std/
path.rs

1//! Cross-platform path manipulation.
2//!
3//! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4//! and [`str`]), for working with paths abstractly. These types are thin wrappers
5//! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6//! on strings according to the local platform's path syntax.
7//!
8//! Paths can be parsed into [`Component`]s by iterating over the structure
9//! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10//! correspond to the substrings between path separators (`/` or `\`). You can
11//! reconstruct an equivalent path from components with the [`push`] method on
12//! [`PathBuf`]; note that the paths may differ syntactically by the
13//! normalization described in the documentation for the [`components`] method.
14//!
15//! ## Case sensitivity
16//!
17//! Unless otherwise indicated path methods that do not access the filesystem,
18//! such as [`Path::starts_with`] and [`Path::ends_with`], are case sensitive no
19//! matter the platform or filesystem. An exception to this is made for Windows
20//! drive letters.
21//!
22//! ## Simple usage
23//!
24//! Path manipulation includes both parsing components from slices and building
25//! new owned paths.
26//!
27//! To parse a path, you can create a [`Path`] slice from a [`str`]
28//! slice and start asking questions:
29//!
30//! ```
31//! use std::path::Path;
32//! use std::ffi::OsStr;
33//!
34//! let path = Path::new("/tmp/foo/bar.txt");
35//!
36//! let parent = path.parent();
37//! assert_eq!(parent, Some(Path::new("/tmp/foo")));
38//!
39//! let file_stem = path.file_stem();
40//! assert_eq!(file_stem, Some(OsStr::new("bar")));
41//!
42//! let extension = path.extension();
43//! assert_eq!(extension, Some(OsStr::new("txt")));
44//! ```
45//!
46//! To build or modify paths, use [`PathBuf`]:
47//!
48//! ```
49//! use std::path::PathBuf;
50//!
51//! // This way works...
52//! let mut path = PathBuf::from("c:\\");
53//!
54//! path.push("windows");
55//! path.push("system32");
56//!
57//! path.set_extension("dll");
58//!
59//! // ... but push is best used if you don't know everything up
60//! // front. If you do, this way is better:
61//! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
62//! ```
63//!
64//! [`components`]: Path::components
65//! [`push`]: PathBuf::push
66
67#![stable(feature = "rust1", since = "1.0.0")]
68#![deny(unsafe_op_in_unsafe_fn)]
69
70use core::clone::CloneToUninit;
71
72use crate::borrow::{Borrow, Cow};
73use crate::collections::TryReserveError;
74use crate::error::Error;
75use crate::ffi::{OsStr, OsString, os_str};
76use crate::hash::{Hash, Hasher};
77use crate::iter::FusedIterator;
78use crate::ops::{self, Deref};
79use crate::rc::Rc;
80use crate::str::FromStr;
81use crate::sync::Arc;
82use crate::sys::path::{MAIN_SEP_STR, is_sep_byte, is_verbatim_sep, parse_prefix};
83use crate::{cmp, fmt, fs, io, sys};
84
85////////////////////////////////////////////////////////////////////////////////
86// GENERAL NOTES
87////////////////////////////////////////////////////////////////////////////////
88//
89// Parsing in this module is done by directly transmuting OsStr to [u8] slices,
90// taking advantage of the fact that OsStr always encodes ASCII characters
91// as-is.  Eventually, this transmutation should be replaced by direct uses of
92// OsStr APIs for parsing, but it will take a while for those to become
93// available.
94
95////////////////////////////////////////////////////////////////////////////////
96// Windows Prefixes
97////////////////////////////////////////////////////////////////////////////////
98
99/// Windows path prefixes, e.g., `C:` or `\\server\share`.
100///
101/// Windows uses a variety of path prefix styles, including references to drive
102/// volumes (like `C:`), network shared folders (like `\\server\share`), and
103/// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
104/// `\\?\`), in which case `/` is *not* treated as a separator and essentially
105/// no normalization is performed.
106///
107/// # Examples
108///
109/// ```
110/// use std::path::{Component, Path, Prefix};
111/// use std::path::Prefix::*;
112/// use std::ffi::OsStr;
113///
114/// fn get_path_prefix(s: &str) -> Prefix<'_> {
115///     let path = Path::new(s);
116///     match path.components().next().unwrap() {
117///         Component::Prefix(prefix_component) => prefix_component.kind(),
118///         _ => panic!(),
119///     }
120/// }
121///
122/// # if cfg!(windows) {
123/// assert_eq!(Verbatim(OsStr::new("pictures")),
124///            get_path_prefix(r"\\?\pictures\kittens"));
125/// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
126///            get_path_prefix(r"\\?\UNC\server\share"));
127/// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
128/// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
129///            get_path_prefix(r"\\.\BrainInterface"));
130/// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
131///            get_path_prefix(r"\\server\share"));
132/// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
133/// # }
134/// ```
135#[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
136#[stable(feature = "rust1", since = "1.0.0")]
137pub enum Prefix<'a> {
138    /// Verbatim prefix, e.g., `\\?\cat_pics`.
139    ///
140    /// Verbatim prefixes consist of `\\?\` immediately followed by the given
141    /// component.
142    #[stable(feature = "rust1", since = "1.0.0")]
143    Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
144
145    /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
146    /// e.g., `\\?\UNC\server\share`.
147    ///
148    /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
149    /// server's hostname and a share name.
150    #[stable(feature = "rust1", since = "1.0.0")]
151    VerbatimUNC(
152        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
153        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
154    ),
155
156    /// Verbatim disk prefix, e.g., `\\?\C:`.
157    ///
158    /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
159    /// drive letter and `:`.
160    #[stable(feature = "rust1", since = "1.0.0")]
161    VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
162
163    /// Device namespace prefix, e.g., `\\.\COM42`.
164    ///
165    /// Device namespace prefixes consist of `\\.\` (possibly using `/`
166    /// instead of `\`), immediately followed by the device name.
167    #[stable(feature = "rust1", since = "1.0.0")]
168    DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
169
170    /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
171    /// `\\server\share`.
172    ///
173    /// UNC prefixes consist of the server's hostname and a share name.
174    #[stable(feature = "rust1", since = "1.0.0")]
175    UNC(
176        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
177        #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
178    ),
179
180    /// Prefix `C:` for the given disk drive.
181    #[stable(feature = "rust1", since = "1.0.0")]
182    Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
183}
184
185impl<'a> Prefix<'a> {
186    #[inline]
187    fn len(&self) -> usize {
188        use self::Prefix::*;
189        fn os_str_len(s: &OsStr) -> usize {
190            s.as_encoded_bytes().len()
191        }
192        match *self {
193            Verbatim(x) => 4 + os_str_len(x),
194            VerbatimUNC(x, y) => {
195                8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
196            }
197            VerbatimDisk(_) => 6,
198            UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
199            DeviceNS(x) => 4 + os_str_len(x),
200            Disk(_) => 2,
201        }
202    }
203
204    /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
205    ///
206    /// # Examples
207    ///
208    /// ```
209    /// use std::path::Prefix::*;
210    /// use std::ffi::OsStr;
211    ///
212    /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
213    /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
214    /// assert!(VerbatimDisk(b'C').is_verbatim());
215    /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
216    /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
217    /// assert!(!Disk(b'C').is_verbatim());
218    /// ```
219    #[inline]
220    #[must_use]
221    #[stable(feature = "rust1", since = "1.0.0")]
222    pub fn is_verbatim(&self) -> bool {
223        use self::Prefix::*;
224        matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
225    }
226
227    #[inline]
228    fn is_drive(&self) -> bool {
229        matches!(*self, Prefix::Disk(_))
230    }
231
232    #[inline]
233    fn has_implicit_root(&self) -> bool {
234        !self.is_drive()
235    }
236}
237
238////////////////////////////////////////////////////////////////////////////////
239// Exposed parsing helpers
240////////////////////////////////////////////////////////////////////////////////
241
242/// Determines whether the character is one of the permitted path
243/// separators for the current platform.
244///
245/// # Examples
246///
247/// ```
248/// use std::path;
249///
250/// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
251/// assert!(!path::is_separator('❤'));
252/// ```
253#[must_use]
254#[stable(feature = "rust1", since = "1.0.0")]
255pub fn is_separator(c: char) -> bool {
256    c.is_ascii() && is_sep_byte(c as u8)
257}
258
259/// The primary separator of path components for the current platform.
260///
261/// For example, `/` on Unix and `\` on Windows.
262#[stable(feature = "rust1", since = "1.0.0")]
263#[cfg_attr(not(test), rustc_diagnostic_item = "path_main_separator")]
264pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
265
266/// The primary separator of path components for the current platform.
267///
268/// For example, `/` on Unix and `\` on Windows.
269#[stable(feature = "main_separator_str", since = "1.68.0")]
270pub const MAIN_SEPARATOR_STR: &str = crate::sys::path::MAIN_SEP_STR;
271
272////////////////////////////////////////////////////////////////////////////////
273// Misc helpers
274////////////////////////////////////////////////////////////////////////////////
275
276// Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
277// is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
278// `iter` after having exhausted `prefix`.
279fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
280where
281    I: Iterator<Item = Component<'a>> + Clone,
282    J: Iterator<Item = Component<'b>>,
283{
284    loop {
285        let mut iter_next = iter.clone();
286        match (iter_next.next(), prefix.next()) {
287            (Some(ref x), Some(ref y)) if x == y => (),
288            (Some(_), Some(_)) => return None,
289            (Some(_), None) => return Some(iter),
290            (None, None) => return Some(iter),
291            (None, Some(_)) => return None,
292        }
293        iter = iter_next;
294    }
295}
296
297////////////////////////////////////////////////////////////////////////////////
298// Cross-platform, iterator-independent parsing
299////////////////////////////////////////////////////////////////////////////////
300
301/// Says whether the first byte after the prefix is a separator.
302fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
303    let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
304    !path.is_empty() && is_sep_byte(path[0])
305}
306
307// basic workhorse for splitting stem and extension
308fn rsplit_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
309    if file.as_encoded_bytes() == b".." {
310        return (Some(file), None);
311    }
312
313    // The unsafety here stems from converting between &OsStr and &[u8]
314    // and back. This is safe to do because (1) we only look at ASCII
315    // contents of the encoding and (2) new &OsStr values are produced
316    // only from ASCII-bounded slices of existing &OsStr values.
317    let mut iter = file.as_encoded_bytes().rsplitn(2, |b| *b == b'.');
318    let after = iter.next();
319    let before = iter.next();
320    if before == Some(b"") {
321        (Some(file), None)
322    } else {
323        unsafe {
324            (
325                before.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
326                after.map(|s| OsStr::from_encoded_bytes_unchecked(s)),
327            )
328        }
329    }
330}
331
332fn split_file_at_dot(file: &OsStr) -> (&OsStr, Option<&OsStr>) {
333    let slice = file.as_encoded_bytes();
334    if slice == b".." {
335        return (file, None);
336    }
337
338    // The unsafety here stems from converting between &OsStr and &[u8]
339    // and back. This is safe to do because (1) we only look at ASCII
340    // contents of the encoding and (2) new &OsStr values are produced
341    // only from ASCII-bounded slices of existing &OsStr values.
342    let i = match slice[1..].iter().position(|b| *b == b'.') {
343        Some(i) => i + 1,
344        None => return (file, None),
345    };
346    let before = &slice[..i];
347    let after = &slice[i + 1..];
348    unsafe {
349        (
350            OsStr::from_encoded_bytes_unchecked(before),
351            Some(OsStr::from_encoded_bytes_unchecked(after)),
352        )
353    }
354}
355
356/// Checks whether the string is valid as a file extension, or panics otherwise.
357fn validate_extension(extension: &OsStr) {
358    for &b in extension.as_encoded_bytes() {
359        if is_sep_byte(b) {
360            panic!("extension cannot contain path separators: {extension:?}");
361        }
362    }
363}
364
365////////////////////////////////////////////////////////////////////////////////
366// The core iterators
367////////////////////////////////////////////////////////////////////////////////
368
369/// Component parsing works by a double-ended state machine; the cursors at the
370/// front and back of the path each keep track of what parts of the path have
371/// been consumed so far.
372///
373/// Going front to back, a path is made up of a prefix, a starting
374/// directory component, and a body (of normal components)
375#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
376enum State {
377    Prefix = 0,   // c:
378    StartDir = 1, // / or . or nothing
379    Body = 2,     // foo/bar/baz
380    Done = 3,
381}
382
383/// A structure wrapping a Windows path prefix as well as its unparsed string
384/// representation.
385///
386/// In addition to the parsed [`Prefix`] information returned by [`kind`],
387/// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
388/// returned by [`as_os_str`].
389///
390/// Instances of this `struct` can be obtained by matching against the
391/// [`Prefix` variant] on [`Component`].
392///
393/// Does not occur on Unix.
394///
395/// # Examples
396///
397/// ```
398/// # if cfg!(windows) {
399/// use std::path::{Component, Path, Prefix};
400/// use std::ffi::OsStr;
401///
402/// let path = Path::new(r"c:\you\later\");
403/// match path.components().next().unwrap() {
404///     Component::Prefix(prefix_component) => {
405///         assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
406///         assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
407///     }
408///     _ => unreachable!(),
409/// }
410/// # }
411/// ```
412///
413/// [`as_os_str`]: PrefixComponent::as_os_str
414/// [`kind`]: PrefixComponent::kind
415/// [`Prefix` variant]: Component::Prefix
416#[stable(feature = "rust1", since = "1.0.0")]
417#[derive(Copy, Clone, Eq, Debug)]
418pub struct PrefixComponent<'a> {
419    /// The prefix as an unparsed `OsStr` slice.
420    raw: &'a OsStr,
421
422    /// The parsed prefix data.
423    parsed: Prefix<'a>,
424}
425
426impl<'a> PrefixComponent<'a> {
427    /// Returns the parsed prefix data.
428    ///
429    /// See [`Prefix`]'s documentation for more information on the different
430    /// kinds of prefixes.
431    #[stable(feature = "rust1", since = "1.0.0")]
432    #[must_use]
433    #[inline]
434    pub fn kind(&self) -> Prefix<'a> {
435        self.parsed
436    }
437
438    /// Returns the raw [`OsStr`] slice for this prefix.
439    #[stable(feature = "rust1", since = "1.0.0")]
440    #[must_use]
441    #[inline]
442    pub fn as_os_str(&self) -> &'a OsStr {
443        self.raw
444    }
445}
446
447#[stable(feature = "rust1", since = "1.0.0")]
448impl<'a> PartialEq for PrefixComponent<'a> {
449    #[inline]
450    fn eq(&self, other: &PrefixComponent<'a>) -> bool {
451        self.parsed == other.parsed
452    }
453}
454
455#[stable(feature = "rust1", since = "1.0.0")]
456impl<'a> PartialOrd for PrefixComponent<'a> {
457    #[inline]
458    fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
459        PartialOrd::partial_cmp(&self.parsed, &other.parsed)
460    }
461}
462
463#[stable(feature = "rust1", since = "1.0.0")]
464impl Ord for PrefixComponent<'_> {
465    #[inline]
466    fn cmp(&self, other: &Self) -> cmp::Ordering {
467        Ord::cmp(&self.parsed, &other.parsed)
468    }
469}
470
471#[stable(feature = "rust1", since = "1.0.0")]
472impl Hash for PrefixComponent<'_> {
473    fn hash<H: Hasher>(&self, h: &mut H) {
474        self.parsed.hash(h);
475    }
476}
477
478/// A single component of a path.
