2265    /// before waiting. This helps avoid deadlock: it ensures that the
2266    /// child does not block waiting for input from the parent, while
2267    /// the parent waits for the child to exit.
2268    ///
2269    /// By default, stdin, stdout and stderr are inherited from the parent.
2270    /// In order to capture the output into this `Result<Output>` it is
2271    /// necessary to create new pipes between parent and child. Use
2272    /// `stdout(Stdio::piped())` or `stderr(Stdio::piped())`, respectively.
2273    ///
2274    /// # Examples
2275    ///
2276    /// ```should_panic
2277    /// use std::process::{Command, Stdio};
2278    ///
2279    /// let child = Command::new("/bin/cat")
2280    ///     .arg("file.txt")
2281    ///     .stdout(Stdio::piped())
2282    ///     .spawn()
2283    ///     .expect("failed to execute child");
2284    ///
2285    /// let output = child
2286    ///     .wait_with_output()
2287    ///     .expect("failed to wait on child");
2288    ///
2289    /// assert!(output.status.success());
2290    /// ```
2291    ///
2292    #[stable(feature = "process", since = "1.0.0")]
2293    pub fn wait_with_output(mut self) -> io::Result<Output> {
2294        drop(self.stdin.take());
2295
2296        let (mut stdout, mut stderr) = (Vec::new(), Vec::new());
2297        match (self.stdout.take(), self.stderr.take()) {
2298            (None, None) => {}
2299            (Some(mut out), None) => {
2300                let res = out.read_to_end(&mut stdout);
2301                res.unwrap();
2302            }
2303            (None, Some(mut err)) => {
2304                let res = err.read_to_end(&mut stderr);
2305                res.unwrap();
2306            }
2307            (Some(out), Some(err)) => {
2308                let res = read2(out.inner, &mut stdout, err.inner, &mut stderr);
2309                res.unwrap();
2310            }
2311        }
2312
2313        let status = self.wait()?;
2314        Ok(Output { status, stdout, stderr })
2315    }
2316}
2317
2318/// Terminates the current process with the specified exit code.
2319///
2320/// This function will never return and will immediately terminate the current
2321/// process. The exit code is passed through to the underlying OS and will be
2322/// available for consumption by another process.
2323///
2324/// Note that because this function never returns, and that it terminates the
2325/// process, no destructors on the current stack or any other thread's stack
2326/// will be run. If a clean shutdown is needed it is recommended to only call
2327/// this function at a known point where there are no more destructors left
2328/// to run; or, preferably, simply return a type implementing [`Termination`]
2329/// (such as [`ExitCode`] or `Result`) from the `main` function and avoid this
2330/// function altogether:
2331///
2332/// ```
2333/// # use std::io::Error as MyError;
2334/// fn main() -> Result<(), MyError> {
2335///     // ...
2336///     Ok(())
2337/// }
2338/// ```
2339///
2340/// In its current implementation, this function will execute exit handlers registered with `atexit`
2341/// as well as other platform-specific exit handlers (e.g. `fini` sections of ELF shared objects).
2342/// This means that Rust requires that all exit handlers are safe to execute at any time. In
2343/// particular, if an exit handler cleans up some state that might be concurrently accessed by other
2344/// threads, it is required that the exit handler performs suitable synchronization with those
2345/// threads. (The alternative to this requirement would be to not run exit handlers at all, which is
2346/// considered undesirable. Note that returning from `main` also calls `exit`, so making `exit` an
2347/// unsafe operation is not an option.)
2348///
2349/// ## Platform-specific behavior
2350///
2351/// **Unix**: On Unix-like platforms, it is unlikely that all 32 bits of `exit`
2352/// will be visible to a parent process inspecting the exit code. On most
2353/// Unix-like platforms, only the eight least-significant bits are considered.
2354///
2355/// For example, the exit code for this example will be `0` on Linux, but `256`
2356/// on Windows:
2357///
2358/// ```no_run
2359/// use std::process;
2360///
2361/// process::exit(0x0100);
2362/// ```
2363///
2364/// ### Safe interop with C code
2365///
2366/// On Unix, this function is currently implemented using the `exit` C function [`exit`][C-exit]. As
2367/// of C23, the C standard does not permit multiple threads to call `exit` concurrently. Rust
2368/// mitigates this with a lock, but if C code calls `exit`, that can still cause undefined behavior.
2369/// Note that returning from `main` is equivalent to calling `exit`.
2370///
2371/// Therefore, it is undefined behavior to have two concurrent threads perform the following
2372/// without synchronization:
2373/// - One thread calls Rust's `exit` function or returns from Rust's `main` function
2374/// - Another thread calls the C function `exit` or `quick_exit`, or returns from C's `main` function
2375///
2376/// Note that if a binary contains multiple copies of the Rust runtime (e.g., when combining
2377/// multiple `cdylib` or `staticlib`), they each have their own separate lock, so from the
2378/// perspective of code running in one of the Rust runtimes, the "outside" Rust code is basically C
2379/// code, and concurrent `exit` again causes undefined behavior.
2380///
2381/// Individual C implementations might provide more guarantees than the standard and permit concurrent
2382/// calls to `exit`; consult the documentation of your C implementation for details.
