core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::{ascii, mem};
21
22pub mod pattern;
23
24mod lossy;
25#[unstable(feature = "str_from_raw_parts", issue = "119206")]
26pub use converts::{from_raw_parts, from_raw_parts_mut};
27#[stable(feature = "rust1", since = "1.0.0")]
28pub use converts::{from_utf8, from_utf8_unchecked};
29#[stable(feature = "str_mut_extras", since = "1.20.0")]
30pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
31#[stable(feature = "rust1", since = "1.0.0")]
32pub use error::{ParseBoolError, Utf8Error};
33#[stable(feature = "encode_utf16", since = "1.8.0")]
34pub use iter::EncodeUtf16;
35#[stable(feature = "rust1", since = "1.0.0")]
36#[allow(deprecated)]
37pub use iter::LinesAny;
38#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
39pub use iter::SplitAsciiWhitespace;
40#[stable(feature = "split_inclusive", since = "1.51.0")]
41pub use iter::SplitInclusive;
42#[stable(feature = "rust1", since = "1.0.0")]
43pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
44#[stable(feature = "str_escape", since = "1.34.0")]
45pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
46#[stable(feature = "str_match_indices", since = "1.5.0")]
47pub use iter::{MatchIndices, RMatchIndices};
48use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
49#[stable(feature = "str_matches", since = "1.2.0")]
50pub use iter::{Matches, RMatches};
51#[stable(feature = "rust1", since = "1.0.0")]
52pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
53#[stable(feature = "rust1", since = "1.0.0")]
54pub use iter::{RSplitN, SplitN};
55#[stable(feature = "utf8_chunks", since = "1.79.0")]
56pub use lossy::{Utf8Chunk, Utf8Chunks};
57#[stable(feature = "rust1", since = "1.0.0")]
58pub use traits::FromStr;
59#[unstable(feature = "str_internals", issue = "none")]
60pub use validations::{next_code_point, utf8_char_width};
61
62#[inline(never)]
63#[cold]
64#[track_caller]
65#[rustc_allow_const_fn_unstable(const_eval_select)]
66#[cfg(not(feature = "panic_immediate_abort"))]
67const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
68    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
69}
70
71#[cfg(feature = "panic_immediate_abort")]
72const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
73    slice_error_fail_ct(s, begin, end)
74}
75
76#[track_caller]
77const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
78    panic!("failed to slice string");
79}
80
81#[track_caller]
82fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
83    const MAX_DISPLAY_LENGTH: usize = 256;
84    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
85    let s_trunc = &s[..trunc_len];
86    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
87
88    // 1. out of bounds
89    if begin > s.len() || end > s.len() {
90        let oob_index = if begin > s.len() { begin } else { end };
91        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
92    }
93
94    // 2. begin <= end
95    assert!(
96        begin <= end,
97        "begin <= end ({} <= {}) when slicing `{}`{}",
98        begin,
99        end,
100        s_trunc,
101        ellipsis
102    );
103
104    // 3. character boundary
105    let index = if !s.is_char_boundary(begin) { begin } else { end };
106    // find the character
107    let char_start = s.floor_char_boundary(index);
108    // `char_start` must be less than len and a char boundary
109    let ch = s[char_start..].chars().next().unwrap();
110    let char_range = char_start..char_start + ch.len_utf8();
111    panic!(
112        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
113        index, ch, char_range, s_trunc, ellipsis
114    );
115}
116
117impl str {
118    /// Returns the length of `self`.
119    ///
120    /// This length is in bytes, not [`char`]s or graphemes. In other words,
121    /// it might not be what a human considers the length of the string.
122    ///
123    /// [`char`]: prim@char
124    ///
125    /// # Examples
126    ///
127    /// ```
128    /// let len = "foo".len();
129    /// assert_eq!(3, len);
130    ///
131    /// assert_eq!("ƒoo".len(), 4); // fancy f!
132    /// assert_eq!("ƒoo".chars().count(), 3);
133    /// ```
134    #[stable(feature = "rust1", since = "1.0.0")]
135    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
136    #[rustc_diagnostic_item = "str_len"]
137    #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
138    #[must_use]
139    #[inline]
140    pub const fn len(&self) -> usize {
141        self.as_bytes().len()
142    }
143
144    /// Returns `true` if `self` has a length of zero bytes.
145    ///
146    /// # Examples
147    ///
148    /// ```
149    /// let s = "";
150    /// assert!(s.is_empty());
151    ///
152    /// let s = "not empty";
153    /// assert!(!s.is_empty());
154    /// ```
155    #[stable(feature = "rust1", since = "1.0.0")]
156    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
157    #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
158    #[must_use]
159    #[inline]
160    pub const fn is_empty(&self) -> bool {
161        self.len() == 0
162    }
163
164    /// Converts a slice of bytes to a string slice.
165    ///
166    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
167    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
168    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
169    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
170    /// UTF-8, and then does the conversion.
171    ///
172    /// [`&str`]: str
173    /// [byteslice]: prim@slice
174    ///
175    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
176    /// incur the overhead of the validity check, there is an unsafe version of
177    /// this function, [`from_utf8_unchecked`], which has the same
178    /// behavior but skips the check.
179    ///
180    /// If you need a `String` instead of a `&str`, consider
181    /// [`String::from_utf8`][string].
182    ///
183    /// [string]: ../std/string/struct.String.html#method.from_utf8
184    ///
185    /// Because you can stack-allocate a `[u8; N]`, and you can take a
186    /// [`&[u8]`][byteslice] of it, this function is one way to have a
187    /// stack-allocated string. There is an example of this in the
188    /// examples section below.
189    ///
190    /// [byteslice]: slice
191    ///
192    /// # Errors
193    ///
194    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
195    /// provided slice is not UTF-8.
196    ///
197    /// # Examples
198    ///
199    /// Basic usage:
200    ///
201    /// ```
202    /// // some bytes, in a vector
203    /// let sparkle_heart = vec![240, 159, 146, 150];
204    ///
205    /// // We can use the ? (try) operator to check if the bytes are valid
206    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
207    ///
208    /// assert_eq!("💖", sparkle_heart);
209    /// # Ok::<_, std::str::Utf8Error>(())
210    /// ```
211    ///
212    /// Incorrect bytes:
213    ///
214    /// ```
215    /// // some invalid bytes, in a vector
216    /// let sparkle_heart = vec![0, 159, 146, 150];
217    ///
218    /// assert!(str::from_utf8(&sparkle_heart).is_err());
219    /// ```
220    ///
221    /// See the docs for [`Utf8Error`] for more details on the kinds of
222    /// errors that can be returned.
223    ///
224    /// A "stack allocated string":
225    ///
226    /// ```
227    /// // some bytes, in a stack-allocated array
228    /// let sparkle_heart = [240, 159, 146, 150];
229    ///
230    /// // We know these bytes are valid, so just use `unwrap()`.
231    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
232    ///
233    /// assert_eq!("💖", sparkle_heart);
234    /// ```
235    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
236    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
238    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
239        converts::from_utf8(v)
240    }
241
242    /// Converts a mutable slice of bytes to a mutable string slice.
243    ///
244    /// # Examples
245    ///
246    /// Basic usage:
247    ///
248    /// ```
249    /// // "Hello, Rust!" as a mutable vector
250    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
251    ///
252    /// // As we know these bytes are valid, we can use `unwrap()`
253    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
254    ///
255    /// assert_eq!("Hello, Rust!", outstr);
256    /// ```
257    ///
258    /// Incorrect bytes:
259    ///
260    /// ```
261    /// // Some invalid bytes in a mutable vector
262    /// let mut invalid = vec![128, 223];
263    ///
264    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
265    /// ```
266    /// See the docs for [`Utf8Error`] for more details on the kinds of
267    /// errors that can be returned.