479///
480/// A `Component` roughly corresponds to a substring between path separators
481/// (`/` or `\`).
482///
483/// This `enum` is created by iterating over [`Components`], which in turn is
484/// created by the [`components`](Path::components) method on [`Path`].
485///
486/// # Examples
487///
488/// ```rust
489/// use std::path::{Component, Path};
490///
491/// let path = Path::new("/tmp/foo/bar.txt");
492/// let components = path.components().collect::<Vec<_>>();
493/// assert_eq!(&components, &[
494///     Component::RootDir,
495///     Component::Normal("tmp".as_ref()),
496///     Component::Normal("foo".as_ref()),
497///     Component::Normal("bar.txt".as_ref()),
498/// ]);
499/// ```
500#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
501#[stable(feature = "rust1", since = "1.0.0")]
502pub enum Component<'a> {
503    /// A Windows path prefix, e.g., `C:` or `\\server\share`.
504    ///
505    /// There is a large variety of prefix types, see [`Prefix`]'s documentation
506    /// for more.
507    ///
508    /// Does not occur on Unix.
509    #[stable(feature = "rust1", since = "1.0.0")]
510    Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
511
512    /// The root directory component, appears after any prefix and before anything else.
513    ///
514    /// It represents a separator that designates that a path starts from root.
515    #[stable(feature = "rust1", since = "1.0.0")]
516    RootDir,
517
518    /// A reference to the current directory, i.e., `.`.
519    #[stable(feature = "rust1", since = "1.0.0")]
520    CurDir,
521
522    /// A reference to the parent directory, i.e., `..`.
523    #[stable(feature = "rust1", since = "1.0.0")]
524    ParentDir,
525
526    /// A normal component, e.g., `a` and `b` in `a/b`.
527    ///
528    /// This variant is the most common one, it represents references to files
529    /// or directories.
530    #[stable(feature = "rust1", since = "1.0.0")]
531    Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
532}
533
534impl<'a> Component<'a> {
535    /// Extracts the underlying [`OsStr`] slice.
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// use std::path::Path;
541    ///
542    /// let path = Path::new("./tmp/foo/bar.txt");
543    /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
544    /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
545    /// ```
546    #[must_use = "`self` will be dropped if the result is not used"]
547    #[stable(feature = "rust1", since = "1.0.0")]
548    pub fn as_os_str(self) -> &'a OsStr {
549        match self {
550            Component::Prefix(p) => p.as_os_str(),
551            Component::RootDir => OsStr::new(MAIN_SEP_STR),
552            Component::CurDir => OsStr::new("."),
553            Component::ParentDir => OsStr::new(".."),
554            Component::Normal(path) => path,
555        }
556    }
557}
558
559#[stable(feature = "rust1", since = "1.0.0")]
560impl AsRef<OsStr> for Component<'_> {
561    #[inline]
562    fn as_ref(&self) -> &OsStr {
563        self.as_os_str()
564    }
565}
566
567#[stable(feature = "path_component_asref", since = "1.25.0")]
568impl AsRef<Path> for Component<'_> {
569    #[inline]
570    fn as_ref(&self) -> &Path {
571        self.as_os_str().as_ref()
572    }
573}
574
575/// An iterator over the [`Component`]s of a [`Path`].
576///
577/// This `struct` is created by the [`components`] method on [`Path`].
578/// See its documentation for more.
579///
580/// # Examples
581///
582/// ```
583/// use std::path::Path;
584///
585/// let path = Path::new("/tmp/foo/bar.txt");
586///
587/// for component in path.components() {
588///     println!("{component:?}");
589/// }
590/// ```
591///
592/// [`components`]: Path::components
593#[derive(Clone)]
594#[must_use = "iterators are lazy and do nothing unless consumed"]
595#[stable(feature = "rust1", since = "1.0.0")]
596pub struct Components<'a> {
597    // The path left to parse components from
598    path: &'a [u8],
599
600    // The prefix as it was originally parsed, if any
601    prefix: Option<Prefix<'a>>,
602
603    // true if path *physically* has a root separator; for most Windows
604    // prefixes, it may have a "logical" root separator for the purposes of
605    // normalization, e.g., \\server\share == \\server\share\.
606    has_physical_root: bool,
607
608    // The iterator is double-ended, and these two states keep track of what has
609    // been produced from either end
610    front: State,
611    back: State,
612}
613
614/// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
615///
616/// This `struct` is created by the [`iter`] method on [`Path`].
617/// See its documentation for more.
618///
619/// [`iter`]: Path::iter
620#[derive(Clone)]
621#[must_use = "iterators are lazy and do nothing unless consumed"]
622#[stable(feature = "rust1", since = "1.0.0")]
623pub struct Iter<'a> {
624    inner: Components<'a>,
625}
626
627#[stable(feature = "path_components_debug", since = "1.13.0")]
628impl fmt::Debug for Components<'_> {
629    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630        struct DebugHelper<'a>(&'a Path);
631
632        impl fmt::Debug for DebugHelper<'_> {
633            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
634                f.debug_list().entries(self.0.components()).finish()
635            }
636        }
637
638        f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
639    }
640}
641
642impl<'a> Components<'a> {
643    // how long is the prefix, if any?
644    #[inline]
645    fn prefix_len(&self) -> usize {
646        self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
647    }
648
649    #[inline]
650    fn prefix_verbatim(&self) -> bool {
651        self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
652    }
653
654    /// how much of the prefix is left from the point of view of iteration?
655    #[inline]
656    fn prefix_remaining(&self) -> usize {
657        if self.front == State::Prefix { self.prefix_len() } else { 0 }
658    }
659
660    // Given the iteration so far, how much of the pre-State::Body path is left?
661    #[inline]
662    fn len_before_body(&self) -> usize {
663        let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
664        let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
665        self.prefix_remaining() + root + cur_dir
666    }
667
668    // is the iteration complete?
669    #[inline]
670    fn finished(&self) -> bool {
671        self.front == State::Done || self.back == State::Done || self.front > self.back
672    }
673
674    #[inline]
675    fn is_sep_byte(&self, b: u8) -> bool {
676        if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
677    }
678
679    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
680    ///
681    /// # Examples
682    ///
683    /// ```
684    /// use std::path::Path;
685    ///
686    /// let mut components = Path::new("/tmp/foo/bar.txt").components();
687    /// components.next();
688    /// components.next();
689    ///
690    /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
691    /// ```
692    #[must_use]
693    #[stable(feature = "rust1", since = "1.0.0")]
694    pub fn as_path(&self) -> &'a Path {
695        let mut comps = self.clone();
696        if comps.front == State::Body {
697            comps.trim_left();
698        }
699        if comps.back == State::Body {
700            comps.trim_right();
701        }
702        unsafe { Path::from_u8_slice(comps.path) }
703    }
704
705    /// Is the *original* path rooted?
706    fn has_root(&self) -> bool {
707        if self.has_physical_root {
708            return true;
709        }
710        if let Some(p) = self.prefix {
711            if p.has_implicit_root() {
712                return true;
713            }
714        }
715        false
716    }
717
718    /// Should the normalized path include a leading . ?
719    fn include_cur_dir(&self) -> bool {
720        if self.has_root() {
721            return false;
722        }
723        let mut iter = self.path[self.prefix_remaining()..].iter();
724        match (iter.next(), iter.next()) {
725            (Some(&b'.'), None) => true,
726            (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
727            _ => false,
728        }
729    }
730
731    // parse a given byte sequence following the OsStr encoding into the
732    // corresponding path component
733    unsafe fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
734        match comp {
735            b"." if self.prefix_verbatim() => Some(Component::CurDir),
736            b"." => None, // . components are normalized away, except at
737            // the beginning of a path, which is treated
738            // separately via `include_cur_dir`
739            b".." => Some(Component::ParentDir),
740            b"" => None,
741            _ => Some(Component::Normal(unsafe { OsStr::from_encoded_bytes_unchecked(comp) })),
742        }
743    }
744
745    // parse a component from the left, saying how many bytes to consume to
746    // remove the component
747    fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
748        debug_assert!(self.front == State::Body);
749        let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
750            None => (0, self.path),
751            Some(i) => (1, &self.path[..i]),
752        };
753        // SAFETY: `comp` is a valid substring, since it is split on a separator.
754        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
755    }
756
757    // parse a component from the right, saying how many bytes to consume to
758    // remove the component
759    fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
760        debug_assert!(self.back == State::Body);
761        let start = self.len_before_body();
762        let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
763            None => (0, &self.path[start..]),
764            Some(i) => (1, &self.path[start + i + 1..]),
765        };
766        // SAFETY: `comp` is a valid substring, since it is split on a separator.
767        (comp.len() + extra, unsafe { self.parse_single_component(comp) })
768    }
769
770    // trim away repeated separators (i.e., empty components) on the left
771    fn trim_left(&mut self) {
772        while !self.path.is_empty() {
773            let (size, comp) = self.parse_next_component();
774            if comp.is_some() {
775                return;
776            } else {
777                self.path = &self.path[size..];
778            }
779        }
780    }
781
782    // trim away repeated separators (i.e., empty components) on the right
783    fn trim_right(&mut self) {
784        while self.path.len() > self.len_before_body() {
785            let (size, comp) = self.parse_next_component_back();
786            if comp.is_some() {
787                return;
788            } else {
789                self.path = &self.path[..self.path.len() - size];
790            }
791        }
792    }
793}
794
795#[stable(feature = "rust1", since = "1.0.0")]
796impl AsRef<Path> for Components<'_> {
797    #[inline]
798    fn as_ref(&self) -> &Path {
799        self.as_path()
800    }
801}
802
803#[stable(feature = "rust1", since = "1.0.0")]
804impl AsRef<OsStr> for Components<'_> {
805    #[inline]
806    fn as_ref(&self) -> &OsStr {
807        self.as_path().as_os_str()
808    }
809}
810
811#[stable(feature = "path_iter_debug", since = "1.13.0")]
812impl fmt::Debug for Iter<'_> {
813    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
814        struct DebugHelper<'a>(&'a Path);
815
816        impl fmt::Debug for DebugHelper<'_> {
817            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
818                f.debug_list().entries(self.0.iter()).finish()
819            }
820        }
821
822        f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
823    }
824}
825
826impl<'a> Iter<'a> {
827    /// Extracts a slice corresponding to the portion of the path remaining for iteration.
828    ///
829    /// # Examples
830    ///
831    /// ```
832    /// use std::path::Path;
833    ///
834    /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
835    /// iter.next();
836    /// iter.next();
837    ///
838    /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
839    /// ```
840    #[stable(feature = "rust1", since = "1.0.0")]
841    #[must_use]
842    #[inline]
843    pub fn as_path(&self) -> &'a Path {
844        self.inner.as_path()
845    }
846}
847
848#[stable(feature = "rust1", since = "1.0.0")]
849impl AsRef<Path> for Iter<'_> {
850    #[inline]
851    fn as_ref(&self) -> &Path {
852        self.as_path()
853    }
854}
855
856#[stable(feature = "rust1", since = "1.0.0")]
857impl AsRef<OsStr> for Iter<'_> {
858    #[inline]
859    fn as_ref(&self) -> &OsStr {
860        self.as_path().as_os_str()
861    }
862}
863
864#[stable(feature = "rust1", since = "1.0.0")]
865impl<'a> Iterator for Iter<'a> {
866    type Item = &'a OsStr;
867
868    #[inline]
869    fn next(&mut self) -> Option<&'a OsStr> {
870        self.inner.next().map(Component::as_os_str)
871    }
872}
873
874#[stable(feature = "rust1", since = "1.0.0")]
875impl<'a> DoubleEndedIterator for Iter<'a> {
876    #[inline]
877    fn next_back(&mut self) -> Option<&'a OsStr> {
878        self.inner.next_back().map(Component::as_os_str)
879    }
880}
881
882#[stable(feature = "fused", since = "1.26.0")]
883impl FusedIterator for Iter<'_> {}
884
885#[stable(feature = "rust1", since = "1.0.0")]
886impl<'a> Iterator for Components<'a> {
887    type Item = Component<'a>;
888
889    fn next(&mut self) -> Option<Component<'a>> {
890        while !self.finished() {
891            match self.front {
892                State::Prefix if self.prefix_len() > 0 => {
893                    self.front = State::StartDir;
894                    debug_assert!(self.prefix_len() <= self.path.len());
895                    let raw = &self.path[..self.prefix_len()];
896                    self.path = &self.path[self.prefix_len()..];
897                    return Some(Component::Prefix(PrefixComponent {
898                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(raw) },
899                        parsed: self.prefix.unwrap(),
900                    }));
901                }
902                State::Prefix => {
903                    self.front = State::StartDir;
904                }
905                State::StartDir => {
906                    self.front = State::Body;
907                    if self.has_physical_root {
908                        debug_assert!(!self.path.is_empty());
909                        self.path = &self.path[1..];
910                        return Some(Component::RootDir);
911                    } else if let Some(p) = self.prefix {
912                        if p.has_implicit_root() && !p.is_verbatim() {
913                            return Some(Component::RootDir);
914                        }
915                    } else if self.include_cur_dir() {
916                        debug_assert!(!self.path.is_empty());
917                        self.path = &self.path[1..];
918                        return Some(Component::CurDir);
919                    }
920                }
921                State::Body if !self.path.is_empty() => {
922                    let (size, comp) = self.parse_next_component();
923                    self.path = &self.path[size..];
924                    if comp.is_some() {
925                        return comp;
926                    }
927                }
928                State::Body => {
929                    self.front = State::Done;
930                }
931                State::Done => unreachable!(),
932            }
933        }
934        None
935    }
936}
937
938#[stable(feature = "rust1", since = "1.0.0")]
939impl<'a> DoubleEndedIterator for Components<'a> {
940    fn next_back(&mut self) -> Option<Component<'a>> {
941        while !self.finished() {
942            match self.back {
943                State::Body if self.path.len() > self.len_before_body() => {
944                    let (size, comp) = self.parse_next_component_back();
945                    self.path = &self.path[..self.path.len() - size];
946                    if comp.is_some() {
947                        return comp;
948                    }
949                }
950                State::Body => {
951                    self.back = State::StartDir;
952                }
953                State::StartDir => {
954                    self.back = State::Prefix;
955                    if self.has_physical_root {
956                        self.path = &self.path[..self.path.len() - 1];
957                        return Some(Component::RootDir);
958                    } else if let Some(p) = self.prefix {
959                        if p.has_implicit_root() && !p.is_verbatim() {
960                            return Some(Component::RootDir);
961                        }
962                    } else if self.include_cur_dir() {
963                        self.path = &self.path[..self.path.len() - 1];
964                        return Some(Component::CurDir);
965                    }
966                }
967                State::Prefix if self.prefix_len() > 0 => {
968                    self.back = State::Done;
969                    return Some(Component::Prefix(PrefixComponent {
970                        raw: unsafe { OsStr::from_encoded_bytes_unchecked(self.path) },
971                        parsed: self.prefix.unwrap(),
972                    }));
973                }
974                State::Prefix => {
975                    self.back = State::Done;
976                    return None;
977                }
978                State::Done => unreachable!(),
979            }
980        }
981        None
982    }
983}
984
985#[stable(feature = "fused", since = "1.26.0")]
986impl FusedIterator for Components<'_> {}
987
988#[stable(feature = "rust1", since = "1.0.0")]
989impl<'a> PartialEq for Components<'a> {
990    #[inline]
991    fn eq(&self, other: &Components<'a>) -> bool {
992        let Components { path: _, front: _, back: _, has_physical_root: _, prefix: _ } = self;
993
994        // Fast path for exact matches, e.g. for hashmap lookups.