2383///
2384/// For some of the on-going discussion to make `exit` thread-safe in C, see:
2385/// - [Rust issue #126600](https://github.com/rust-lang/rust/issues/126600)
2386/// - [Austin Group Bugzilla (for POSIX)](https://austingroupbugs.net/view.php?id=1845)
2387/// - [GNU C library Bugzilla](https://sourceware.org/bugzilla/show_bug.cgi?id=31997)
2388///
2389/// [C-exit]: https://en.cppreference.com/w/c/program/exit
2390#[stable(feature = "rust1", since = "1.0.0")]
2391#[cfg_attr(not(test), rustc_diagnostic_item = "process_exit")]
2392pub fn exit(code: i32) -> ! {
2393    crate::rt::cleanup();
2394    crate::sys::os::exit(code)
2395}
2396
2397/// Terminates the process in an abnormal fashion.
2398///
2399/// The function will never return and will immediately terminate the current
2400/// process in a platform specific "abnormal" manner. As a consequence,
2401/// no destructors on the current stack or any other thread's stack
2402/// will be run, Rust IO buffers (eg, from `BufWriter`) will not be flushed,
2403/// and C stdio buffers will (on most platforms) not be flushed.
2404///
2405/// This is in contrast to the default behavior of [`panic!`] which unwinds
2406/// the current thread's stack and calls all destructors.
2407/// When `panic="abort"` is set, either as an argument to `rustc` or in a
2408/// crate's Cargo.toml, [`panic!`] and `abort` are similar. However,
2409/// [`panic!`] will still call the [panic hook] while `abort` will not.
2410///
2411/// If a clean shutdown is needed it is recommended to only call
2412/// this function at a known point where there are no more destructors left
2413/// to run.
2414///
2415/// The process's termination will be similar to that from the C `abort()`
2416/// function.  On Unix, the process will terminate with signal `SIGABRT`, which
2417/// typically means that the shell prints "Aborted".
2418///
2419/// # Examples
2420///
2421/// ```no_run
2422/// use std::process;
2423///
2424/// fn main() {
2425///     println!("aborting");
2426///
2427///     process::abort();
2428///
2429///     // execution never gets here
2430/// }
2431/// ```
2432///
2433/// The `abort` function terminates the process, so the destructor will not
2434/// get run on the example below:
2435///
2436/// ```no_run
2437/// use std::process;
2438///
2439/// struct HasDrop;
2440///
2441/// impl Drop for HasDrop {
2442///     fn drop(&mut self) {
2443///         println!("This will never be printed!");
2444///     }
2445/// }
2446///
2447/// fn main() {
2448///     let _x = HasDrop;
2449///     process::abort();
2450///     // the destructor implemented for HasDrop will never get run
2451/// }
2452/// ```
2453///
2454/// [panic hook]: crate::panic::set_hook
2455#[stable(feature = "process_abort", since = "1.17.0")]
2456#[cold]
2457#[cfg_attr(not(test), rustc_diagnostic_item = "process_abort")]
2458pub fn abort() -> ! {
2459    crate::sys::abort_internal();
2460}
2461
2462/// Returns the OS-assigned process identifier associated with this process.
2463///
2464/// # Examples
2465///
2466/// ```no_run
2467/// use std::process;
2468///
2469/// println!("My pid is {}", process::id());
2470/// ```
2471#[must_use]
2472#[stable(feature = "getpid", since = "1.26.0")]
2473pub fn id() -> u32 {
2474    crate::sys::os::getpid()
2475}
2476
2477/// A trait for implementing arbitrary return types in the `main` function.
2478///
2479/// The C-main function only supports returning integers.
2480/// So, every type implementing the `Termination` trait has to be converted
2481/// to an integer.
2482///
2483/// The default implementations are returning `libc::EXIT_SUCCESS` to indicate
2484/// a successful execution. In case of a failure, `libc::EXIT_FAILURE` is returned.
2485///
2486/// Because different runtimes have different specifications on the return value
2487/// of the `main` function, this trait is likely to be available only on
2488/// standard library's runtime for convenience. Other runtimes are not required
2489/// to provide similar functionality.
2490#[cfg_attr(not(any(test, doctest)), lang = "termination")]
2491#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2492#[rustc_on_unimplemented(on(
2493    cause = "MainFunctionType",
2494    message = "`main` has invalid return type `{Self}`",
2495    label = "`main` can only return types that implement `{Termination}`"
2496))]
2497pub trait Termination {
2498    /// Is called to get the representation of the value as status code.
2499    /// This status code is returned to the operating system.
2500    #[stable(feature = "termination_trait_lib", since = "1.61.0")]
2501    fn report(self) -> ExitCode;
2502}
2503
2504#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2505impl Termination for () {
2506    #[inline]
2507    fn report(self) -> ExitCode {
2508        ExitCode::SUCCESS
2509    }
2510}
2511
2512#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2513impl Termination for ! {
2514    fn report(self) -> ExitCode {
2515        self
2516    }
2517}
2518
2519#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2520impl Termination for Infallible {
2521    fn report(self) -> ExitCode {
2522        match self {}
2523    }
2524}
2525
2526#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2527impl Termination for ExitCode {
2528    #[inline]
2529    fn report(self) -> ExitCode {
2530        self
2531    }
2532}
2533
2534#[stable(feature = "termination_trait_lib", since = "1.61.0")]
2535impl<T: Termination, E: fmt::Debug> Termination for Result<T, E> {
2536    fn report(self) -> ExitCode {
2537        match self {
2538            Ok(val) => val.report(),
2539            Err(err) => {
2540                io::attempt_print_to_stderr(format_args_nl!("Error: {err:?}"));
2541                ExitCode::FAILURE
2542            }
2543        }
2544    }
2545}