268    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
269    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
270    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
271    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
272        converts::from_utf8_mut(v)
273    }
274
275    /// Converts a slice of bytes to a string slice without checking
276    /// that the string contains valid UTF-8.
277    ///
278    /// See the safe version, [`from_utf8`], for more information.
279    ///
280    /// # Safety
281    ///
282    /// The bytes passed in must be valid UTF-8.
283    ///
284    /// # Examples
285    ///
286    /// Basic usage:
287    ///
288    /// ```
289    /// // some bytes, in a vector
290    /// let sparkle_heart = vec![240, 159, 146, 150];
291    ///
292    /// let sparkle_heart = unsafe {
293    ///     str::from_utf8_unchecked(&sparkle_heart)
294    /// };
295    ///
296    /// assert_eq!("💖", sparkle_heart);
297    /// ```
298    #[inline]
299    #[must_use]
300    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
301    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
303    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
304        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
305        unsafe { converts::from_utf8_unchecked(v) }
306    }
307
308    /// Converts a slice of bytes to a string slice without checking
309    /// that the string contains valid UTF-8; mutable version.
310    ///
311    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
312    ///
313    /// # Examples
314    ///
315    /// Basic usage:
316    ///
317    /// ```
318    /// let mut heart = vec![240, 159, 146, 150];
319    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
320    ///
321    /// assert_eq!("💖", heart);
322    /// ```
323    #[inline]
324    #[must_use]
325    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
326    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
328    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
329        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
330        unsafe { converts::from_utf8_unchecked_mut(v) }
331    }
332
333    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
334    /// sequence or the end of the string.
335    ///
336    /// The start and end of the string (when `index == self.len()`) are
337    /// considered to be boundaries.
338    ///
339    /// Returns `false` if `index` is greater than `self.len()`.
340    ///
341    /// # Examples
342    ///
343    /// ```
344    /// let s = "Löwe 老虎 Léopard";
345    /// assert!(s.is_char_boundary(0));
346    /// // start of `老`
347    /// assert!(s.is_char_boundary(6));
348    /// assert!(s.is_char_boundary(s.len()));
349    ///
350    /// // second byte of `ö`
351    /// assert!(!s.is_char_boundary(2));
352    ///
353    /// // third byte of `老`
354    /// assert!(!s.is_char_boundary(8));
355    /// ```
356    #[must_use]
357    #[stable(feature = "is_char_boundary", since = "1.9.0")]
358    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
359    #[inline]
360    pub const fn is_char_boundary(&self, index: usize) -> bool {
361        // 0 is always ok.
362        // Test for 0 explicitly so that it can optimize out the check
363        // easily and skip reading string data for that case.
364        // Note that optimizing `self.get(..index)` relies on this.
365        if index == 0 {
366            return true;
367        }
368
369        if index >= self.len() {
370            // For `true` we have two options:
371            //
372            // - index == self.len()
373            //   Empty strings are valid, so return true
374            // - index > self.len()
375            //   In this case return false
376            //
377            // The check is placed exactly here, because it improves generated
378            // code on higher opt-levels. See PR #84751 for more details.
379            index == self.len()
380        } else {
381            self.as_bytes()[index].is_utf8_char_boundary()
382        }
383    }
384
385    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
386    ///
387    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
388    /// exceed a given number of bytes. Note that this is done purely at the character level
389    /// and can still visually split graphemes, even though the underlying characters aren't
390    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
391    /// includes 🧑 (person) instead.
392    ///
393    /// [`is_char_boundary(x)`]: Self::is_char_boundary
394    ///
395    /// # Examples
396    ///
397    /// ```
398    /// #![feature(round_char_boundary)]
399    /// let s = "❤️🧡💛💚💙💜";
400    /// assert_eq!(s.len(), 26);
401    /// assert!(!s.is_char_boundary(13));
402    ///
403    /// let closest = s.floor_char_boundary(13);
404    /// assert_eq!(closest, 10);
405    /// assert_eq!(&s[..closest], "❤️🧡");
406    /// ```
407    #[unstable(feature = "round_char_boundary", issue = "93743")]
408    #[inline]
409    pub fn floor_char_boundary(&self, index: usize) -> usize {
410        if index >= self.len() {
411            self.len()
412        } else {
413            let lower_bound = index.saturating_sub(3);
414            let new_index = self.as_bytes()[lower_bound..=index]
415                .iter()
416                .rposition(|b| b.is_utf8_char_boundary());
417
418            // SAFETY: we know that the character boundary will be within four bytes
419            unsafe { lower_bound + new_index.unwrap_unchecked() }
420        }
421    }
422
423    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
424    ///
425    /// If `index` is greater than the length of the string, this returns the length of the string.
426    ///
427    /// This method is the natural complement to [`floor_char_boundary`]. See that method
428    /// for more details.
429    ///
430    /// [`floor_char_boundary`]: str::floor_char_boundary
431    /// [`is_char_boundary(x)`]: Self::is_char_boundary
432    ///
433    /// # Examples
434    ///
435    /// ```
436    /// #![feature(round_char_boundary)]
437    /// let s = "❤️🧡💛💚💙💜";
438    /// assert_eq!(s.len(), 26);
439    /// assert!(!s.is_char_boundary(13));
440    ///
441    /// let closest = s.ceil_char_boundary(13);
442    /// assert_eq!(closest, 14);
443    /// assert_eq!(&s[..closest], "❤️🧡💛");
444    /// ```
445    #[unstable(feature = "round_char_boundary", issue = "93743")]
446    #[inline]
447    pub fn ceil_char_boundary(&self, index: usize) -> usize {
448        if index > self.len() {
449            self.len()
450        } else {
451            let upper_bound = Ord::min(index + 4, self.len());
452            self.as_bytes()[index..upper_bound]
453                .iter()
454                .position(|b| b.is_utf8_char_boundary())
455                .map_or(upper_bound, |pos| pos + index)
456        }
457    }
458
459    /// Converts a string slice to a byte slice. To convert the byte slice back
460    /// into a string slice, use the [`from_utf8`] function.
461    ///
462    /// # Examples
463    ///
464    /// ```
465    /// let bytes = "bors".as_bytes();
466    /// assert_eq!(b"bors", bytes);
467    /// ```
468    #[stable(feature = "rust1", since = "1.0.0")]
469    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
470    #[must_use]
471    #[inline(always)]
472    #[allow(unused_attributes)]
473    pub const fn as_bytes(&self) -> &[u8] {
474        // SAFETY: const sound because we transmute two types with the same layout
475        unsafe { mem::transmute(self) }
476    }
477
478    /// Converts a mutable string slice to a mutable byte slice.
479    ///
480    /// # Safety
481    ///
482    /// The caller must ensure that the content of the slice is valid UTF-8
483    /// before the borrow ends and the underlying `str` is used.