995        // Don't explicitly compare the prefix or has_physical_root fields since they'll
996        // either be covered by the `path` buffer or are only relevant for `prefix_verbatim()`.
997        if self.path.len() == other.path.len()
998            && self.front == other.front
999            && self.back == State::Body
1000            && other.back == State::Body
1001            && self.prefix_verbatim() == other.prefix_verbatim()
1002        {
1003            // possible future improvement: this could bail out earlier if there were a
1004            // reverse memcmp/bcmp comparing back to front
1005            if self.path == other.path {
1006                return true;
1007            }
1008        }
1009
1010        // compare back to front since absolute paths often share long prefixes
1011        Iterator::eq(self.clone().rev(), other.clone().rev())
1012    }
1013}
1014
1015#[stable(feature = "rust1", since = "1.0.0")]
1016impl Eq for Components<'_> {}
1017
1018#[stable(feature = "rust1", since = "1.0.0")]
1019impl<'a> PartialOrd for Components<'a> {
1020    #[inline]
1021    fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
1022        Some(compare_components(self.clone(), other.clone()))
1023    }
1024}
1025
1026#[stable(feature = "rust1", since = "1.0.0")]
1027impl Ord for Components<'_> {
1028    #[inline]
1029    fn cmp(&self, other: &Self) -> cmp::Ordering {
1030        compare_components(self.clone(), other.clone())
1031    }
1032}
1033
1034fn compare_components(mut left: Components<'_>, mut right: Components<'_>) -> cmp::Ordering {
1035    // Fast path for long shared prefixes
1036    //
1037    // - compare raw bytes to find first mismatch
1038    // - backtrack to find separator before mismatch to avoid ambiguous parsings of '.' or '..' characters
1039    // - if found update state to only do a component-wise comparison on the remainder,
1040    //   otherwise do it on the full path
1041    //
1042    // The fast path isn't taken for paths with a PrefixComponent to avoid backtracking into
1043    // the middle of one
1044    if left.prefix.is_none() && right.prefix.is_none() && left.front == right.front {
1045        // possible future improvement: a [u8]::first_mismatch simd implementation
1046        let first_difference = match left.path.iter().zip(right.path).position(|(&a, &b)| a != b) {
1047            None if left.path.len() == right.path.len() => return cmp::Ordering::Equal,
1048            None => left.path.len().min(right.path.len()),
1049            Some(diff) => diff,
1050        };
1051
1052        if let Some(previous_sep) =
1053            left.path[..first_difference].iter().rposition(|&b| left.is_sep_byte(b))
1054        {
1055            let mismatched_component_start = previous_sep + 1;
1056            left.path = &left.path[mismatched_component_start..];
1057            left.front = State::Body;
1058            right.path = &right.path[mismatched_component_start..];
1059            right.front = State::Body;
1060        }
1061    }
1062
1063    Iterator::cmp(left, right)
1064}
1065
1066/// An iterator over [`Path`] and its ancestors.
1067///
1068/// This `struct` is created by the [`ancestors`] method on [`Path`].
1069/// See its documentation for more.
1070///
1071/// # Examples
1072///
1073/// ```
1074/// use std::path::Path;
1075///
1076/// let path = Path::new("/foo/bar");
1077///
1078/// for ancestor in path.ancestors() {
1079///     println!("{}", ancestor.display());
1080/// }
1081/// ```
1082///
1083/// [`ancestors`]: Path::ancestors
1084#[derive(Copy, Clone, Debug)]
1085#[must_use = "iterators are lazy and do nothing unless consumed"]
1086#[stable(feature = "path_ancestors", since = "1.28.0")]
1087pub struct Ancestors<'a> {
1088    next: Option<&'a Path>,
1089}
1090
1091#[stable(feature = "path_ancestors", since = "1.28.0")]
1092impl<'a> Iterator for Ancestors<'a> {
1093    type Item = &'a Path;
1094
1095    #[inline]
1096    fn next(&mut self) -> Option<Self::Item> {
1097        let next = self.next;
1098        self.next = next.and_then(Path::parent);
1099        next
1100    }
1101}
1102
1103#[stable(feature = "path_ancestors", since = "1.28.0")]
1104impl FusedIterator for Ancestors<'_> {}
1105
1106////////////////////////////////////////////////////////////////////////////////
1107// Basic types and traits
1108////////////////////////////////////////////////////////////////////////////////
1109
1110/// An owned, mutable path (akin to [`String`]).
1111///
1112/// This type provides methods like [`push`] and [`set_extension`] that mutate
1113/// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1114/// all methods on [`Path`] slices are available on `PathBuf` values as well.
1115///
1116/// [`push`]: PathBuf::push
1117/// [`set_extension`]: PathBuf::set_extension
1118///
1119/// More details about the overall approach can be found in
1120/// the [module documentation](self).
1121///
1122/// # Examples
1123///
1124/// You can use [`push`] to build up a `PathBuf` from
1125/// components:
1126///
1127/// ```
1128/// use std::path::PathBuf;
1129///
1130/// let mut path = PathBuf::new();
1131///
1132/// path.push(r"C:\");
1133/// path.push("windows");
1134/// path.push("system32");
1135///
1136/// path.set_extension("dll");
1137/// ```
1138///
1139/// However, [`push`] is best used for dynamic situations. This is a better way
1140/// to do this when you know all of the components ahead of time:
1141///
1142/// ```
1143/// use std::path::PathBuf;
1144///
1145/// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1146/// ```
1147///
1148/// We can still do better than this! Since these are all strings, we can use
1149/// `From::from`:
1150///
1151/// ```
1152/// use std::path::PathBuf;
1153///
1154/// let path = PathBuf::from(r"C:\windows\system32.dll");
1155/// ```
1156///
1157/// Which method works best depends on what kind of situation you're in.
1158///
1159/// Note that `PathBuf` does not always sanitize arguments, for example
1160/// [`push`] allows paths built from strings which include separators:
1161///
1162/// ```
1163/// use std::path::PathBuf;
1164///
1165/// let mut path = PathBuf::new();
1166///
1167/// path.push(r"C:\");
1168/// path.push("windows");
1169/// path.push(r"..\otherdir");
1170/// path.push("system32");
1171/// ```
1172///
1173/// The behavior of `PathBuf` may be changed to a panic on such inputs
1174/// in the future. [`Extend::extend`] should be used to add multi-part paths.
1175#[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1176#[stable(feature = "rust1", since = "1.0.0")]
1177pub struct PathBuf {
1178    inner: OsString,
1179}
1180
1181impl PathBuf {
1182    /// Allocates an empty `PathBuf`.
1183    ///
1184    /// # Examples
1185    ///
1186    /// ```
1187    /// use std::path::PathBuf;
1188    ///
1189    /// let path = PathBuf::new();
1190    /// ```
1191    #[stable(feature = "rust1", since = "1.0.0")]
1192    #[must_use]
1193    #[inline]
1194    pub fn new() -> PathBuf {
1195        PathBuf { inner: OsString::new() }
1196    }
1197
1198    /// Creates a new `PathBuf` with a given capacity used to create the
1199    /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1200    ///
1201    /// # Examples
1202    ///
1203    /// ```
1204    /// use std::path::PathBuf;
1205    ///
1206    /// let mut path = PathBuf::with_capacity(10);
1207    /// let capacity = path.capacity();
1208    ///
1209    /// // This push is done without reallocating
1210    /// path.push(r"C:\");
1211    ///
1212    /// assert_eq!(capacity, path.capacity());
1213    /// ```
1214    ///
1215    /// [`with_capacity`]: OsString::with_capacity
1216    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1217    #[must_use]
1218    #[inline]
1219    pub fn with_capacity(capacity: usize) -> PathBuf {
1220        PathBuf { inner: OsString::with_capacity(capacity) }
1221    }
1222
1223    /// Coerces to a [`Path`] slice.
1224    ///
1225    /// # Examples
1226    ///
1227    /// ```
1228    /// use std::path::{Path, PathBuf};
1229    ///
1230    /// let p = PathBuf::from("/test");
1231    /// assert_eq!(Path::new("/test"), p.as_path());
1232    /// ```
1233    #[cfg_attr(not(test), rustc_diagnostic_item = "pathbuf_as_path")]
1234    #[stable(feature = "rust1", since = "1.0.0")]
1235    #[must_use]
1236    #[inline]
1237    pub fn as_path(&self) -> &Path {
1238        self
1239    }
1240
1241    /// Consumes and leaks the `PathBuf`, returning a mutable reference to the contents,
1242    /// `&'a mut Path`.
1243    ///
1244    /// The caller has free choice over the returned lifetime, including 'static.
1245    /// Indeed, this function is ideally used for data that lives for the remainder of
1246    /// the program’s life, as dropping the returned reference will cause a memory leak.
1247    ///
1248    /// It does not reallocate or shrink the `PathBuf`, so the leaked allocation may include
1249    /// unused capacity that is not part of the returned slice. If you want to discard excess
1250    /// capacity, call [`into_boxed_path`], and then [`Box::leak`] instead.
1251    /// However, keep in mind that trimming the capacity may result in a reallocation and copy.
1252    ///
1253    /// [`into_boxed_path`]: Self::into_boxed_path
1254    #[unstable(feature = "os_string_pathbuf_leak", issue = "125965")]
1255    #[inline]
1256    pub fn leak<'a>(self) -> &'a mut Path {
1257        Path::from_inner_mut(self.inner.leak())
1258    }
1259
1260    /// Extends `self` with `path`.
1261    ///
1262    /// If `path` is absolute, it replaces the current path.
1263    ///
1264    /// On Windows:
1265    ///
1266    /// * if `path` has a root but no prefix (e.g., `\windows`), it
1267    ///   replaces everything except for the prefix (if any) of `self`.
1268    /// * if `path` has a prefix but no root, it replaces `self`.
1269    /// * if `self` has a verbatim prefix (e.g. `\\?\C:\windows`)
1270    ///   and `path` is not empty, the new path is normalized: all references
1271    ///   to `.` and `..` are removed.
1272    ///
1273    /// Consider using [`Path::join`] if you need a new `PathBuf` instead of
1274    /// using this function on a cloned `PathBuf`.
1275    ///
1276    /// # Examples
1277    ///
1278    /// Pushing a relative path extends the existing path:
1279    ///
1280    /// ```
1281    /// use std::path::PathBuf;
1282    ///
1283    /// let mut path = PathBuf::from("/tmp");
1284    /// path.push("file.bk");
1285    /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1286    /// ```
1287    ///
1288    /// Pushing an absolute path replaces the existing path:
1289    ///
1290    /// ```
1291    /// use std::path::PathBuf;
1292    ///
1293    /// let mut path = PathBuf::from("/tmp");
1294    /// path.push("/etc");
1295    /// assert_eq!(path, PathBuf::from("/etc"));
1296    /// ```
1297    #[stable(feature = "rust1", since = "1.0.0")]
1298    #[rustc_confusables("append", "put")]
1299    pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1300        self._push(path.as_ref())
1301    }
1302
1303    fn _push(&mut self, path: &Path) {
1304        // in general, a separator is needed if the rightmost byte is not a separator
1305        let buf = self.inner.as_encoded_bytes();
1306        let mut need_sep = buf.last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1307
1308        // in the special case of `C:` on Windows, do *not* add a separator
1309        let comps = self.components();
1310
1311        if comps.prefix_len() > 0
1312            && comps.prefix_len() == comps.path.len()
1313            && comps.prefix.unwrap().is_drive()
1314        {
1315            need_sep = false
1316        }
1317
1318        // absolute `path` replaces `self`
1319        if path.is_absolute() || path.prefix().is_some() {
1320            self.inner.truncate(0);
1321
1322        // verbatim paths need . and .. removed
1323        } else if comps.prefix_verbatim() && !path.inner.is_empty() {
1324            let mut buf: Vec<_> = comps.collect();
1325            for c in path.components() {
1326                match c {
1327                    Component::RootDir => {
1328                        buf.truncate(1);
1329                        buf.push(c);
1330                    }
1331                    Component::CurDir => (),
1332                    Component::ParentDir => {
1333                        if let Some(Component::Normal(_)) = buf.last() {
1334                            buf.pop();
1335                        }
1336                    }
1337                    _ => buf.push(c),
1338                }
1339            }
1340
1341            let mut res = OsString::new();
1342            let mut need_sep = false;
1343
1344            for c in buf {
1345                if need_sep && c != Component::RootDir {
1346                    res.push(MAIN_SEP_STR);
1347                }
1348                res.push(c.as_os_str());
1349
1350                need_sep = match c {
1351                    Component::RootDir => false,
1352                    Component::Prefix(prefix) => {
1353                        !prefix.parsed.is_drive() && prefix.parsed.len() > 0
1354                    }
1355                    _ => true,
1356                }
1357            }
1358
1359            self.inner = res;
1360            return;
1361
1362        // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1363        } else if path.has_root() {
1364            let prefix_len = self.components().prefix_remaining();
1365            self.inner.truncate(prefix_len);
1366
1367        // `path` is a pure relative path
1368        } else if need_sep {
1369            self.inner.push(MAIN_SEP_STR);
1370        }
1371
1372        self.inner.push(path);
1373    }
1374
1375    /// Truncates `self` to [`self.parent`].
1376    ///
1377    /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1378    /// Otherwise, returns `true`.
1379    ///
1380    /// [`self.parent`]: Path::parent
1381    ///
1382    /// # Examples
1383    ///
1384    /// ```
1385    /// use std::path::{Path, PathBuf};
1386    ///
1387    /// let mut p = PathBuf::from("/spirited/away.rs");
1388    ///
1389    /// p.pop();
1390    /// assert_eq!(Path::new("/spirited"), p);
1391    /// p.pop();
1392    /// assert_eq!(Path::new("/"), p);
1393    /// ```
1394    #[stable(feature = "rust1", since = "1.0.0")]
1395    pub fn pop(&mut self) -> bool {
1396        match self.parent().map(|p| p.as_u8_slice().len()) {
1397            Some(len) => {
1398                self.inner.truncate(len);
1399                true
1400            }
1401            None => false,
1402        }
1403    }
1404
1405    /// Updates [`self.file_name`] to `file_name`.
1406    ///
1407    /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1408    /// `file_name`.
1409    ///
1410    /// Otherwise it is equivalent to calling [`pop`] and then pushing
1411    /// `file_name`. The new path will be a sibling of the original path.
1412    /// (That is, it will have the same parent.)
1413    ///
1414    /// The argument is not sanitized, so can include separators. This
1415    /// behavior may be changed to a panic in the future.
1416    ///
1417    /// [`self.file_name`]: Path::file_name
1418    /// [`pop`]: PathBuf::pop
1419    ///
1420    /// # Examples
1421    ///
1422    /// ```
1423    /// use std::path::PathBuf;
1424    ///
1425    /// let mut buf = PathBuf::from("/");
1426    /// assert!(buf.file_name() == None);
1427    ///
1428    /// buf.set_file_name("foo.txt");
1429    /// assert!(buf == PathBuf::from("/foo.txt"));
1430    /// assert!(buf.file_name().is_some());
1431    ///
1432    /// buf.set_file_name("bar.txt");
1433    /// assert!(buf == PathBuf::from("/bar.txt"));
1434    ///
1435    /// buf.set_file_name("baz");
1436    /// assert!(buf == PathBuf::from("/baz"));
1437    ///
1438    /// buf.set_file_name("../b/c.txt");
1439    /// assert!(buf == PathBuf::from("/../b/c.txt"));
1440    ///
1441    /// buf.set_file_name("baz");
1442    /// assert!(buf == PathBuf::from("/../b/baz"));
1443    /// ```
1444    #[stable(feature = "rust1", since = "1.0.0")]
1445    pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1446        self._set_file_name(file_name.as_ref())
1447    }
1448
1449    fn _set_file_name(&mut self, file_name: &OsStr) {
1450        if self.file_name().is_some() {
1451            let popped = self.pop();
1452            debug_assert!(popped);
1453        }
1454        self.push(file_name);
1455    }
1456
1457    /// Updates [`self.extension`] to `Some(extension)` or to `None` if
1458    /// `extension` is empty.
1459    ///
1460    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1461    /// returns `true` and updates the extension otherwise.
1462    ///
1463    /// If [`self.extension`] is [`None`], the extension is added; otherwise
1464    /// it is replaced.
1465    ///
1466    /// If `extension` is the empty string, [`self.extension`] will be [`None`]
1467    /// afterwards, not `Some("")`.
1468    ///
1469    /// # Panics
1470    ///
1471    /// Panics if the passed extension contains a path separator (see
1472    /// [`is_separator`]).
1473    ///
1474    /// # Caveats
1475    ///
1476    /// The new `extension` may contain dots and will be used in its entirety,
1477    /// but only the part after the final dot will be reflected in
1478    /// [`self.extension`].
1479    ///
1480    /// If the file stem contains internal dots and `extension` is empty, part
1481    /// of the old file stem will be considered the new [`self.extension`].
1482    ///
1483    /// See the examples below.
1484    ///
1485    /// [`self.file_name`]: Path::file_name
1486    /// [`self.extension`]: Path::extension
1487    ///
1488    /// # Examples
1489    ///
1490    /// ```
1491    /// use std::path::{Path, PathBuf};
1492    ///
1493    /// let mut p = PathBuf::from("/feel/the");
1494    ///
1495    /// p.set_extension("force");
1496    /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1497    ///
1498    /// p.set_extension("dark.side");
1499    /// assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
1500    ///
1501    /// p.set_extension("cookie");
1502    /// assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
1503    ///
1504    /// p.set_extension("");
1505    /// assert_eq!(Path::new("/feel/the.dark"), p.as_path());
1506    ///
1507    /// p.set_extension("");
1508    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1509    ///
1510    /// p.set_extension("");
1511    /// assert_eq!(Path::new("/feel/the"), p.as_path());
1512    /// ```
1513    #[stable(feature = "rust1", since = "1.0.0")]
1514    pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1515        self._set_extension(extension.as_ref())
1516    }
1517
1518    fn _set_extension(&mut self, extension: &OsStr) -> bool {
1519        validate_extension(extension);
1520
1521        let file_stem = match self.file_stem() {
1522            None => return false,
1523            Some(f) => f.as_encoded_bytes(),
1524        };
1525
1526        // truncate until right after the file stem
1527        let end_file_stem = file_stem[file_stem.len()..].as_ptr().addr();
1528        let start = self.inner.as_encoded_bytes().as_ptr().addr();
1529        self.inner.truncate(end_file_stem.wrapping_sub(start));
1530
1531        // add the new extension, if any
1532        let new = extension.as_encoded_bytes();
1533        if !new.is_empty() {
1534            self.inner.reserve_exact(new.len() + 1);
1535            self.inner.push(".");
1536            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1537            // for the buffer to end with a surrogate half.
1538            unsafe { self.inner.extend_from_slice_unchecked(new) };
1539        }
1540
1541        true
1542    }
1543
1544    /// Append [`self.extension`] with `extension`.
1545    ///
1546    /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1547    /// returns `true` and updates the extension otherwise.
1548    ///
1549    /// # Panics
1550    ///
1551    /// Panics if the passed extension contains a path separator (see
1552    /// [`is_separator`]).
1553    ///
1554    /// # Caveats
1555    ///
1556    /// The appended `extension` may contain dots and will be used in its entirety,
1557    /// but only the part after the final dot will be reflected in
1558    /// [`self.extension`].
1559    ///
1560    /// See the examples below.
1561    ///
1562    /// [`self.file_name`]: Path::file_name
1563    /// [`self.extension`]: Path::extension
1564    ///
1565    /// # Examples
1566    ///
1567    /// ```
1568    /// #![feature(path_add_extension)]
1569    ///
1570    /// use std::path::{Path, PathBuf};
1571    ///
1572    /// let mut p = PathBuf::from("/feel/the");
1573    ///
1574    /// p.add_extension("formatted");
1575    /// assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
1576    ///
1577    /// p.add_extension("dark.side");
1578    /// assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
1579    ///
1580    /// p.set_extension("cookie");
1581    /// assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
1582    ///
1583    /// p.set_extension("");
1584    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1585    ///
1586    /// p.add_extension("");
1587    /// assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1588    /// ```
1589    #[unstable(feature = "path_add_extension", issue = "127292")]
1590    pub fn add_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1591        self._add_extension(extension.as_ref())
1592    }
1593
1594    fn _add_extension(&mut self, extension: &OsStr) -> bool {
1595        validate_extension(extension);
1596
1597        let file_name = match self.file_name() {
1598            None => return false,
1599            Some(f) => f.as_encoded_bytes(),
1600        };
1601
1602        let new = extension.as_encoded_bytes();
1603        if !new.is_empty() {
1604            // truncate until right after the file name
1605            // this is necessary for trimming the trailing slash
1606            let end_file_name = file_name[file_name.len()..].as_ptr().addr();
1607            let start = self.inner.as_encoded_bytes().as_ptr().addr();
1608            self.inner.truncate(end_file_name.wrapping_sub(start));
1609
1610            // append the new extension
1611            self.inner.reserve_exact(new.len() + 1);
1612            self.inner.push(".");
1613            // SAFETY: Since a UTF-8 string was just pushed, it is not possible
1614            // for the buffer to end with a surrogate half.
1615            unsafe { self.inner.extend_from_slice_unchecked(new) };
1616        }
1617
1618        true
1619    }
1620
1621    /// Yields a mutable reference to the underlying [`OsString`] instance.
1622    ///
1623    /// # Examples
1624    ///
1625    /// ```
1626    /// use std::path::{Path, PathBuf};
1627    ///
1628    /// let mut path = PathBuf::from("/foo");
1629    ///
1630    /// path.push("bar");
1631    /// assert_eq!(path, Path::new("/foo/bar"));
1632    ///
1633    /// // OsString's `push` does not add a separator.
1634    /// path.as_mut_os_string().push("baz");
1635    /// assert_eq!(path, Path::new("/foo/barbaz"));
1636    /// ```
1637    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
1638    #[must_use]
1639    #[inline]
1640    pub fn as_mut_os_string(&mut self) -> &mut OsString {
1641        &mut self.inner
1642    }
1643
1644    /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1645    ///
1646    /// # Examples
1647    ///
1648    /// ```
1649    /// use std::path::PathBuf;
1650    ///
1651    /// let p = PathBuf::from("/the/head");
1652    /// let os_str = p.into_os_string();
1653    /// ```
1654    #[stable(feature = "rust1", since = "1.0.0")]
1655    #[must_use = "`self` will be dropped if the result is not used"]
1656    #[inline]
1657    pub fn into_os_string(self) -> OsString {
1658        self.inner
1659    }
1660
1661    /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1662    #[stable(feature = "into_boxed_path", since = "1.20.0")]
1663    #[must_use = "`self` will be dropped if the result is not used"]
1664    #[inline]
1665    pub fn into_boxed_path(self) -> Box<Path> {
1666        let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1667        unsafe { Box::from_raw(rw) }
1668    }
1669
1670    /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1671    ///
1672    /// [`capacity`]: OsString::capacity
1673    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1674    #[must_use]
1675    #[inline]
1676    pub fn capacity(&self) -> usize {
1677        self.inner.capacity()
1678    }
1679
1680    /// Invokes [`clear`] on the underlying instance of [`OsString`].
1681    ///
1682    /// [`clear`]: OsString::clear
1683    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1684    #[inline]
1685    pub fn clear(&mut self) {
1686        self.inner.clear()
1687    }
1688
1689    /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1690    ///
1691    /// [`reserve`]: OsString::reserve
1692    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1693    #[inline]
1694    pub fn reserve(&mut self, additional: usize) {
1695        self.inner.reserve(additional)
1696    }
1697
1698    /// Invokes [`try_reserve`] on the underlying instance of [`OsString`].
1699    ///
1700    /// [`try_reserve`]: OsString::try_reserve
1701    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1702    #[inline]
1703    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1704        self.inner.try_reserve(additional)
1705    }
1706
1707    /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1708    ///
1709    /// [`reserve_exact`]: OsString::reserve_exact
1710    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1711    #[inline]
1712    pub fn reserve_exact(&mut self, additional: usize) {
1713        self.inner.reserve_exact(additional)
1714    }
1715
1716    /// Invokes [`try_reserve_exact`] on the underlying instance of [`OsString`].
1717    ///
1718    /// [`try_reserve_exact`]: OsString::try_reserve_exact
1719    #[stable(feature = "try_reserve_2", since = "1.63.0")]
1720    #[inline]
1721    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1722        self.inner.try_reserve_exact(additional)
1723    }
1724
1725    /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1726    ///
1727    /// [`shrink_to_fit`]: OsString::shrink_to_fit
1728    #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1729    #[inline]
1730    pub fn shrink_to_fit(&mut self) {
1731        self.inner.shrink_to_fit()
1732    }
1733
1734    /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1735    ///
1736    /// [`shrink_to`]: OsString::shrink_to
1737    #[stable(feature = "shrink_to", since = "1.56.0")]
1738    #[inline]
1739    pub fn shrink_to(&mut self, min_capacity: usize) {
1740        self.inner.shrink_to(min_capacity)
1741    }
1742}
1743
1744#[stable(feature = "rust1", since = "1.0.0")]
1745impl Clone for PathBuf {
1746    #[inline]
1747    fn clone(&self) -> Self {
1748        PathBuf { inner: self.inner.clone() }
1749    }
1750
1751    /// Clones the contents of `source` into `self`.
1752    ///
1753    /// This method is preferred over simply assigning `source.clone()` to `self`,
1754    /// as it avoids reallocation if possible.
1755    #[inline]
1756    fn clone_from(&mut self, source: &Self) {
1757        self.inner.clone_from(&source.inner)
1758    }
1759}
1760
1761#[stable(feature = "box_from_path", since = "1.17.0")]
1762impl From<&Path> for Box<Path> {
1763    /// Creates a boxed [`Path`] from a reference.
1764    ///
1765    /// This will allocate and clone `path` to it.
1766    fn from(path: &Path) -> Box<Path> {
1767        let boxed: Box<OsStr> = path.inner.into();
1768        let rw = Box::into_raw(boxed) as *mut Path;
1769        unsafe { Box::from_raw(rw) }
1770    }
1771}
1772
1773#[stable(feature = "box_from_mut_slice", since = "1.84.0")]
1774impl From<&mut Path> for Box<Path> {
1775    /// Creates a boxed [`Path`] from a reference.
1776    ///
1777    /// This will allocate and clone `path` to it.
1778    fn from(path: &mut Path) -> Box<Path> {
1779        Self::from(&*path)
1780    }
1781}
1782
1783#[stable(feature = "box_from_cow", since = "1.45.0")]
1784impl From<Cow<'_, Path>> for Box<Path> {
1785    /// Creates a boxed [`Path`] from a clone-on-write pointer.
1786    ///
1787    /// Converting from a `Cow::Owned` does not clone or allocate.
1788    #[inline]
1789    fn from(cow: Cow<'_, Path>) -> Box<Path> {
1790        match cow {
1791            Cow::Borrowed(path) => Box::from(path),
1792            Cow::Owned(path) => Box::from(path),
1793        }
1794    }
1795}
1796
1797#[stable(feature = "path_buf_from_box", since = "1.18.0")]
1798impl From<Box<Path>> for PathBuf {
1799    /// Converts a <code>[Box]&lt;[Path]&gt;</code> into a [`PathBuf`].
1800    ///
1801    /// This conversion does not allocate or copy memory.
1802    #[inline]
1803    fn from(boxed: Box<Path>) -> PathBuf {
1804        boxed.into_path_buf()
1805    }
1806}
1807
1808#[stable(feature = "box_from_path_buf", since = "1.20.0")]
1809impl From<PathBuf> for Box<Path> {
1810    /// Converts a [`PathBuf`] into a <code>[Box]&lt;[Path]&gt;</code>.
1811    ///
1812    /// This conversion currently should not allocate memory,
1813    /// but this behavior is not guaranteed on all platforms or in all future versions.
1814    #[inline]
1815    fn from(p: PathBuf) -> Box<Path> {
1816        p.into_boxed_path()
1817    }
1818}
1819
1820#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1821impl Clone for Box<Path> {
1822    #[inline]
1823    fn clone(&self) -> Self {
1824        self.to_path_buf().into_boxed_path()
1825    }
1826}
1827
1828#[stable(feature = "rust1", since = "1.0.0")]
1829impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1830    /// Converts a borrowed [`OsStr`] to a [`PathBuf`].
1831    ///
1832    /// Allocates a [`PathBuf`] and copies the data into it.
1833    #[inline]
1834    fn from(s: &T) -> PathBuf {
1835        PathBuf::from(s.as_ref().to_os_string())
1836    }
1837}
1838
1839#[stable(feature = "rust1", since = "1.0.0")]
1840impl From<OsString> for PathBuf {
1841    /// Converts an [`OsString`] into a [`PathBuf`].
1842    ///
1843    /// This conversion does not allocate or copy memory.