484    ///
485    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
486    ///
487    /// # Examples
488    ///
489    /// Basic usage:
490    ///
491    /// ```
492    /// let mut s = String::from("Hello");
493    /// let bytes = unsafe { s.as_bytes_mut() };
494    ///
495    /// assert_eq!(b"Hello", bytes);
496    /// ```
497    ///
498    /// Mutability:
499    ///
500    /// ```
501    /// let mut s = String::from("🗻∈🌏");
502    ///
503    /// unsafe {
504    ///     let bytes = s.as_bytes_mut();
505    ///
506    ///     bytes[0] = 0xF0;
507    ///     bytes[1] = 0x9F;
508    ///     bytes[2] = 0x8D;
509    ///     bytes[3] = 0x94;
510    /// }
511    ///
512    /// assert_eq!("🍔∈🌏", s);
513    /// ```
514    #[stable(feature = "str_mut_extras", since = "1.20.0")]
515    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
516    #[must_use]
517    #[inline(always)]
518    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
519        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
520        // has the same layout as `&[u8]` (only std can make this guarantee).
521        // The pointer dereference is safe since it comes from a mutable reference which
522        // is guaranteed to be valid for writes.
523        unsafe { &mut *(self as *mut str as *mut [u8]) }
524    }
525
526    /// Converts a string slice to a raw pointer.
527    ///
528    /// As string slices are a slice of bytes, the raw pointer points to a
529    /// [`u8`]. This pointer will be pointing to the first byte of the string
530    /// slice.
531    ///
532    /// The caller must ensure that the returned pointer is never written to.
533    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
534    ///
535    /// [`as_mut_ptr`]: str::as_mut_ptr
536    ///
537    /// # Examples
538    ///
539    /// ```
540    /// let s = "Hello";
541    /// let ptr = s.as_ptr();
542    /// ```
543    #[stable(feature = "rust1", since = "1.0.0")]
544    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
545    #[rustc_never_returns_null_ptr]
546    #[rustc_as_ptr]
547    #[must_use]
548    #[inline(always)]
549    pub const fn as_ptr(&self) -> *const u8 {
550        self as *const str as *const u8
551    }
552
553    /// Converts a mutable string slice to a raw pointer.
554    ///
555    /// As string slices are a slice of bytes, the raw pointer points to a
556    /// [`u8`]. This pointer will be pointing to the first byte of the string
557    /// slice.
558    ///
559    /// It is your responsibility to make sure that the string slice only gets
560    /// modified in a way that it remains valid UTF-8.
561    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
562    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
563    #[rustc_never_returns_null_ptr]
564    #[rustc_as_ptr]
565    #[must_use]
566    #[inline(always)]
567    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
568        self as *mut str as *mut u8
569    }
570
571    /// Returns a subslice of `str`.
572    ///
573    /// This is the non-panicking alternative to indexing the `str`. Returns
574    /// [`None`] whenever equivalent indexing operation would panic.
575    ///
576    /// # Examples
577    ///
578    /// ```
579    /// let v = String::from("🗻∈🌏");
580    ///
581    /// assert_eq!(Some("🗻"), v.get(0..4));
582    ///
583    /// // indices not on UTF-8 sequence boundaries
584    /// assert!(v.get(1..).is_none());
585    /// assert!(v.get(..8).is_none());
586    ///
587    /// // out of bounds
588    /// assert!(v.get(..42).is_none());
589    /// ```
590    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
591    #[inline]
592    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
593        i.get(self)
594    }
595
596    /// Returns a mutable subslice of `str`.
597    ///
598    /// This is the non-panicking alternative to indexing the `str`. Returns
599    /// [`None`] whenever equivalent indexing operation would panic.
600    ///
601    /// # Examples
602    ///
603    /// ```
604    /// let mut v = String::from("hello");
605    /// // correct length
606    /// assert!(v.get_mut(0..5).is_some());
607    /// // out of bounds
608    /// assert!(v.get_mut(..42).is_none());
609    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
610    ///
611    /// assert_eq!("hello", v);
612    /// {
613    ///     let s = v.get_mut(0..2);
614    ///     let s = s.map(|s| {
615    ///         s.make_ascii_uppercase();
616    ///         &*s
617    ///     });
618    ///     assert_eq!(Some("HE"), s);
619    /// }
620    /// assert_eq!("HEllo", v);
621    /// ```
622    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
623    #[inline]
624    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
625        i.get_mut(self)
626    }
627
628    /// Returns an unchecked subslice of `str`.
629    ///
630    /// This is the unchecked alternative to indexing the `str`.
631    ///
632    /// # Safety
633    ///
634    /// Callers of this function are responsible that these preconditions are
635    /// satisfied:
636    ///
637    /// * The starting index must not exceed the ending index;
638    /// * Indexes must be within bounds of the original slice;
639    /// * Indexes must lie on UTF-8 sequence boundaries.
640    ///
641    /// Failing that, the returned string slice may reference invalid memory or
642    /// violate the invariants communicated by the `str` type.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// let v = "🗻∈🌏";
648    /// unsafe {
649    ///     assert_eq!("🗻", v.get_unchecked(0..4));
650    ///     assert_eq!("∈", v.get_unchecked(4..7));
651    ///     assert_eq!("🌏", v.get_unchecked(7..11));
652    /// }
653    /// ```
654    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
655    #[inline]
656    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
657        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
658        // the slice is dereferenceable because `self` is a safe reference.
659        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
660        unsafe { &*i.get_unchecked(self) }
661    }
662
663    /// Returns a mutable, unchecked subslice of `str`.
664    ///
665    /// This is the unchecked alternative to indexing the `str`.
666    ///
667    /// # Safety
668    ///
669    /// Callers of this function are responsible that these preconditions are
670    /// satisfied:
671    ///
672    /// * The starting index must not exceed the ending index;
673    /// * Indexes must be within bounds of the original slice;
674    /// * Indexes must lie on UTF-8 sequence boundaries.
675    ///
676    /// Failing that, the returned string slice may reference invalid memory or
677    /// violate the invariants communicated by the `str` type.
678    ///
679    /// # Examples
680    ///
681    /// ```
682    /// let mut v = String::from("🗻∈🌏");
683    /// unsafe {
684    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
685    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
686    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
687    /// }
688    /// ```
689    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
690    #[inline]
691    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
692        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
693        // the slice is dereferenceable because `self` is a safe reference.
694        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
695        unsafe { &mut *i.get_unchecked_mut(self) }
696    }
697
698    /// Creates a string slice from another string slice, bypassing safety
699    /// checks.
700    ///
701    /// This is generally not recommended, use with caution! For a safe
702    /// alternative see [`str`] and [`Index`].
703    ///
704    /// [`Index`]: crate::ops::Index
705    ///
706    /// This new slice goes from `begin` to `end`, including `begin` but
707    /// excluding `end`.
708    ///
709    /// To get a mutable string slice instead, see the
710    /// [`slice_mut_unchecked`] method.
711    ///
712    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
713    ///
714    /// # Safety
715    ///
716    /// Callers of this function are responsible that three preconditions are
717    /// satisfied:
718    ///
719    /// * `begin` must not exceed `end`.
720    /// * `begin` and `end` must be byte positions within the string slice.
721    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
722    ///
723    /// # Examples
724    ///
725    /// ```
726    /// let s = "Löwe 老虎 Léopard";
727    ///
728    /// unsafe {
729    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
730    /// }
731    ///
732    /// let s = "Hello, world!";
733    ///
734    /// unsafe {
735    ///     assert_eq!("world", s.slice_unchecked(7, 12));
736    /// }
737    /// ```
738    #[stable(feature = "rust1", since = "1.0.0")]
739    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
740    #[must_use]
741    #[inline]
742    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
743        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
744        // the slice is dereferenceable because `self` is a safe reference.