1844    #[inline]
1845    fn from(s: OsString) -> PathBuf {
1846        PathBuf { inner: s }
1847    }
1848}
1849
1850#[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1851impl From<PathBuf> for OsString {
1852    /// Converts a [`PathBuf`] into an [`OsString`]
1853    ///
1854    /// This conversion does not allocate or copy memory.
1855    #[inline]
1856    fn from(path_buf: PathBuf) -> OsString {
1857        path_buf.inner
1858    }
1859}
1860
1861#[stable(feature = "rust1", since = "1.0.0")]
1862impl From<String> for PathBuf {
1863    /// Converts a [`String`] into a [`PathBuf`]
1864    ///
1865    /// This conversion does not allocate or copy memory.
1866    #[inline]
1867    fn from(s: String) -> PathBuf {
1868        PathBuf::from(OsString::from(s))
1869    }
1870}
1871
1872#[stable(feature = "path_from_str", since = "1.32.0")]
1873impl FromStr for PathBuf {
1874    type Err = core::convert::Infallible;
1875
1876    #[inline]
1877    fn from_str(s: &str) -> Result<Self, Self::Err> {
1878        Ok(PathBuf::from(s))
1879    }
1880}
1881
1882#[stable(feature = "rust1", since = "1.0.0")]
1883impl<P: AsRef<Path>> FromIterator<P> for PathBuf {
1884    fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1885        let mut buf = PathBuf::new();
1886        buf.extend(iter);
1887        buf
1888    }
1889}
1890
1891#[stable(feature = "rust1", since = "1.0.0")]
1892impl<P: AsRef<Path>> Extend<P> for PathBuf {
1893    fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1894        iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1895    }
1896
1897    #[inline]
1898    fn extend_one(&mut self, p: P) {
1899        self.push(p.as_ref());
1900    }
1901}
1902
1903#[stable(feature = "rust1", since = "1.0.0")]
1904impl fmt::Debug for PathBuf {
1905    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1906        fmt::Debug::fmt(&**self, formatter)
1907    }
1908}
1909
1910#[stable(feature = "rust1", since = "1.0.0")]
1911impl ops::Deref for PathBuf {
1912    type Target = Path;
1913    #[inline]
1914    fn deref(&self) -> &Path {
1915        Path::new(&self.inner)
1916    }
1917}
1918
1919#[stable(feature = "path_buf_deref_mut", since = "1.68.0")]
1920impl ops::DerefMut for PathBuf {
1921    #[inline]
1922    fn deref_mut(&mut self) -> &mut Path {
1923        Path::from_inner_mut(&mut self.inner)
1924    }
1925}
1926
1927#[stable(feature = "rust1", since = "1.0.0")]
1928impl Borrow<Path> for PathBuf {
1929    #[inline]
1930    fn borrow(&self) -> &Path {
1931        self.deref()
1932    }
1933}
1934
1935#[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1936impl Default for PathBuf {
1937    #[inline]
1938    fn default() -> Self {
1939        PathBuf::new()
1940    }
1941}
1942
1943#[stable(feature = "cow_from_path", since = "1.6.0")]
1944impl<'a> From<&'a Path> for Cow<'a, Path> {
1945    /// Creates a clone-on-write pointer from a reference to
1946    /// [`Path`].
1947    ///
1948    /// This conversion does not clone or allocate.
1949    #[inline]
1950    fn from(s: &'a Path) -> Cow<'a, Path> {
1951        Cow::Borrowed(s)
1952    }
1953}
1954
1955#[stable(feature = "cow_from_path", since = "1.6.0")]
1956impl<'a> From<PathBuf> for Cow<'a, Path> {
1957    /// Creates a clone-on-write pointer from an owned
1958    /// instance of [`PathBuf`].
1959    ///
1960    /// This conversion does not clone or allocate.
1961    #[inline]
1962    fn from(s: PathBuf) -> Cow<'a, Path> {
1963        Cow::Owned(s)
1964    }
1965}
1966
1967#[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
1968impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
1969    /// Creates a clone-on-write pointer from a reference to
1970    /// [`PathBuf`].
1971    ///
1972    /// This conversion does not clone or allocate.
1973    #[inline]
1974    fn from(p: &'a PathBuf) -> Cow<'a, Path> {
1975        Cow::Borrowed(p.as_path())
1976    }
1977}
1978
1979#[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
1980impl<'a> From<Cow<'a, Path>> for PathBuf {
1981    /// Converts a clone-on-write pointer to an owned path.
1982    ///
1983    /// Converting from a `Cow::Owned` does not clone or allocate.
1984    #[inline]
1985    fn from(p: Cow<'a, Path>) -> Self {
1986        p.into_owned()
1987    }
1988}
1989
1990#[stable(feature = "shared_from_slice2", since = "1.24.0")]
1991impl From<PathBuf> for Arc<Path> {
1992    /// Converts a [`PathBuf`] into an <code>[Arc]<[Path]></code> by moving the [`PathBuf`] data
1993    /// into a new [`Arc`] buffer.
1994    #[inline]
1995    fn from(s: PathBuf) -> Arc<Path> {
1996        let arc: Arc<OsStr> = Arc::from(s.into_os_string());
1997        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1998    }
1999}
2000
2001#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2002impl From<&Path> for Arc<Path> {
2003    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2004    #[inline]
2005    fn from(s: &Path) -> Arc<Path> {
2006        let arc: Arc<OsStr> = Arc::from(s.as_os_str());
2007        unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
2008    }
2009}
2010
2011#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2012impl From<&mut Path> for Arc<Path> {
2013    /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
2014    #[inline]
2015    fn from(s: &mut Path) -> Arc<Path> {
2016        Arc::from(&*s)
2017    }
2018}
2019
2020#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2021impl From<PathBuf> for Rc<Path> {
2022    /// Converts a [`PathBuf`] into an <code>[Rc]<[Path]></code> by moving the [`PathBuf`] data into
2023    /// a new [`Rc`] buffer.
2024    #[inline]
2025    fn from(s: PathBuf) -> Rc<Path> {
2026        let rc: Rc<OsStr> = Rc::from(s.into_os_string());
2027        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2028    }
2029}
2030
2031#[stable(feature = "shared_from_slice2", since = "1.24.0")]
2032impl From<&Path> for Rc<Path> {
2033    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2034    #[inline]
2035    fn from(s: &Path) -> Rc<Path> {
2036        let rc: Rc<OsStr> = Rc::from(s.as_os_str());
2037        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
2038    }
2039}
2040
2041#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
2042impl From<&mut Path> for Rc<Path> {
2043    /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new [`Rc`] buffer.
2044    #[inline]
2045    fn from(s: &mut Path) -> Rc<Path> {
2046        Rc::from(&*s)
2047    }
2048}
2049
2050#[stable(feature = "rust1", since = "1.0.0")]
2051impl ToOwned for Path {
2052    type Owned = PathBuf;
2053    #[inline]
2054    fn to_owned(&self) -> PathBuf {
2055        self.to_path_buf()
2056    }
2057    #[inline]
2058    fn clone_into(&self, target: &mut PathBuf) {
2059        self.inner.clone_into(&mut target.inner);
2060    }
2061}
2062
2063#[stable(feature = "rust1", since = "1.0.0")]
2064impl PartialEq for PathBuf {
2065    #[inline]
2066    fn eq(&self, other: &PathBuf) -> bool {
2067        self.components() == other.components()
2068    }
2069}
2070
2071#[stable(feature = "rust1", since = "1.0.0")]
2072impl Hash for PathBuf {
2073    fn hash<H: Hasher>(&self, h: &mut H) {
2074        self.as_path().hash(h)
2075    }
2076}
2077
2078#[stable(feature = "rust1", since = "1.0.0")]
2079impl Eq for PathBuf {}
2080
2081#[stable(feature = "rust1", since = "1.0.0")]
2082impl PartialOrd for PathBuf {
2083    #[inline]
2084    fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
2085        Some(compare_components(self.components(), other.components()))
2086    }
2087}
2088
2089#[stable(feature = "rust1", since = "1.0.0")]
2090impl Ord for PathBuf {
2091    #[inline]
2092    fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
2093        compare_components(self.components(), other.components())
2094    }
2095}
2096
2097#[stable(feature = "rust1", since = "1.0.0")]
2098impl AsRef<OsStr> for PathBuf {
2099    #[inline]
2100    fn as_ref(&self) -> &OsStr {
2101        &self.inner[..]
2102    }
2103}
2104
2105/// A slice of a path (akin to [`str`]).
2106///
2107/// This type supports a number of operations for inspecting a path, including
2108/// breaking the path into its components (separated by `/` on Unix and by either
2109/// `/` or `\` on Windows), extracting the file name, determining whether the path
2110/// is absolute, and so on.
2111///
2112/// This is an *unsized* type, meaning that it must always be used behind a
2113/// pointer like `&` or [`Box`]. For an owned version of this type,
2114/// see [`PathBuf`].
2115///
2116/// More details about the overall approach can be found in
2117/// the [module documentation](self).
2118///
2119/// # Examples
2120///
2121/// ```
2122/// use std::path::Path;
2123/// use std::ffi::OsStr;
2124///
2125/// // Note: this example does work on Windows
2126/// let path = Path::new("./foo/bar.txt");
2127///
2128/// let parent = path.parent();
2129/// assert_eq!(parent, Some(Path::new("./foo")));
2130///
2131/// let file_stem = path.file_stem();
2132/// assert_eq!(file_stem, Some(OsStr::new("bar")));
2133///
2134/// let extension = path.extension();
2135/// assert_eq!(extension, Some(OsStr::new("txt")));
2136/// ```
2137#[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
2138#[stable(feature = "rust1", since = "1.0.0")]
2139// `Path::new` and `impl CloneToUninit for Path` current implementation relies
2140// on `Path` being layout-compatible with `OsStr`.
2141// However, `Path` layout is considered an implementation detail and must not be relied upon.
2142#[repr(transparent)]
2143pub struct Path {
2144    inner: OsStr,
2145}
2146
2147/// An error returned from [`Path::strip_prefix`] if the prefix was not found.
2148///
2149/// This `struct` is created by the [`strip_prefix`] method on [`Path`].
2150/// See its documentation for more.
2151///
2152/// [`strip_prefix`]: Path::strip_prefix
2153#[derive(Debug, Clone, PartialEq, Eq)]
2154#[stable(since = "1.7.0", feature = "strip_prefix")]
2155pub struct StripPrefixError(());
2156
2157impl Path {
2158    // The following (private!) function allows construction of a path from a u8
2159    // slice, which is only safe when it is known to follow the OsStr encoding.
2160    unsafe fn from_u8_slice(s: &[u8]) -> &Path {
2161        unsafe { Path::new(OsStr::from_encoded_bytes_unchecked(s)) }
2162    }
2163    // The following (private!) function reveals the byte encoding used for OsStr.
2164    pub(crate) fn as_u8_slice(&self) -> &[u8] {
2165        self.inner.as_encoded_bytes()
2166    }
2167
2168    /// Directly wraps a string slice as a `Path` slice.
2169    ///
2170    /// This is a cost-free conversion.
2171    ///
2172    /// # Examples
2173    ///
2174    /// ```
2175    /// use std::path::Path;
2176    ///
2177    /// Path::new("foo.txt");
2178    /// ```
2179    ///
2180    /// You can create `Path`s from `String`s, or even other `Path`s:
2181    ///
2182    /// ```
2183    /// use std::path::Path;
2184    ///
2185    /// let string = String::from("foo.txt");
2186    /// let from_string = Path::new(&string);
2187    /// let from_path = Path::new(&from_string);
2188    /// assert_eq!(from_string, from_path);
2189    /// ```
2190    #[stable(feature = "rust1", since = "1.0.0")]
2191    pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
2192        unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
2193    }
2194
2195    fn from_inner_mut(inner: &mut OsStr) -> &mut Path {
2196        // SAFETY: Path is just a wrapper around OsStr,
2197        // therefore converting &mut OsStr to &mut Path is safe.
2198        unsafe { &mut *(inner as *mut OsStr as *mut Path) }
2199    }
2200
2201    /// Yields the underlying [`OsStr`] slice.
2202    ///
2203    /// # Examples
2204    ///
2205    /// ```
2206    /// use std::path::Path;
2207    ///
2208    /// let os_str = Path::new("foo.txt").as_os_str();
2209    /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
2210    /// ```
2211    #[stable(feature = "rust1", since = "1.0.0")]
2212    #[must_use]
2213    #[inline]
2214    pub fn as_os_str(&self) -> &OsStr {
2215        &self.inner
2216    }
2217
2218    /// Yields a mutable reference to the underlying [`OsStr`] slice.
2219    ///
2220    /// # Examples
2221    ///
2222    /// ```
2223    /// use std::path::{Path, PathBuf};
2224    ///
2225    /// let mut path = PathBuf::from("Foo.TXT");
2226    ///
2227    /// assert_ne!(path, Path::new("foo.txt"));
2228    ///
2229    /// path.as_mut_os_str().make_ascii_lowercase();
2230    /// assert_eq!(path, Path::new("foo.txt"));
2231    /// ```
2232    #[stable(feature = "path_as_mut_os_str", since = "1.70.0")]
2233    #[must_use]
2234    #[inline]
2235    pub fn as_mut_os_str(&mut self) -> &mut OsStr {
2236        &mut self.inner
2237    }
2238
2239    /// Yields a [`&str`] slice if the `Path` is valid unicode.
2240    ///
2241    /// This conversion may entail doing a check for UTF-8 validity.
2242    /// Note that validation is performed because non-UTF-8 strings are
2243    /// perfectly valid for some OS.
2244    ///
2245    /// [`&str`]: str
2246    ///
2247    /// # Examples
2248    ///
2249    /// ```
2250    /// use std::path::Path;
2251    ///
2252    /// let path = Path::new("foo.txt");
2253    /// assert_eq!(path.to_str(), Some("foo.txt"));
2254    /// ```
2255    #[stable(feature = "rust1", since = "1.0.0")]
2256    #[must_use = "this returns the result of the operation, \
2257                  without modifying the original"]
2258    #[inline]
2259    pub fn to_str(&self) -> Option<&str> {
2260        self.inner.to_str()
2261    }
2262
2263    /// Converts a `Path` to a [`Cow<str>`].
2264    ///
2265    /// Any non-UTF-8 sequences are replaced with
2266    /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
2267    ///
2268    /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
2269    ///
2270    /// # Examples
2271    ///
2272    /// Calling `to_string_lossy` on a `Path` with valid unicode:
2273    ///
2274    /// ```
2275    /// use std::path::Path;
2276    ///
2277    /// let path = Path::new("foo.txt");
2278    /// assert_eq!(path.to_string_lossy(), "foo.txt");
2279    /// ```
2280    ///
2281    /// Had `path` contained invalid unicode, the `to_string_lossy` call might
2282    /// have returned `"fo�.txt"`.
2283    #[stable(feature = "rust1", since = "1.0.0")]
2284    #[must_use = "this returns the result of the operation, \
2285                  without modifying the original"]
2286    #[inline]
2287    pub fn to_string_lossy(&self) -> Cow<'_, str> {
2288        self.inner.to_string_lossy()
2289    }
2290
2291    /// Converts a `Path` to an owned [`PathBuf`].
2292    ///
2293    /// # Examples
2294    ///
2295    /// ```
2296    /// use std::path::{Path, PathBuf};
2297    ///
2298    /// let path_buf = Path::new("foo.txt").to_path_buf();
2299    /// assert_eq!(path_buf, PathBuf::from("foo.txt"));
2300    /// ```
2301    #[rustc_conversion_suggestion]
2302    #[must_use = "this returns the result of the operation, \
2303                  without modifying the original"]
2304    #[stable(feature = "rust1", since = "1.0.0")]
2305    #[cfg_attr(not(test), rustc_diagnostic_item = "path_to_pathbuf")]
2306    pub fn to_path_buf(&self) -> PathBuf {
2307        PathBuf::from(self.inner.to_os_string())
2308    }
2309
2310    /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
2311    /// the current directory.
2312    ///
2313    /// * On Unix, a path is absolute if it starts with the root, so
2314    /// `is_absolute` and [`has_root`] are equivalent.
2315    ///
2316    /// * On Windows, a path is absolute if it has a prefix and starts with the
2317    /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
2318    ///
2319    /// # Examples
2320    ///
2321    /// ```
2322    /// use std::path::Path;
2323    ///
2324    /// assert!(!Path::new("foo.txt").is_absolute());
2325    /// ```
2326    ///
2327    /// [`has_root`]: Path::has_root
2328    #[stable(feature = "rust1", since = "1.0.0")]
2329    #[must_use]
2330    #[allow(deprecated)]
2331    pub fn is_absolute(&self) -> bool {
2332        sys::path::is_absolute(self)
2333    }
2334
2335    /// Returns `true` if the `Path` is relative, i.e., not absolute.
2336    ///
2337    /// See [`is_absolute`]'s documentation for more details.
2338    ///
2339    /// # Examples
2340    ///
2341    /// ```
2342    /// use std::path::Path;
2343    ///
2344    /// assert!(Path::new("foo.txt").is_relative());
2345    /// ```
2346    ///
2347    /// [`is_absolute`]: Path::is_absolute
2348    #[stable(feature = "rust1", since = "1.0.0")]
2349    #[must_use]
2350    #[inline]
2351    pub fn is_relative(&self) -> bool {
2352        !self.is_absolute()
2353    }
2354
2355    pub(crate) fn prefix(&self) -> Option<Prefix<'_>> {
2356        self.components().prefix
2357    }
2358
2359    /// Returns `true` if the `Path` has a root.
2360    ///
2361    /// * On Unix, a path has a root if it begins with `/`.
2362    ///
2363    /// * On Windows, a path has a root if it:
2364    ///     * has no prefix and begins with a separator, e.g., `\windows`
2365    ///     * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
2366    ///     * has any non-disk prefix, e.g., `\\server\share`
2367    ///
2368    /// # Examples
2369    ///
2370    /// ```
2371    /// use std::path::Path;
2372    ///
2373    /// assert!(Path::new("/etc/passwd").has_root());
2374    /// ```
2375    #[stable(feature = "rust1", since = "1.0.0")]
2376    #[must_use]
2377    #[inline]
2378    pub fn has_root(&self) -> bool {
2379        self.components().has_root()
2380    }
2381
2382    /// Returns the `Path` without its final component, if there is one.
2383    ///
2384    /// This means it returns `Some("")` for relative paths with one component.
2385    ///
2386    /// Returns [`None`] if the path terminates in a root or prefix, or if it's
2387    /// the empty string.
2388    ///
2389    /// # Examples
2390    ///
2391    /// ```
2392    /// use std::path::Path;
2393    ///
2394    /// let path = Path::new("/foo/bar");
2395    /// let parent = path.parent().unwrap();
2396    /// assert_eq!(parent, Path::new("/foo"));
2397    ///
2398    /// let grand_parent = parent.parent().unwrap();
2399    /// assert_eq!(grand_parent, Path::new("/"));
2400    /// assert_eq!(grand_parent.parent(), None);
2401    ///
2402    /// let relative_path = Path::new("foo/bar");
2403    /// let parent = relative_path.parent();
2404    /// assert_eq!(parent, Some(Path::new("foo")));
2405    /// let grand_parent = parent.and_then(Path::parent);
2406    /// assert_eq!(grand_parent, Some(Path::new("")));
2407    /// let great_grand_parent = grand_parent.and_then(Path::parent);
2408    /// assert_eq!(great_grand_parent, None);
2409    /// ```
2410    #[stable(feature = "rust1", since = "1.0.0")]
2411    #[doc(alias = "dirname")]
2412    #[must_use]
2413    pub fn parent(&self) -> Option<&Path> {
2414        let mut comps = self.components();
2415        let comp = comps.next_back();
2416        comp.and_then(|p| match p {
2417            Component::Normal(_) | Component::CurDir | Component::ParentDir => {
2418                Some(comps.as_path())
2419            }
2420            _ => None,
2421        })
2422    }
2423
2424    /// Produces an iterator over `Path` and its ancestors.
2425    ///
2426    /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2427    /// or more times. If the [`parent`] method returns [`None`], the iterator will do likewise.
2428    /// The iterator will always yield at least one value, namely `Some(&self)`. Next it will yield
2429    /// `&self.parent()`, `&self.parent().and_then(Path::parent)` and so on.
2430    ///
2431    /// # Examples
2432    ///
2433    /// ```
2434    /// use std::path::Path;
2435    ///
2436    /// let mut ancestors = Path::new("/foo/bar").ancestors();
2437    /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2438    /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2439    /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2440    /// assert_eq!(ancestors.next(), None);
2441    ///
2442    /// let mut ancestors = Path::new("../foo/bar").ancestors();
2443    /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2444    /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2445    /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2446    /// assert_eq!(ancestors.next(), Some(Path::new("")));
2447    /// assert_eq!(ancestors.next(), None);
2448    /// ```
2449    ///
2450    /// [`parent`]: Path::parent
2451    #[stable(feature = "path_ancestors", since = "1.28.0")]
2452    #[inline]
2453    pub fn ancestors(&self) -> Ancestors<'_> {
2454        Ancestors { next: Some(&self) }
2455    }
2456
2457    /// Returns the final component of the `Path`, if there is one.
2458    ///
2459    /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2460    /// is the directory name.
2461    ///
2462    /// Returns [`None`] if the path terminates in `..`.
2463    ///
2464    /// # Examples
2465    ///
2466    /// ```
2467    /// use std::path::Path;
2468    /// use std::ffi::OsStr;
2469    ///
2470    /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2471    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2472    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2473    /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2474    /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2475    /// assert_eq!(None, Path::new("/").file_name());
2476    /// ```
2477    #[stable(feature = "rust1", since = "1.0.0")]
2478    #[doc(alias = "basename")]
2479    #[must_use]
2480    pub fn file_name(&self) -> Option<&OsStr> {
2481        self.components().next_back().and_then(|p| match p {
2482            Component::Normal(p) => Some(p),
2483            _ => None,
2484        })
2485    }
2486
2487    /// Returns a path that, when joined onto `base`, yields `self`.
2488    ///
2489    /// # Errors
2490    ///
2491    /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2492    /// returns `false`), returns [`Err`].
2493    ///
2494    /// [`starts_with`]: Path::starts_with
2495    ///
2496    /// # Examples
2497    ///
2498    /// ```
2499    /// use std::path::{Path, PathBuf};
2500    ///
2501    /// let path = Path::new("/test/haha/foo.txt");
2502    ///
2503    /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2504    /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2505    /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2506    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2507    /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2508    ///
2509    /// assert!(path.strip_prefix("test").is_err());
2510    /// assert!(path.strip_prefix("/te").is_err());
2511    /// assert!(path.strip_prefix("/haha").is_err());
2512    ///
2513    /// let prefix = PathBuf::from("/test/");
2514    /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2515    /// ```
2516    #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2517    pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2518    where
2519        P: AsRef<Path>,
2520    {
2521        self._strip_prefix(base.as_ref())
2522    }
2523
2524    fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2525        iter_after(self.components(), base.components())
2526            .map(|c| c.as_path())
2527            .ok_or(StripPrefixError(()))
2528    }
2529
2530    /// Determines whether `base` is a prefix of `self`.
2531    ///
2532    /// Only considers whole path components to match.
2533    ///
2534    /// # Examples
2535    ///
2536    /// ```
2537    /// use std::path::Path;
2538    ///
2539    /// let path = Path::new("/etc/passwd");
2540    ///
2541    /// assert!(path.starts_with("/etc"));
2542    /// assert!(path.starts_with("/etc/"));
2543    /// assert!(path.starts_with("/etc/passwd"));
2544    /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2545    /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2546    ///
2547    /// assert!(!path.starts_with("/e"));
2548    /// assert!(!path.starts_with("/etc/passwd.txt"));
2549    ///
2550    /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2551    /// ```
2552    #[stable(feature = "rust1", since = "1.0.0")]
2553    #[must_use]
2554    pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2555        self._starts_with(base.as_ref())
2556    }
2557
2558    fn _starts_with(&self, base: &Path) -> bool {
2559        iter_after(self.components(), base.components()).is_some()
2560    }
2561
2562    /// Determines whether `child` is a suffix of `self`.
2563    ///
2564    /// Only considers whole path components to match.
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```
2569    /// use std::path::Path;
2570    ///
2571    /// let path = Path::new("/etc/resolv.conf");
2572    ///
2573    /// assert!(path.ends_with("resolv.conf"));
2574    /// assert!(path.ends_with("etc/resolv.conf"));
2575    /// assert!(path.ends_with("/etc/resolv.conf"));
2576    ///
2577    /// assert!(!path.ends_with("/resolv.conf"));
2578    /// assert!(!path.ends_with("conf")); // use .extension() instead
2579    /// ```
2580    #[stable(feature = "rust1", since = "1.0.0")]
2581    #[must_use]
2582    pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2583        self._ends_with(child.as_ref())
2584    }
2585
2586    fn _ends_with(&self, child: &Path) -> bool {
2587        iter_after(self.components().rev(), child.components().rev()).is_some()
2588    }
2589
2590    /// Extracts the stem (non-extension) portion of [`self.file_name`].
2591    ///
2592    /// [`self.file_name`]: Path::file_name
2593    ///
2594    /// The stem is:
2595    ///
2596    /// * [`None`], if there is no file name;
2597    /// * The entire file name if there is no embedded `.`;
2598    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2599    /// * Otherwise, the portion of the file name before the final `.`
2600    ///
2601    /// # Examples
2602    ///
2603    /// ```
2604    /// use std::path::Path;
2605    ///
2606    /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2607    /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2608    /// ```
2609    ///
2610    /// # See Also
2611    /// This method is similar to [`Path::file_prefix`], which extracts the portion of the file name
2612    /// before the *first* `.`
2613    ///
2614    /// [`Path::file_prefix`]: Path::file_prefix
2615    ///
2616    #[stable(feature = "rust1", since = "1.0.0")]
2617    #[must_use]
2618    pub fn file_stem(&self) -> Option<&OsStr> {
2619        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.or(after))
2620    }
2621
2622    /// Extracts the prefix of [`self.file_name`].
2623    ///
2624    /// The prefix is:
2625    ///
2626    /// * [`None`], if there is no file name;
2627    /// * The entire file name if there is no embedded `.`;
2628    /// * The portion of the file name before the first non-beginning `.`;
2629    /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2630    /// * The portion of the file name before the second `.` if the file name begins with `.`
2631    ///
2632    /// [`self.file_name`]: Path::file_name
2633    ///
2634    /// # Examples
2635    ///
2636    /// ```
2637    /// # #![feature(path_file_prefix)]
2638    /// use std::path::Path;
2639    ///
2640    /// assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
2641    /// assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
2642    /// ```
2643    ///
2644    /// # See Also
2645    /// This method is similar to [`Path::file_stem`], which extracts the portion of the file name
2646    /// before the *last* `.`
2647    ///
2648    /// [`Path::file_stem`]: Path::file_stem
2649    ///
2650    #[unstable(feature = "path_file_prefix", issue = "86319")]
2651    #[must_use]
2652    pub fn file_prefix(&self) -> Option<&OsStr> {
2653        self.file_name().map(split_file_at_dot).and_then(|(before, _after)| Some(before))
2654    }
2655
2656    /// Extracts the extension (without the leading dot) of [`self.file_name`], if possible.
2657    ///
2658    /// The extension is:
2659    ///
2660    /// * [`None`], if there is no file name;
2661    /// * [`None`], if there is no embedded `.`;
2662    /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2663    /// * Otherwise, the portion of the file name after the final `.`
2664    ///
2665    /// [`self.file_name`]: Path::file_name
2666    ///
2667    /// # Examples
2668    ///
2669    /// ```
2670    /// use std::path::Path;
2671    ///
2672    /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2673    /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2674    /// ```
2675    #[stable(feature = "rust1", since = "1.0.0")]
2676    #[must_use]
2677    pub fn extension(&self) -> Option<&OsStr> {
2678        self.file_name().map(rsplit_file_at_dot).and_then(|(before, after)| before.and(after))
2679    }
2680
2681    /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2682    ///
2683    /// If `path` is absolute, it replaces the current path.
2684    ///
2685    /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2686    ///
2687    /// # Examples
2688    ///
2689    /// ```
2690    /// use std::path::{Path, PathBuf};
2691    ///
2692    /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2693    /// assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
2694    /// ```
2695    #[stable(feature = "rust1", since = "1.0.0")]
2696    #[must_use]
2697    pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2698        self._join(path.as_ref())
2699    }
2700
2701    fn _join(&self, path: &Path) -> PathBuf {
2702        let mut buf = self.to_path_buf();
2703        buf.push(path);
2704        buf
2705    }
2706
2707    /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2708    ///
2709    /// See [`PathBuf::set_file_name`] for more details.
2710    ///
2711    /// # Examples
2712    ///
2713    /// ```
2714    /// use std::path::{Path, PathBuf};
2715    ///
2716    /// let path = Path::new("/tmp/foo.png");
2717    /// assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
2718    /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2719    ///
2720    /// let path = Path::new("/tmp");
2721    /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2722    /// ```
2723    #[stable(feature = "rust1", since = "1.0.0")]
2724    #[must_use]
2725    pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2726        self._with_file_name(file_name.as_ref())
2727    }
2728
2729    fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2730        let mut buf = self.to_path_buf();
2731        buf.set_file_name(file_name);
2732        buf
2733    }
2734
2735    /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2736    ///
2737    /// See [`PathBuf::set_extension`] for more details.