745        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
746        unsafe { &*(begin..end).get_unchecked(self) }
747    }
748
749    /// Creates a string slice from another string slice, bypassing safety
750    /// checks.
751    ///
752    /// This is generally not recommended, use with caution! For a safe
753    /// alternative see [`str`] and [`IndexMut`].
754    ///
755    /// [`IndexMut`]: crate::ops::IndexMut
756    ///
757    /// This new slice goes from `begin` to `end`, including `begin` but
758    /// excluding `end`.
759    ///
760    /// To get an immutable string slice instead, see the
761    /// [`slice_unchecked`] method.
762    ///
763    /// [`slice_unchecked`]: str::slice_unchecked
764    ///
765    /// # Safety
766    ///
767    /// Callers of this function are responsible that three preconditions are
768    /// satisfied:
769    ///
770    /// * `begin` must not exceed `end`.
771    /// * `begin` and `end` must be byte positions within the string slice.
772    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
773    #[stable(feature = "str_slice_mut", since = "1.5.0")]
774    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
775    #[inline]
776    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
777        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
778        // the slice is dereferenceable because `self` is a safe reference.
779        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
780        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
781    }
782
783    /// Divides one string slice into two at an index.
784    ///
785    /// The argument, `mid`, should be a byte offset from the start of the
786    /// string. It must also be on the boundary of a UTF-8 code point.
787    ///
788    /// The two slices returned go from the start of the string slice to `mid`,
789    /// and from `mid` to the end of the string slice.
790    ///
791    /// To get mutable string slices instead, see the [`split_at_mut`]
792    /// method.
793    ///
794    /// [`split_at_mut`]: str::split_at_mut
795    ///
796    /// # Panics
797    ///
798    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
799    /// the end of the last code point of the string slice.  For a non-panicking
800    /// alternative see [`split_at_checked`](str::split_at_checked).
801    ///
802    /// # Examples
803    ///
804    /// ```
805    /// let s = "Per Martin-Löf";
806    ///
807    /// let (first, last) = s.split_at(3);
808    ///
809    /// assert_eq!("Per", first);
810    /// assert_eq!(" Martin-Löf", last);
811    /// ```
812    #[inline]
813    #[must_use]
814    #[stable(feature = "str_split_at", since = "1.4.0")]
815    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
816    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
817        match self.split_at_checked(mid) {
818            None => slice_error_fail(self, 0, mid),
819            Some(pair) => pair,
820        }
821    }
822
823    /// Divides one mutable string slice into two at an index.
824    ///
825    /// The argument, `mid`, should be a byte offset from the start of the
826    /// string. It must also be on the boundary of a UTF-8 code point.
827    ///
828    /// The two slices returned go from the start of the string slice to `mid`,
829    /// and from `mid` to the end of the string slice.
830    ///
831    /// To get immutable string slices instead, see the [`split_at`] method.
832    ///
833    /// [`split_at`]: str::split_at
834    ///
835    /// # Panics
836    ///
837    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
838    /// the end of the last code point of the string slice.  For a non-panicking
839    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// let mut s = "Per Martin-Löf".to_string();
845    /// {
846    ///     let (first, last) = s.split_at_mut(3);
847    ///     first.make_ascii_uppercase();
848    ///     assert_eq!("PER", first);
849    ///     assert_eq!(" Martin-Löf", last);
850    /// }
851    /// assert_eq!("PER Martin-Löf", s);
852    /// ```
853    #[inline]
854    #[must_use]
855    #[stable(feature = "str_split_at", since = "1.4.0")]
856    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
857    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
858        // is_char_boundary checks that the index is in [0, .len()]
859        if self.is_char_boundary(mid) {
860            // SAFETY: just checked that `mid` is on a char boundary.
861            unsafe { self.split_at_mut_unchecked(mid) }
862        } else {
863            slice_error_fail(self, 0, mid)
864        }
865    }
866
867    /// Divides one string slice into two at an index.
868    ///
869    /// The argument, `mid`, should be a valid byte offset from the start of the
870    /// string. It must also be on the boundary of a UTF-8 code point. The
871    /// method returns `None` if that’s not the case.
872    ///
873    /// The two slices returned go from the start of the string slice to `mid`,
874    /// and from `mid` to the end of the string slice.
875    ///
876    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
877    /// method.
878    ///
879    /// [`split_at_mut_checked`]: str::split_at_mut_checked
880    ///
881    /// # Examples
882    ///
883    /// ```
884    /// let s = "Per Martin-Löf";
885    ///
886    /// let (first, last) = s.split_at_checked(3).unwrap();
887    /// assert_eq!("Per", first);
888    /// assert_eq!(" Martin-Löf", last);
889    ///
890    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
891    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
892    /// ```
893    #[inline]
894    #[must_use]
895    #[stable(feature = "split_at_checked", since = "1.80.0")]
896    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
897    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
898        // is_char_boundary checks that the index is in [0, .len()]
899        if self.is_char_boundary(mid) {
900            // SAFETY: just checked that `mid` is on a char boundary.
901            Some(unsafe { self.split_at_unchecked(mid) })
902        } else {
903            None
904        }
905    }
906
907    /// Divides one mutable string slice into two at an index.
908    ///
909    /// The argument, `mid`, should be a valid byte offset from the start of the
910    /// string. It must also be on the boundary of a UTF-8 code point. The
911    /// method returns `None` if that’s not the case.
912    ///
913    /// The two slices returned go from the start of the string slice to `mid`,
914    /// and from `mid` to the end of the string slice.
915    ///
916    /// To get immutable string slices instead, see the [`split_at_checked`] method.
917    ///
918    /// [`split_at_checked`]: str::split_at_checked
919    ///
920    /// # Examples
921    ///
922    /// ```
923    /// let mut s = "Per Martin-Löf".to_string();
924    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
925    ///     first.make_ascii_uppercase();
926    ///     assert_eq!("PER", first);
927    ///     assert_eq!(" Martin-Löf", last);
928    /// }
929    /// assert_eq!("PER Martin-Löf", s);
930    ///
931    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
932    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
933    /// ```
934    #[inline]
935    #[must_use]
936    #[stable(feature = "split_at_checked", since = "1.80.0")]
937    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
938    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
939        // is_char_boundary checks that the index is in [0, .len()]
940        if self.is_char_boundary(mid) {
941            // SAFETY: just checked that `mid` is on a char boundary.
942            Some(unsafe { self.split_at_mut_unchecked(mid) })
943        } else {
944            None
945        }
946    }
947
948    /// Divides one string slice into two at an index.
949    ///
950    /// # Safety
951    ///
952    /// The caller must ensure that `mid` is a valid byte offset from the start
953    /// of the string and falls on the boundary of a UTF-8 code point.
954    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
955        let len = self.len();
956        let ptr = self.as_ptr();
957        // SAFETY: caller guarantees `mid` is on a char boundary.
958        unsafe {
959            (
960                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
961                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
962            )
963        }
964    }
965
966    /// Divides one string slice into two at an index.
967    ///
968    /// # Safety
969    ///
970    /// The caller must ensure that `mid` is a valid byte offset from the start
971    /// of the string and falls on the boundary of a UTF-8 code point.
972    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
973        let len = self.len();
974        let ptr = self.as_mut_ptr();
975        // SAFETY: caller guarantees `mid` is on a char boundary.
976        unsafe {
977            (
978                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
979                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
980            )
981        }
982    }
983
984    /// Returns an iterator over the [`char`]s of a string slice.
985    ///
986    /// As a string slice consists of valid UTF-8, we can iterate through a
987    /// string slice by [`char`]. This method returns such an iterator.
988    ///
989    /// It's important to remember that [`char`] represents a Unicode Scalar
990    /// Value, and might not match your idea of what a 'character' is. Iteration
991    /// over grapheme clusters may be what you actually want. This functionality
992    /// is not provided by Rust's standard library, check crates.io instead.
993    ///
994    /// # Examples
995    ///
996    /// Basic usage:
997    ///
998    /// ```
999    /// let word = "goodbye";
1000    ///
1001    /// let count = word.chars().count();
1002    /// assert_eq!(7, count);
1003    ///
1004    /// let mut chars = word.chars();
1005    ///
1006    /// assert_eq!(Some('g'), chars.next());
1007    /// assert_eq!(Some('o'), chars.next());
1008    /// assert_eq!(Some('o'), chars.next());
1009    /// assert_eq!(Some('d'), chars.next());
1010    /// assert_eq!(Some('b'), chars.next());
1011    /// assert_eq!(Some('y'), chars.next());
1012    /// assert_eq!(Some('e'), chars.next());
1013    ///
1014    /// assert_eq!(None, chars.next());
1015    /// ```
1016    ///
1017    /// Remember, [`char`]s might not match your intuition about characters:
1018    ///
1019    /// [`char`]: prim@char
1020    ///
1021    /// ```
1022    /// let y = "y̆";
1023    ///
1024    /// let mut chars = y.chars();
1025    ///
1026    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1027    /// assert_eq!(Some('\u{0306}'), chars.next());
1028    ///
1029    /// assert_eq!(None, chars.next());
1030    /// ```
1031    #[stable(feature = "rust1", since = "1.0.0")]
1032    #[inline]
1033    #[rustc_diagnostic_item = "str_chars"]
1034    pub fn chars(&self) -> Chars<'_> {
1035        Chars { iter: self.as_bytes().iter() }
1036    }
1037
1038    /// Returns an iterator over the [`char`]s of a string slice, and their
1039    /// positions.
1040    ///
1041    /// As a string slice consists of valid UTF-8, we can iterate through a
1042    /// string slice by [`char`]. This method returns an iterator of both
1043    /// these [`char`]s, as well as their byte positions.
1044    ///
1045    /// The iterator yields tuples. The position is first, the [`char`] is
1046    /// second.
1047    ///
1048    /// # Examples
1049    ///
1050    /// Basic usage:
1051    ///
1052    /// ```
1053    /// let word = "goodbye";
1054    ///
1055    /// let count = word.char_indices().count();
1056    /// assert_eq!(7, count);
1057    ///
1058    /// let mut char_indices = word.char_indices();
1059    ///
1060    /// assert_eq!(Some((0, 'g')), char_indices.next());
1061    /// assert_eq!(Some((1, 'o')), char_indices.next());
1062    /// assert_eq!(Some((2, 'o')), char_indices.next());
1063    /// assert_eq!(Some((3, 'd')), char_indices.next());
1064    /// assert_eq!(Some((4, 'b')), char_indices.next());
1065    /// assert_eq!(Some((5, 'y')), char_indices.next());
1066    /// assert_eq!(Some((6, 'e')), char_indices.next());
1067    ///
1068    /// assert_eq!(None, char_indices.next());
1069    /// ```
1070    ///
1071    /// Remember, [`char`]s might not match your intuition about characters:
1072    ///
1073    /// [`char`]: prim@char
1074    ///
1075    /// ```
1076    /// let yes = "y̆es";
1077    ///
1078    /// let mut char_indices = yes.char_indices();
1079    ///
1080    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1081    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1082    ///
1083    /// // note the 3 here - the previous character took up two bytes
1084    /// assert_eq!(Some((3, 'e')), char_indices.next());
1085    /// assert_eq!(Some((4, 's')), char_indices.next());
1086    ///
1087    /// assert_eq!(None, char_indices.next());
1088    /// ```
1089    #[stable(feature = "rust1", since = "1.0.0")]
1090    #[inline]
1091    pub fn char_indices(&self) -> CharIndices<'_> {
1092        CharIndices { front_offset: 0, iter: self.chars() }
1093    }
1094
1095    /// Returns an iterator over the bytes of a string slice.
1096    ///
1097    /// As a string slice consists of a sequence of bytes, we can iterate
1098    /// through a string slice by byte. This method returns such an iterator.
1099    ///
1100    /// # Examples
1101    ///
1102    /// ```
1103    /// let mut bytes = "bors".bytes();
1104    ///
1105    /// assert_eq!(Some(b'b'), bytes.next());
1106    /// assert_eq!(Some(b'o'), bytes.next());
1107    /// assert_eq!(Some(b'r'), bytes.next());
1108    /// assert_eq!(Some(b's'), bytes.next());
1109    ///
1110    /// assert_eq!(None, bytes.next());
1111    /// ```
1112    #[stable(feature = "rust1", since = "1.0.0")]
1113    #[inline]
1114    pub fn bytes(&self) -> Bytes<'_> {
1115        Bytes(self.as_bytes().iter().copied())
1116    }
1117
1118    /// Splits a string slice by whitespace.
1119    ///
1120    /// The iterator returned will return string slices that are sub-slices of
1121    /// the original string slice, separated by any amount of whitespace.
1122    ///
1123    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1124    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1125    /// instead, use [`split_ascii_whitespace`].
1126    ///
1127    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1128    ///
1129    /// # Examples
1130    ///
1131    /// Basic usage:
1132    ///
1133    /// ```
1134    /// let mut iter = "A few words".split_whitespace();
1135    ///
1136    /// assert_eq!(Some("A"), iter.next());
1137    /// assert_eq!(Some("few"), iter.next());
1138    /// assert_eq!(Some("words"), iter.next());
1139    ///
1140    /// assert_eq!(None, iter.next());
1141    /// ```
1142    ///
1143    /// All kinds of whitespace are considered:
1144    ///
1145    /// ```
1146    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1147    /// assert_eq!(Some("Mary"), iter.next());
1148    /// assert_eq!(Some("had"), iter.next());
1149    /// assert_eq!(Some("a"), iter.next());
1150    /// assert_eq!(Some("little"), iter.next());
1151    /// assert_eq!(Some("lamb"), iter.next());
1152    ///
1153    /// assert_eq!(None, iter.next());
1154    /// ```
1155    ///
1156    /// If the string is empty or all whitespace, the iterator yields no string slices:
1157    /// ```
1158    /// assert_eq!("".split_whitespace().next(), None);
1159    /// assert_eq!("   ".split_whitespace().next(), None);
1160    /// ```
1161    #[must_use = "this returns the split string as an iterator, \
1162                  without modifying the original"]
1163    #[stable(feature = "split_whitespace", since = "1.1.0")]
1164    #[rustc_diagnostic_item = "str_split_whitespace"]
1165    #[inline]
1166    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1167        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1168    }
1169
1170    /// Splits a string slice by ASCII whitespace.
1171    ///
1172    /// The iterator returned will return string slices that are sub-slices of
1173    /// the original string slice, separated by any amount of ASCII whitespace.