2738    ///
2739    /// # Examples
2740    ///
2741    /// ```
2742    /// use std::path::{Path, PathBuf};
2743    ///
2744    /// let path = Path::new("foo.rs");
2745    /// assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
2746    ///
2747    /// let path = Path::new("foo.tar.gz");
2748    /// assert_eq!(path.with_extension(""), PathBuf::from("foo.tar"));
2749    /// assert_eq!(path.with_extension("xz"), PathBuf::from("foo.tar.xz"));
2750    /// assert_eq!(path.with_extension("").with_extension("txt"), PathBuf::from("foo.txt"));
2751    /// ```
2752    #[stable(feature = "rust1", since = "1.0.0")]
2753    pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2754        self._with_extension(extension.as_ref())
2755    }
2756
2757    fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2758        let self_len = self.as_os_str().len();
2759        let self_bytes = self.as_os_str().as_encoded_bytes();
2760
2761        let (new_capacity, slice_to_copy) = match self.extension() {
2762            None => {
2763                // Enough capacity for the extension and the dot
2764                let capacity = self_len + extension.len() + 1;
2765                let whole_path = self_bytes;
2766                (capacity, whole_path)
2767            }
2768            Some(previous_extension) => {
2769                let capacity = self_len + extension.len() - previous_extension.len();
2770                let path_till_dot = &self_bytes[..self_len - previous_extension.len()];
2771                (capacity, path_till_dot)
2772            }
2773        };
2774
2775        let mut new_path = PathBuf::with_capacity(new_capacity);
2776        // SAFETY: The path is empty, so cannot have surrogate halves.
2777        unsafe { new_path.inner.extend_from_slice_unchecked(slice_to_copy) };
2778        new_path.set_extension(extension);
2779        new_path
2780    }
2781
2782    /// Creates an owned [`PathBuf`] like `self` but with the extension added.
2783    ///
2784    /// See [`PathBuf::add_extension`] for more details.
2785    ///
2786    /// # Examples
2787    ///
2788    /// ```
2789    /// #![feature(path_add_extension)]
2790    ///
2791    /// use std::path::{Path, PathBuf};
2792    ///
2793    /// let path = Path::new("foo.rs");
2794    /// assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
2795    ///
2796    /// let path = Path::new("foo.tar.gz");
2797    /// assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
2798    /// assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
2799    /// assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
2800    /// ```
2801    #[unstable(feature = "path_add_extension", issue = "127292")]
2802    pub fn with_added_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2803        let mut new_path = self.to_path_buf();
2804        new_path.add_extension(extension);
2805        new_path
2806    }
2807
2808    /// Produces an iterator over the [`Component`]s of the path.
2809    ///
2810    /// When parsing the path, there is a small amount of normalization:
2811    ///
2812    /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2813    ///   `a` and `b` as components.
2814    ///
2815    /// * Occurrences of `.` are normalized away, except if they are at the
2816    ///   beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2817    ///   `a/b` all have `a` and `b` as components, but `./a/b` starts with
2818    ///   an additional [`CurDir`] component.
2819    ///
2820    /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2821    ///
2822    /// Note that no other normalization takes place; in particular, `a/c`
2823    /// and `a/b/../c` are distinct, to account for the possibility that `b`
2824    /// is a symbolic link (so its parent isn't `a`).
2825    ///
2826    /// # Examples
2827    ///
2828    /// ```
2829    /// use std::path::{Path, Component};
2830    /// use std::ffi::OsStr;
2831    ///
2832    /// let mut components = Path::new("/tmp/foo.txt").components();
2833    ///
2834    /// assert_eq!(components.next(), Some(Component::RootDir));
2835    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2836    /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2837    /// assert_eq!(components.next(), None)
2838    /// ```
2839    ///
2840    /// [`CurDir`]: Component::CurDir
2841    #[stable(feature = "rust1", since = "1.0.0")]
2842    pub fn components(&self) -> Components<'_> {
2843        let prefix = parse_prefix(self.as_os_str());
2844        Components {
2845            path: self.as_u8_slice(),
2846            prefix,
2847            has_physical_root: has_physical_root(self.as_u8_slice(), prefix),
2848            front: State::Prefix,
2849            back: State::Body,
2850        }
2851    }
2852
2853    /// Produces an iterator over the path's components viewed as [`OsStr`]
2854    /// slices.
2855    ///
2856    /// For more information about the particulars of how the path is separated
2857    /// into components, see [`components`].
2858    ///
2859    /// [`components`]: Path::components
2860    ///
2861    /// # Examples
2862    ///
2863    /// ```
2864    /// use std::path::{self, Path};
2865    /// use std::ffi::OsStr;
2866    ///
2867    /// let mut it = Path::new("/tmp/foo.txt").iter();
2868    /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2869    /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2870    /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2871    /// assert_eq!(it.next(), None)
2872    /// ```
2873    #[stable(feature = "rust1", since = "1.0.0")]
2874    #[inline]
2875    pub fn iter(&self) -> Iter<'_> {
2876        Iter { inner: self.components() }
2877    }
2878
2879    /// Returns an object that implements [`Display`] for safely printing paths
2880    /// that may contain non-Unicode data. This may perform lossy conversion,
2881    /// depending on the platform.  If you would like an implementation which
2882    /// escapes the path please use [`Debug`] instead.
2883    ///
2884    /// [`Display`]: fmt::Display
2885    /// [`Debug`]: fmt::Debug
2886    ///
2887    /// # Examples
2888    ///
2889    /// ```
2890    /// use std::path::Path;
2891    ///
2892    /// let path = Path::new("/tmp/foo.rs");
2893    ///
2894    /// println!("{}", path.display());
2895    /// ```
2896    #[stable(feature = "rust1", since = "1.0.0")]
2897    #[must_use = "this does not display the path, \
2898                  it returns an object that can be displayed"]
2899    #[inline]
2900    pub fn display(&self) -> Display<'_> {
2901        Display { inner: self.inner.display() }
2902    }
2903
2904    /// Queries the file system to get information about a file, directory, etc.
2905    ///
2906    /// This function will traverse symbolic links to query information about the
2907    /// destination file.
2908    ///
2909    /// This is an alias to [`fs::metadata`].
2910    ///
2911    /// # Examples
2912    ///
2913    /// ```no_run
2914    /// use std::path::Path;
2915    ///
2916    /// let path = Path::new("/Minas/tirith");
2917    /// let metadata = path.metadata().expect("metadata call failed");
2918    /// println!("{:?}", metadata.file_type());
2919    /// ```
2920    #[stable(feature = "path_ext", since = "1.5.0")]
2921    #[inline]
2922    pub fn metadata(&self) -> io::Result<fs::Metadata> {
2923        fs::metadata(self)
2924    }
2925
2926    /// Queries the metadata about a file without following symlinks.
2927    ///
2928    /// This is an alias to [`fs::symlink_metadata`].
2929    ///
2930    /// # Examples
2931    ///
2932    /// ```no_run
2933    /// use std::path::Path;
2934    ///
2935    /// let path = Path::new("/Minas/tirith");
2936    /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2937    /// println!("{:?}", metadata.file_type());
2938    /// ```
2939    #[stable(feature = "path_ext", since = "1.5.0")]
2940    #[inline]
2941    pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
2942        fs::symlink_metadata(self)
2943    }
2944
2945    /// Returns the canonical, absolute form of the path with all intermediate
2946    /// components normalized and symbolic links resolved.
2947    ///
2948    /// This is an alias to [`fs::canonicalize`].
2949    ///
2950    /// # Examples
2951    ///
2952    /// ```no_run
2953    /// use std::path::{Path, PathBuf};
2954    ///
2955    /// let path = Path::new("/foo/test/../test/bar.rs");
2956    /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
2957    /// ```
2958    #[stable(feature = "path_ext", since = "1.5.0")]
2959    #[inline]
2960    pub fn canonicalize(&self) -> io::Result<PathBuf> {
2961        fs::canonicalize(self)
2962    }
2963
2964    /// Reads a symbolic link, returning the file that the link points to.
2965    ///
2966    /// This is an alias to [`fs::read_link`].
2967    ///
2968    /// # Examples
2969    ///
2970    /// ```no_run
2971    /// use std::path::Path;
2972    ///
2973    /// let path = Path::new("/laputa/sky_castle.rs");
2974    /// let path_link = path.read_link().expect("read_link call failed");
2975    /// ```
2976    #[stable(feature = "path_ext", since = "1.5.0")]
2977    #[inline]
2978    pub fn read_link(&self) -> io::Result<PathBuf> {
2979        fs::read_link(self)
2980    }
2981
2982    /// Returns an iterator over the entries within a directory.
2983    ///
2984    /// The iterator will yield instances of <code>[io::Result]<[fs::DirEntry]></code>. New
2985    /// errors may be encountered after an iterator is initially constructed.
2986    ///
2987    /// This is an alias to [`fs::read_dir`].
2988    ///
2989    /// # Examples
2990    ///
2991    /// ```no_run
2992    /// use std::path::Path;
2993    ///
2994    /// let path = Path::new("/laputa");
2995    /// for entry in path.read_dir().expect("read_dir call failed") {
2996    ///     if let Ok(entry) = entry {
2997    ///         println!("{:?}", entry.path());
2998    ///     }
2999    /// }
3000    /// ```
3001    #[stable(feature = "path_ext", since = "1.5.0")]
3002    #[inline]
3003    pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
3004        fs::read_dir(self)
3005    }
3006
3007    /// Returns `true` if the path points at an existing entity.
3008    ///
3009    /// Warning: this method may be error-prone, consider using [`try_exists()`] instead!
3010    /// It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
3011    ///
3012    /// This function will traverse symbolic links to query information about the
3013    /// destination file.
3014    ///
3015    /// If you cannot access the metadata of the file, e.g. because of a
3016    /// permission error or broken symbolic links, this will return `false`.
3017    ///
3018    /// # Examples
3019    ///
3020    /// ```no_run
3021    /// use std::path::Path;
3022    /// assert!(!Path::new("does_not_exist.txt").exists());
3023    /// ```
3024    ///
3025    /// # See Also
3026    ///
3027    /// This is a convenience function that coerces errors to false. If you want to
3028    /// check errors, call [`Path::try_exists`].
3029    ///
3030    /// [`try_exists()`]: Self::try_exists
3031    #[stable(feature = "path_ext", since = "1.5.0")]
3032    #[must_use]
3033    #[inline]
3034    pub fn exists(&self) -> bool {
3035        fs::metadata(self).is_ok()
3036    }
3037
3038    /// Returns `Ok(true)` if the path points at an existing entity.
3039    ///
3040    /// This function will traverse symbolic links to query information about the
3041    /// destination file. In case of broken symbolic links this will return `Ok(false)`.
3042    ///
3043    /// [`Path::exists()`] only checks whether or not a path was both found and readable. By
3044    /// contrast, `try_exists` will return `Ok(true)` or `Ok(false)`, respectively, if the path
3045    /// was _verified_ to exist or not exist. If its existence can neither be confirmed nor
3046    /// denied, it will propagate an `Err(_)` instead. This can be the case if e.g. listing
3047    /// permission is denied on one of the parent directories.
3048    ///
3049    /// Note that while this avoids some pitfalls of the `exists()` method, it still can not
3050    /// prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
3051    /// where those bugs are not an issue.
3052    ///
3053    /// This is an alias for [`std::fs::exists`](crate::fs::exists).
3054    ///
3055    /// # Examples
3056    ///
3057    /// ```no_run
3058    /// use std::path::Path;
3059    /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
3060    /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
3061    /// ```
3062    ///
3063    /// [`exists()`]: Self::exists
3064    #[stable(feature = "path_try_exists", since = "1.63.0")]
3065    #[inline]
3066    pub fn try_exists(&self) -> io::Result<bool> {
3067        fs::exists(self)
3068    }
3069
3070    /// Returns `true` if the path exists on disk and is pointing at a regular file.
3071    ///
3072    /// This function will traverse symbolic links to query information about the
3073    /// destination file.
3074    ///
3075    /// If you cannot access the metadata of the file, e.g. because of a
3076    /// permission error or broken symbolic links, this will return `false`.
3077    ///
3078    /// # Examples
3079    ///
3080    /// ```no_run
3081    /// use std::path::Path;
3082    /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
3083    /// assert_eq!(Path::new("a_file.txt").is_file(), true);
3084    /// ```
3085    ///
3086    /// # See Also
3087    ///
3088    /// This is a convenience function that coerces errors to false. If you want to
3089    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3090    /// [`fs::Metadata::is_file`] if it was [`Ok`].
3091    ///
3092    /// When the goal is simply to read from (or write to) the source, the most
3093    /// reliable way to test the source can be read (or written to) is to open
3094    /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
3095    /// a Unix-like system for example. See [`fs::File::open`] or
3096    /// [`fs::OpenOptions::open`] for more information.
3097    #[stable(feature = "path_ext", since = "1.5.0")]
3098    #[must_use]
3099    pub fn is_file(&self) -> bool {
3100        fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
3101    }
3102
3103    /// Returns `true` if the path exists on disk and is pointing at a directory.
3104    ///
3105    /// This function will traverse symbolic links to query information about the
3106    /// destination file.
3107    ///
3108    /// If you cannot access the metadata of the file, e.g. because of a
3109    /// permission error or broken symbolic links, this will return `false`.
3110    ///
3111    /// # Examples
3112    ///
3113    /// ```no_run
3114    /// use std::path::Path;
3115    /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
3116    /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
3117    /// ```
3118    ///
3119    /// # See Also
3120    ///
3121    /// This is a convenience function that coerces errors to false. If you want to
3122    /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
3123    /// [`fs::Metadata::is_dir`] if it was [`Ok`].
3124    #[stable(feature = "path_ext", since = "1.5.0")]
3125    #[must_use]
3126    pub fn is_dir(&self) -> bool {
3127        fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
3128    }
3129
3130    /// Returns `true` if the path exists on disk and is pointing at a symbolic link.
3131    ///
3132    /// This function will not traverse symbolic links.
3133    /// In case of a broken symbolic link this will also return true.
3134    ///
3135    /// If you cannot access the directory containing the file, e.g., because of a
3136    /// permission error, this will return false.
3137    ///
3138    /// # Examples
3139    ///
3140    #[cfg_attr(unix, doc = "```no_run")]
3141    #[cfg_attr(not(unix), doc = "```ignore")]
3142    /// use std::path::Path;
3143    /// use std::os::unix::fs::symlink;
3144    ///
3145    /// let link_path = Path::new("link");
3146    /// symlink("/origin_does_not_exist/", link_path).unwrap();
3147    /// assert_eq!(link_path.is_symlink(), true);
3148    /// assert_eq!(link_path.exists(), false);
3149    /// ```
3150    ///
3151    /// # See Also
3152    ///
3153    /// This is a convenience function that coerces errors to false. If you want to
3154    /// check errors, call [`fs::symlink_metadata`] and handle its [`Result`]. Then call
3155    /// [`fs::Metadata::is_symlink`] if it was [`Ok`].
3156    #[must_use]
3157    #[stable(feature = "is_symlink", since = "1.58.0")]
3158    pub fn is_symlink(&self) -> bool {
3159        fs::symlink_metadata(self).map(|m| m.is_symlink()).unwrap_or(false)
3160    }
3161
3162    /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
3163    /// allocating.