1174    ///
1175    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1176    ///
1177    /// [`split_whitespace`]: str::split_whitespace
1178    ///
1179    /// # Examples
1180    ///
1181    /// Basic usage:
1182    ///
1183    /// ```
1184    /// let mut iter = "A few words".split_ascii_whitespace();
1185    ///
1186    /// assert_eq!(Some("A"), iter.next());
1187    /// assert_eq!(Some("few"), iter.next());
1188    /// assert_eq!(Some("words"), iter.next());
1189    ///
1190    /// assert_eq!(None, iter.next());
1191    /// ```
1192    ///
1193    /// All kinds of ASCII whitespace are considered:
1194    ///
1195    /// ```
1196    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1197    /// assert_eq!(Some("Mary"), iter.next());
1198    /// assert_eq!(Some("had"), iter.next());
1199    /// assert_eq!(Some("a"), iter.next());
1200    /// assert_eq!(Some("little"), iter.next());
1201    /// assert_eq!(Some("lamb"), iter.next());
1202    ///
1203    /// assert_eq!(None, iter.next());
1204    /// ```
1205    ///
1206    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1207    /// ```
1208    /// assert_eq!("".split_ascii_whitespace().next(), None);
1209    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1210    /// ```
1211    #[must_use = "this returns the split string as an iterator, \
1212                  without modifying the original"]
1213    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1214    #[inline]
1215    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1216        let inner =
1217            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1218        SplitAsciiWhitespace { inner }
1219    }
1220
1221    /// Returns an iterator over the lines of a string, as string slices.
1222    ///
1223    /// Lines are split at line endings that are either newlines (`\n`) or
1224    /// sequences of a carriage return followed by a line feed (`\r\n`).
1225    ///
1226    /// Line terminators are not included in the lines returned by the iterator.
1227    ///
1228    /// Note that any carriage return (`\r`) not immediately followed by a
1229    /// line feed (`\n`) does not split a line. These carriage returns are
1230    /// thereby included in the produced lines.
1231    ///
1232    /// The final line ending is optional. A string that ends with a final line
1233    /// ending will return the same lines as an otherwise identical string
1234    /// without a final line ending.
1235    ///
1236    /// # Examples
1237    ///
1238    /// Basic usage:
1239    ///
1240    /// ```
1241    /// let text = "foo\r\nbar\n\nbaz\r";
1242    /// let mut lines = text.lines();
1243    ///
1244    /// assert_eq!(Some("foo"), lines.next());
1245    /// assert_eq!(Some("bar"), lines.next());
1246    /// assert_eq!(Some(""), lines.next());
1247    /// // Trailing carriage return is included in the last line
1248    /// assert_eq!(Some("baz\r"), lines.next());
1249    ///
1250    /// assert_eq!(None, lines.next());
1251    /// ```
1252    ///
1253    /// The final line does not require any ending:
1254    ///
1255    /// ```
1256    /// let text = "foo\nbar\n\r\nbaz";
1257    /// let mut lines = text.lines();
1258    ///
1259    /// assert_eq!(Some("foo"), lines.next());
1260    /// assert_eq!(Some("bar"), lines.next());
1261    /// assert_eq!(Some(""), lines.next());
1262    /// assert_eq!(Some("baz"), lines.next());
1263    ///
1264    /// assert_eq!(None, lines.next());
1265    /// ```
1266    #[stable(feature = "rust1", since = "1.0.0")]
1267    #[inline]
1268    pub fn lines(&self) -> Lines<'_> {
1269        Lines(self.split_inclusive('\n').map(LinesMap))
1270    }
1271
1272    /// Returns an iterator over the lines of a string.
1273    #[stable(feature = "rust1", since = "1.0.0")]
1274    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1275    #[inline]
1276    #[allow(deprecated)]
1277    pub fn lines_any(&self) -> LinesAny<'_> {
1278        LinesAny(self.lines())
1279    }
1280
1281    /// Returns an iterator of `u16` over the string encoded
1282    /// as native endian UTF-16 (without byte-order mark).
1283    ///
1284    /// # Examples
1285    ///
1286    /// ```
1287    /// let text = "Zażółć gęślą jaźń";
1288    ///
1289    /// let utf8_len = text.len();
1290    /// let utf16_len = text.encode_utf16().count();
1291    ///
1292    /// assert!(utf16_len <= utf8_len);
1293    /// ```
1294    #[must_use = "this returns the encoded string as an iterator, \
1295                  without modifying the original"]
1296    #[stable(feature = "encode_utf16", since = "1.8.0")]
1297    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1298        EncodeUtf16 { chars: self.chars(), extra: 0 }
1299    }
1300
1301    /// Returns `true` if the given pattern matches a sub-slice of
1302    /// this string slice.
1303    ///
1304    /// Returns `false` if it does not.
1305    ///
1306    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1307    /// function or closure that determines if a character matches.
1308    ///
1309    /// [`char`]: prim@char
1310    /// [pattern]: self::pattern
1311    ///
1312    /// # Examples
1313    ///
1314    /// ```
1315    /// let bananas = "bananas";
1316    ///
1317    /// assert!(bananas.contains("nana"));
1318    /// assert!(!bananas.contains("apples"));
1319    /// ```
1320    #[stable(feature = "rust1", since = "1.0.0")]
1321    #[inline]
1322    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1323        pat.is_contained_in(self)
1324    }
1325
1326    /// Returns `true` if the given pattern matches a prefix of this
1327    /// string slice.
1328    ///
1329    /// Returns `false` if it does not.
1330    ///
1331    /// The [pattern] can be a `&str`, in which case this function will return true if
1332    /// the `&str` is a prefix of this string slice.
1333    ///
1334    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1335    /// function or closure that determines if a character matches.
1336    /// These will only be checked against the first character of this string slice.
1337    /// Look at the second example below regarding behavior for slices of [`char`]s.
1338    ///
1339    /// [`char`]: prim@char
1340    /// [pattern]: self::pattern
1341    ///
1342    /// # Examples
1343    ///
1344    /// ```
1345    /// let bananas = "bananas";
1346    ///
1347    /// assert!(bananas.starts_with("bana"));
1348    /// assert!(!bananas.starts_with("nana"));
1349    /// ```
1350    ///
1351    /// ```
1352    /// let bananas = "bananas";
1353    ///
1354    /// // Note that both of these assert successfully.
1355    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1356    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1357    /// ```
1358    #[stable(feature = "rust1", since = "1.0.0")]
1359    #[rustc_diagnostic_item = "str_starts_with"]
1360    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1361        pat.is_prefix_of(self)
1362    }
1363
1364    /// Returns `true` if the given pattern matches a suffix of this
1365    /// string slice.
1366    ///
1367    /// Returns `false` if it does not.
1368    ///
1369    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1370    /// function or closure that determines if a character matches.
1371    ///
1372    /// [`char`]: prim@char
1373    /// [pattern]: self::pattern
1374    ///
1375    /// # Examples
1376    ///
1377    /// ```
1378    /// let bananas = "bananas";
1379    ///
1380    /// assert!(bananas.ends_with("anas"));
1381    /// assert!(!bananas.ends_with("nana"));
1382    /// ```
1383    #[stable(feature = "rust1", since = "1.0.0")]
1384    #[rustc_diagnostic_item = "str_ends_with"]
1385    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1386    where
1387        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1388    {
1389        pat.is_suffix_of(self)
1390    }
1391
1392    /// Returns the byte index of the first character of this string slice that
1393    /// matches the pattern.
1394    ///
1395    /// Returns [`None`] if the pattern doesn't match.
1396    ///
1397    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1398    /// function or closure that determines if a character matches.
1399    ///
1400    /// [`char`]: prim@char
1401    /// [pattern]: self::pattern
1402    ///
1403    /// # Examples
1404    ///
1405    /// Simple patterns:
1406    ///
1407    /// ```
1408    /// let s = "Löwe 老虎 Léopard Gepardi";
1409    ///
1410    /// assert_eq!(s.find('L'), Some(0));
1411    /// assert_eq!(s.find('é'), Some(14));
1412    /// assert_eq!(s.find("pard"), Some(17));
1413    /// ```
1414    ///
1415    /// More complex patterns using point-free style and closures:
1416    ///
1417    /// ```
1418    /// let s = "Löwe 老虎 Léopard";
1419    ///
1420    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1421    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1422    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1423    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1424    /// ```
1425    ///
1426    /// Not finding the pattern:
1427    ///
1428    /// ```
1429    /// let s = "Löwe 老虎 Léopard";
1430    /// let x: &[_] = &['1', '2'];
1431    ///
1432    /// assert_eq!(s.find(x), None);
1433    /// ```
1434    #[stable(feature = "rust1", since = "1.0.0")]
1435    #[inline]
1436    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1437        pat.into_searcher(self).next_match().map(|(i, _)| i)
1438    }
1439
1440    /// Returns the byte index for the first character of the last match of the pattern in
1441    /// this string slice.
1442    ///
1443    /// Returns [`None`] if the pattern doesn't match.
1444    ///
1445    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1446    /// function or closure that determines if a character matches.
1447    ///
1448    /// [`char`]: prim@char
1449    /// [pattern]: self::pattern
1450    ///
1451    /// # Examples
1452    ///
1453    /// Simple patterns:
1454    ///
1455    /// ```
1456    /// let s = "Löwe 老虎 Léopard Gepardi";
1457    ///
1458    /// assert_eq!(s.rfind('L'), Some(13));
1459    /// assert_eq!(s.rfind('é'), Some(14));
1460    /// assert_eq!(s.rfind("pard"), Some(24));
1461    /// ```
1462    ///
1463    /// More complex patterns with closures:
1464    ///
1465    /// ```
1466    /// let s = "Löwe 老虎 Léopard";
1467    ///
1468    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1469    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1470    /// ```
1471    ///
1472    /// Not finding the pattern:
1473    ///
1474    /// ```
1475    /// let s = "Löwe 老虎 Léopard";
1476    /// let x: &[_] = &['1', '2'];
1477    ///
1478    /// assert_eq!(s.rfind(x), None);
1479    /// ```
1480    #[stable(feature = "rust1", since = "1.0.0")]
1481    #[inline]
1482    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1483    where
1484        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1485    {
1486        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1487    }
1488
1489    /// Returns an iterator over substrings of this string slice, separated by
1490    /// characters matched by a pattern.
1491    ///
1492    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1493    /// function or closure that determines if a character matches.
1494    ///
1495    /// [`char`]: prim@char
1496    /// [pattern]: self::pattern
1497    ///
1498    /// # Iterator behavior
1499    ///
1500    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1501    /// allows a reverse search and forward/reverse search yields the same
1502    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1503    ///
1504    /// If the pattern allows a reverse search but its results might differ
1505    /// from a forward search, the [`rsplit`] method can be used.
1506    ///
1507    /// [`rsplit`]: str::rsplit
1508    ///
1509    /// # Examples
1510    ///
1511    /// Simple patterns:
1512    ///
1513    /// ```
1514    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1515    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1516    ///
1517    /// let v: Vec<&str> = "".split('X').collect();
1518    /// assert_eq!(v, [""]);
1519    ///
1520    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1521    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1522    ///
1523    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1524    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1525    ///
1526    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1527    /// assert_eq!(v, ["abc", "def", "ghi"]);
1528    ///
1529    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1530    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1531    /// ```
1532    ///
1533    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1534    ///
1535    /// ```
1536    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1537    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1538    /// ```
1539    ///
1540    /// A more complex pattern, using a closure:
1541    ///
1542    /// ```
1543    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1544    /// assert_eq!(v, ["abc", "def", "ghi"]);
1545    /// ```
1546    ///
1547    /// If a string contains multiple contiguous separators, you will end up
1548    /// with empty strings in the output:
1549    ///
1550    /// ```
1551    /// let x = "||||a||b|c".to_string();
1552    /// let d: Vec<_> = x.split('|').collect();
1553    ///
1554    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1555    /// ```
1556    ///
1557    /// Contiguous separators are separated by the empty string.
1558    ///
1559    /// ```
1560    /// let x = "(///)".to_string();
1561    /// let d: Vec<_> = x.split('/').collect();
1562    ///
1563    /// assert_eq!(d, &["(", "", "", ")"]);
1564    /// ```
1565    ///
1566    /// Separators at the start or end of a string are neighbored
1567    /// by empty strings.
1568    ///
1569    /// ```
1570    /// let d: Vec<_> = "010".split("0").collect();
1571    /// assert_eq!(d, &["", "1", ""]);
1572    /// ```
1573    ///
1574    /// When the empty string is used as a separator, it separates
1575    /// every character in the string, along with the beginning
1576    /// and end of the string.
1577    ///
1578    /// ```
1579    /// let f: Vec<_> = "rust".split("").collect();
1580    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1581    /// ```
1582    ///
1583    /// Contiguous separators can lead to possibly surprising behavior
1584    /// when whitespace is used as the separator. This code is correct:
1585    ///
1586    /// ```
1587    /// let x = "    a  b c".to_string();
1588    /// let d: Vec<_> = x.split(' ').collect();
1589    ///
1590    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1591    /// ```
1592    ///
1593    /// It does _not_ give you:
1594    ///
1595    /// ```,ignore
1596    /// assert_eq!(d, &["a", "b", "c"]);
1597    /// ```
1598    ///
1599    /// Use [`split_whitespace`] for this behavior.
1600    ///
1601    /// [`split_whitespace`]: str::split_whitespace
1602    #[stable(feature = "rust1", since = "1.0.0")]
1603    #[inline]
1604    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1605        Split(SplitInternal {
1606            start: 0,
1607            end: self.len(),
1608            matcher: pat.into_searcher(self),
1609            allow_trailing_empty: true,
1610            finished: false,
1611        })
1612    }
1613
1614    /// Returns an iterator over substrings of this string slice, separated by
1615    /// characters matched by a pattern.
1616    ///
1617    /// Differs from the iterator produced by `split` in that `split_inclusive`
1618    /// leaves the matched part as the terminator of the substring.
1619    ///
1620    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1621    /// function or closure that determines if a character matches.
1622    ///
1623    /// [`char`]: prim@char
1624    /// [pattern]: self::pattern
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1630    ///     .split_inclusive('\n').collect();
1631    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1632    /// ```
1633    ///
1634    /// If the last element of the string is matched,
1635    /// that element will be considered the terminator of the preceding substring.
1636    /// That substring will be the last item returned by the iterator.
1637    ///
1638    /// ```
1639    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1640    ///     .split_inclusive('\n').collect();
1641    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1642    /// ```
1643    #[stable(feature = "split_inclusive", since = "1.51.0")]
1644    #[inline]
1645    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1646        SplitInclusive(SplitInternal {
1647            start: 0,
1648            end: self.len(),
1649            matcher: pat.into_searcher(self),
1650            allow_trailing_empty: false,
1651            finished: false,
1652        })
1653    }
1654
1655    /// Returns an iterator over substrings of the given string slice, separated
1656    /// by characters matched by a pattern and yielded in reverse order.