3164    #[stable(feature = "into_boxed_path", since = "1.20.0")]
3165    #[must_use = "`self` will be dropped if the result is not used"]
3166    pub fn into_path_buf(self: Box<Path>) -> PathBuf {
3167        let rw = Box::into_raw(self) as *mut OsStr;
3168        let inner = unsafe { Box::from_raw(rw) };
3169        PathBuf { inner: OsString::from(inner) }
3170    }
3171}
3172
3173#[unstable(feature = "clone_to_uninit", issue = "126799")]
3174unsafe impl CloneToUninit for Path {
3175    #[inline]
3176    #[cfg_attr(debug_assertions, track_caller)]
3177    unsafe fn clone_to_uninit(&self, dst: *mut u8) {
3178        // SAFETY: Path is just a transparent wrapper around OsStr
3179        unsafe { self.inner.clone_to_uninit(dst) }
3180    }
3181}
3182
3183#[stable(feature = "rust1", since = "1.0.0")]
3184impl AsRef<OsStr> for Path {
3185    #[inline]
3186    fn as_ref(&self) -> &OsStr {
3187        &self.inner
3188    }
3189}
3190
3191#[stable(feature = "rust1", since = "1.0.0")]
3192impl fmt::Debug for Path {
3193    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
3194        fmt::Debug::fmt(&self.inner, formatter)
3195    }
3196}
3197
3198/// Helper struct for safely printing paths with [`format!`] and `{}`.
3199///
3200/// A [`Path`] might contain non-Unicode data. This `struct` implements the
3201/// [`Display`] trait in a way that mitigates that. It is created by the
3202/// [`display`](Path::display) method on [`Path`]. This may perform lossy
3203/// conversion, depending on the platform. If you would like an implementation
3204/// which escapes the path please use [`Debug`] instead.
3205///
3206/// # Examples
3207///
3208/// ```
3209/// use std::path::Path;
3210///
3211/// let path = Path::new("/tmp/foo.rs");
3212///
3213/// println!("{}", path.display());
3214/// ```
3215///
3216/// [`Display`]: fmt::Display
3217/// [`format!`]: crate::format
3218#[stable(feature = "rust1", since = "1.0.0")]
3219pub struct Display<'a> {
3220    inner: os_str::Display<'a>,
3221}
3222
3223#[stable(feature = "rust1", since = "1.0.0")]
3224impl fmt::Debug for Display<'_> {
3225    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3226        fmt::Debug::fmt(&self.inner, f)
3227    }
3228}
3229
3230#[stable(feature = "rust1", since = "1.0.0")]
3231impl fmt::Display for Display<'_> {
3232    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3233        fmt::Display::fmt(&self.inner, f)
3234    }
3235}
3236
3237#[stable(feature = "rust1", since = "1.0.0")]
3238impl PartialEq for Path {
3239    #[inline]
3240    fn eq(&self, other: &Path) -> bool {
3241        self.components() == other.components()
3242    }
3243}
3244
3245#[stable(feature = "rust1", since = "1.0.0")]
3246impl Hash for Path {
3247    fn hash<H: Hasher>(&self, h: &mut H) {
3248        let bytes = self.as_u8_slice();
3249        let (prefix_len, verbatim) = match parse_prefix(&self.inner) {
3250            Some(prefix) => {
3251                prefix.hash(h);
3252                (prefix.len(), prefix.is_verbatim())
3253            }
3254            None => (0, false),
3255        };
3256        let bytes = &bytes[prefix_len..];
3257
3258        let mut component_start = 0;
3259        // track some extra state to avoid prefix collisions.
3260        // ["foo", "bar"] and ["foobar"], will have the same payload bytes
3261        // but result in different chunk_bits
3262        let mut chunk_bits: usize = 0;
3263
3264        for i in 0..bytes.len() {
3265            let is_sep = if verbatim { is_verbatim_sep(bytes[i]) } else { is_sep_byte(bytes[i]) };
3266            if is_sep {
3267                if i > component_start {
3268                    let to_hash = &bytes[component_start..i];
3269                    chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3270                    chunk_bits = chunk_bits.rotate_right(2);
3271                    h.write(to_hash);
3272                }
3273
3274                // skip over separator and optionally a following CurDir item
3275                // since components() would normalize these away.
3276                component_start = i + 1;
3277
3278                let tail = &bytes[component_start..];
3279
3280                if !verbatim {
3281                    component_start += match tail {
3282                        [b'.'] => 1,
3283                        [b'.', sep, ..] if is_sep_byte(*sep) => 1,
3284                        _ => 0,
3285                    };
3286                }
3287            }
3288        }
3289
3290        if component_start < bytes.len() {
3291            let to_hash = &bytes[component_start..];
3292            chunk_bits = chunk_bits.wrapping_add(to_hash.len());
3293            chunk_bits = chunk_bits.rotate_right(2);
3294            h.write(to_hash);
3295        }
3296
3297        h.write_usize(chunk_bits);
3298    }
3299}
3300
3301#[stable(feature = "rust1", since = "1.0.0")]
3302impl Eq for Path {}
3303
3304#[stable(feature = "rust1", since = "1.0.0")]
3305impl PartialOrd for Path {
3306    #[inline]
3307    fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
3308        Some(compare_components(self.components(), other.components()))
3309    }
3310}
3311
3312#[stable(feature = "rust1", since = "1.0.0")]
3313impl Ord for Path {
3314    #[inline]
3315    fn cmp(&self, other: &Path) -> cmp::Ordering {
3316        compare_components(self.components(), other.components())
3317    }
3318}
3319
3320#[stable(feature = "rust1", since = "1.0.0")]
3321impl AsRef<Path> for Path {
3322    #[inline]
3323    fn as_ref(&self) -> &Path {
3324        self
3325    }
3326}
3327
3328#[stable(feature = "rust1", since = "1.0.0")]
3329impl AsRef<Path> for OsStr {
3330    #[inline]
3331    fn as_ref(&self) -> &Path {
3332        Path::new(self)
3333    }
3334}
3335
3336#[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
3337impl AsRef<Path> for Cow<'_, OsStr> {
3338    #[inline]
3339    fn as_ref(&self) -> &Path {
3340        Path::new(self)
3341    }
3342}
3343
3344#[stable(feature = "rust1", since = "1.0.0")]
3345impl AsRef<Path> for OsString {
3346    #[inline]
3347    fn as_ref(&self) -> &Path {
3348        Path::new(self)
3349    }
3350}
3351
3352#[stable(feature = "rust1", since = "1.0.0")]
3353impl AsRef<Path> for str {
3354    #[inline]
3355    fn as_ref(&self) -> &Path {
3356        Path::new(self)
3357    }
3358}
3359
3360#[stable(feature = "rust1", since = "1.0.0")]
3361impl AsRef<Path> for String {
3362    #[inline]
3363    fn as_ref(&self) -> &Path {
3364        Path::new(self)
3365    }
3366}
3367
3368#[stable(feature = "rust1", since = "1.0.0")]
3369impl AsRef<Path> for PathBuf {
3370    #[inline]
3371    fn as_ref(&self) -> &Path {
3372        self
3373    }
3374}
3375
3376#[stable(feature = "path_into_iter", since = "1.6.0")]
3377impl<'a> IntoIterator for &'a PathBuf {
3378    type Item = &'a OsStr;
3379    type IntoIter = Iter<'a>;
3380    #[inline]
3381    fn into_iter(self) -> Iter<'a> {
3382        self.iter()
3383    }
3384}
3385
3386#[stable(feature = "path_into_iter", since = "1.6.0")]
3387impl<'a> IntoIterator for &'a Path {
3388    type Item = &'a OsStr;
3389    type IntoIter = Iter<'a>;
3390    #[inline]
3391    fn into_iter(self) -> Iter<'a> {
3392        self.iter()
3393    }
3394}
3395
3396macro_rules! impl_cmp {
3397    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3398        #[stable(feature = "partialeq_path", since = "1.6.0")]
3399        impl<$($life),*> PartialEq<$rhs> for $lhs {
3400            #[inline]
3401            fn eq(&self, other: &$rhs) -> bool {
3402                <Path as PartialEq>::eq(self, other)
3403            }
3404        }
3405
3406        #[stable(feature = "partialeq_path", since = "1.6.0")]
3407        impl<$($life),*> PartialEq<$lhs> for $rhs {
3408            #[inline]
3409            fn eq(&self, other: &$lhs) -> bool {
3410                <Path as PartialEq>::eq(self, other)
3411            }
3412        }
3413
3414        #[stable(feature = "cmp_path", since = "1.8.0")]
3415        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3416            #[inline]
3417            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3418                <Path as PartialOrd>::partial_cmp(self, other)
3419            }
3420        }
3421
3422        #[stable(feature = "cmp_path", since = "1.8.0")]
3423        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3424            #[inline]
3425            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3426                <Path as PartialOrd>::partial_cmp(self, other)
3427            }
3428        }
3429    };
3430}
3431
3432impl_cmp!(<> PathBuf, Path);
3433impl_cmp!(<'a> PathBuf, &'a Path);
3434impl_cmp!(<'a> Cow<'a, Path>, Path);
3435impl_cmp!(<'a, 'b> Cow<'a, Path>, &'b Path);
3436impl_cmp!(<'a> Cow<'a, Path>, PathBuf);
3437
3438macro_rules! impl_cmp_os_str {
3439    (<$($life:lifetime),*> $lhs:ty, $rhs: ty) => {
3440        #[stable(feature = "cmp_path", since = "1.8.0")]
3441        impl<$($life),*> PartialEq<$rhs> for $lhs {
3442            #[inline]
3443            fn eq(&self, other: &$rhs) -> bool {
3444                <Path as PartialEq>::eq(self, other.as_ref())
3445            }
3446        }
3447
3448        #[stable(feature = "cmp_path", since = "1.8.0")]
3449        impl<$($life),*> PartialEq<$lhs> for $rhs {
3450            #[inline]
3451            fn eq(&self, other: &$lhs) -> bool {
3452                <Path as PartialEq>::eq(self.as_ref(), other)
3453            }
3454        }
3455
3456        #[stable(feature = "cmp_path", since = "1.8.0")]
3457        impl<$($life),*> PartialOrd<$rhs> for $lhs {
3458            #[inline]
3459            fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
3460                <Path as PartialOrd>::partial_cmp(self, other.as_ref())
3461            }
3462        }
3463
3464        #[stable(feature = "cmp_path", since = "1.8.0")]
3465        impl<$($life),*> PartialOrd<$lhs> for $rhs {
3466            #[inline]
3467            fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
3468                <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
3469            }
3470        }
3471    };
3472}
3473
3474impl_cmp_os_str!(<> PathBuf, OsStr);
3475impl_cmp_os_str!(<'a> PathBuf, &'a OsStr);
3476impl_cmp_os_str!(<'a> PathBuf, Cow<'a, OsStr>);
3477impl_cmp_os_str!(<> PathBuf, OsString);
3478impl_cmp_os_str!(<> Path, OsStr);
3479impl_cmp_os_str!(<'a> Path, &'a OsStr);
3480impl_cmp_os_str!(<'a> Path, Cow<'a, OsStr>);
3481impl_cmp_os_str!(<> Path, OsString);
3482impl_cmp_os_str!(<'a> &'a Path, OsStr);
3483impl_cmp_os_str!(<'a, 'b> &'a Path, Cow<'b, OsStr>);
3484impl_cmp_os_str!(<'a> &'a Path, OsString);
3485impl_cmp_os_str!(<'a> Cow<'a, Path>, OsStr);
3486impl_cmp_os_str!(<'a, 'b> Cow<'a, Path>, &'b OsStr);
3487impl_cmp_os_str!(<'a> Cow<'a, Path>, OsString);
3488
3489#[stable(since = "1.7.0", feature = "strip_prefix")]
3490impl fmt::Display for StripPrefixError {
3491    #[allow(deprecated, deprecated_in_future)]
3492    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3493        self.description().fmt(f)
3494    }
3495}
3496
3497#[stable(since = "1.7.0", feature = "strip_prefix")]
3498impl Error for StripPrefixError {
3499    #[allow(deprecated)]
3500    fn description(&self) -> &str {
3501        "prefix not found"
3502    }
3503}
3504
3505/// Makes the path absolute without accessing the filesystem.
3506///
3507/// If the path is relative, the current directory is used as the base directory.
3508/// All intermediate components will be resolved according to platform-specific
3509/// rules, but unlike [`canonicalize`][crate::fs::canonicalize], this does not
3510/// resolve symlinks and may succeed even if the path does not exist.
3511///
3512/// If the `path` is empty or getting the
3513/// [current directory][crate::env::current_dir] fails, then an error will be
3514/// returned.
3515///
3516/// # Platform-specific behavior
3517///
3518/// On POSIX platforms, the path is resolved using [POSIX semantics][posix-semantics],
3519/// except that it stops short of resolving symlinks. This means it will keep `..`
3520/// components and trailing slashes.
3521///
3522/// On Windows, for verbatim paths, this will simply return the path as given. For other
3523/// paths, this is currently equivalent to calling
3524/// [`GetFullPathNameW`][windows-path].
3525///
3526/// Note that these [may change in the future][changes].
3527///
3528/// # Errors
3529///
3530/// This function may return an error in the following situations:
3531///
3532/// * If `path` is syntactically invalid; in particular, if it is empty.
3533/// * If getting the [current directory][crate::env::current_dir] fails.
3534///
3535/// # Examples
3536///
3537/// ## POSIX paths
3538///
3539/// ```
3540/// # #[cfg(unix)]
3541/// fn main() -> std::io::Result<()> {
3542///     use std::path::{self, Path};
3543///
3544///     // Relative to absolute
3545///     let absolute = path::absolute("foo/./bar")?;
3546///     assert!(absolute.ends_with("foo/bar"));
3547///
3548///     // Absolute to absolute
3549///     let absolute = path::absolute("/foo//test/.././bar.rs")?;
3550///     assert_eq!(absolute, Path::new("/foo/test/../bar.rs"));
3551///     Ok(())
3552/// }
3553/// # #[cfg(not(unix))]
3554/// # fn main() {}
3555/// ```
3556///
3557/// ## Windows paths
3558///
3559/// ```
3560/// # #[cfg(windows)]
3561/// fn main() -> std::io::Result<()> {
3562///     use std::path::{self, Path};
3563///
3564///     // Relative to absolute
3565///     let absolute = path::absolute("foo/./bar")?;
3566///     assert!(absolute.ends_with(r"foo\bar"));
3567///
3568///     // Absolute to absolute
3569///     let absolute = path::absolute(r"C:\foo//test\..\./bar.rs")?;
3570///
3571///     assert_eq!(absolute, Path::new(r"C:\foo\bar.rs"));
3572///     Ok(())
3573/// }
3574/// # #[cfg(not(windows))]
3575/// # fn main() {}
3576/// ```
3577///
3578/// Note that this [may change in the future][changes].
3579///
3580/// [changes]: io#platform-specific-behavior
3581/// [posix-semantics]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_13
3582/// [windows-path]: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-getfullpathnamew
3583#[stable(feature = "absolute_path", since = "1.79.0")]
3584pub fn absolute<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
3585    let path = path.as_ref();
3586    if path.as_os_str().is_empty() {
3587        Err(io::const_error!(io::ErrorKind::InvalidInput, "cannot make an empty path absolute"))
3588    } else {
3589        sys::path::absolute(path)
3590    }
3591}