1657    ///
1658    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1659    /// function or closure that determines if a character matches.
1660    ///
1661    /// [`char`]: prim@char
1662    /// [pattern]: self::pattern
1663    ///
1664    /// # Iterator behavior
1665    ///
1666    /// The returned iterator requires that the pattern supports a reverse
1667    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1668    /// search yields the same elements.
1669    ///
1670    /// For iterating from the front, the [`split`] method can be used.
1671    ///
1672    /// [`split`]: str::split
1673    ///
1674    /// # Examples
1675    ///
1676    /// Simple patterns:
1677    ///
1678    /// ```
1679    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1680    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1681    ///
1682    /// let v: Vec<&str> = "".rsplit('X').collect();
1683    /// assert_eq!(v, [""]);
1684    ///
1685    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1686    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1687    ///
1688    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1689    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1690    /// ```
1691    ///
1692    /// A more complex pattern, using a closure:
1693    ///
1694    /// ```
1695    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1696    /// assert_eq!(v, ["ghi", "def", "abc"]);
1697    /// ```
1698    #[stable(feature = "rust1", since = "1.0.0")]
1699    #[inline]
1700    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1701    where
1702        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1703    {
1704        RSplit(self.split(pat).0)
1705    }
1706
1707    /// Returns an iterator over substrings of the given string slice, separated
1708    /// by characters matched by a pattern.
1709    ///
1710    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1711    /// function or closure that determines if a character matches.
1712    ///
1713    /// [`char`]: prim@char
1714    /// [pattern]: self::pattern
1715    ///
1716    /// Equivalent to [`split`], except that the trailing substring
1717    /// is skipped if empty.
1718    ///
1719    /// [`split`]: str::split
1720    ///
1721    /// This method can be used for string data that is _terminated_,
1722    /// rather than _separated_ by a pattern.
1723    ///
1724    /// # Iterator behavior
1725    ///
1726    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1727    /// allows a reverse search and forward/reverse search yields the same
1728    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1729    ///
1730    /// If the pattern allows a reverse search but its results might differ
1731    /// from a forward search, the [`rsplit_terminator`] method can be used.
1732    ///
1733    /// [`rsplit_terminator`]: str::rsplit_terminator
1734    ///
1735    /// # Examples
1736    ///
1737    /// ```
1738    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1739    /// assert_eq!(v, ["A", "B"]);
1740    ///
1741    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1742    /// assert_eq!(v, ["A", "", "B", ""]);
1743    ///
1744    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1745    /// assert_eq!(v, ["A", "B", "C", "D"]);
1746    /// ```
1747    #[stable(feature = "rust1", since = "1.0.0")]
1748    #[inline]
1749    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1750        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1751    }
1752
1753    /// Returns an iterator over substrings of `self`, separated by characters
1754    /// matched by a pattern and yielded in reverse order.
1755    ///
1756    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1757    /// function or closure that determines if a character matches.
1758    ///
1759    /// [`char`]: prim@char
1760    /// [pattern]: self::pattern
1761    ///
1762    /// Equivalent to [`split`], except that the trailing substring is
1763    /// skipped if empty.
1764    ///
1765    /// [`split`]: str::split
1766    ///
1767    /// This method can be used for string data that is _terminated_,
1768    /// rather than _separated_ by a pattern.
1769    ///
1770    /// # Iterator behavior
1771    ///
1772    /// The returned iterator requires that the pattern supports a
1773    /// reverse search, and it will be double ended if a forward/reverse
1774    /// search yields the same elements.
1775    ///
1776    /// For iterating from the front, the [`split_terminator`] method can be
1777    /// used.
1778    ///
1779    /// [`split_terminator`]: str::split_terminator
1780    ///
1781    /// # Examples
1782    ///
1783    /// ```
1784    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1785    /// assert_eq!(v, ["B", "A"]);
1786    ///
1787    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1788    /// assert_eq!(v, ["", "B", "", "A"]);
1789    ///
1790    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1791    /// assert_eq!(v, ["D", "C", "B", "A"]);
1792    /// ```
1793    #[stable(feature = "rust1", since = "1.0.0")]
1794    #[inline]
1795    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1796    where
1797        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1798    {
1799        RSplitTerminator(self.split_terminator(pat).0)
1800    }
1801
1802    /// Returns an iterator over substrings of the given string slice, separated
1803    /// by a pattern, restricted to returning at most `n` items.
1804    ///
1805    /// If `n` substrings are returned, the last substring (the `n`th substring)
1806    /// will contain the remainder of the string.
1807    ///
1808    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1809    /// function or closure that determines if a character matches.
1810    ///
1811    /// [`char`]: prim@char
1812    /// [pattern]: self::pattern
1813    ///
1814    /// # Iterator behavior
1815    ///
1816    /// The returned iterator will not be double ended, because it is
1817    /// not efficient to support.
1818    ///
1819    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1820    /// used.
1821    ///
1822    /// [`rsplitn`]: str::rsplitn
1823    ///
1824    /// # Examples
1825    ///
1826    /// Simple patterns:
1827    ///
1828    /// ```
1829    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1830    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1831    ///
1832    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1833    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1834    ///
1835    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1836    /// assert_eq!(v, ["abcXdef"]);
1837    ///
1838    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1839    /// assert_eq!(v, [""]);
1840    /// ```
1841    ///
1842    /// A more complex pattern, using a closure:
1843    ///
1844    /// ```
1845    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1846    /// assert_eq!(v, ["abc", "defXghi"]);
1847    /// ```
1848    #[stable(feature = "rust1", since = "1.0.0")]
1849    #[inline]
1850    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1851        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1852    }
1853
1854    /// Returns an iterator over substrings of this string slice, separated by a
1855    /// pattern, starting from the end of the string, restricted to returning at
1856    /// most `n` items.
1857    ///
1858    /// If `n` substrings are returned, the last substring (the `n`th substring)
1859    /// will contain the remainder of the string.
1860    ///
1861    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1862    /// function or closure that determines if a character matches.
1863    ///
1864    /// [`char`]: prim@char
1865    /// [pattern]: self::pattern
1866    ///
1867    /// # Iterator behavior
1868    ///
1869    /// The returned iterator will not be double ended, because it is not
1870    /// efficient to support.
1871    ///
1872    /// For splitting from the front, the [`splitn`] method can be used.
1873    ///
1874    /// [`splitn`]: str::splitn
1875    ///
1876    /// # Examples
1877    ///
1878    /// Simple patterns:
1879    ///
1880    /// ```
1881    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1882    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1883    ///
1884    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1885    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1886    ///
1887    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1888    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1889    /// ```
1890    ///
1891    /// A more complex pattern, using a closure:
1892    ///
1893    /// ```
1894    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1895    /// assert_eq!(v, ["ghi", "abc1def"]);
1896    /// ```
1897    #[stable(feature = "rust1", since = "1.0.0")]
1898    #[inline]
1899    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1900    where
1901        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1902    {
1903        RSplitN(self.splitn(n, pat).0)
1904    }
1905
1906    /// Splits the string on the first occurrence of the specified delimiter and
1907    /// returns prefix before delimiter and suffix after delimiter.
1908    ///
1909    /// # Examples
1910    ///
1911    /// ```
1912    /// assert_eq!("cfg".split_once('='), None);
1913    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1914    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1915    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1916    /// ```
1917    #[stable(feature = "str_split_once", since = "1.52.0")]
1918    #[inline]
1919    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1920        let (start, end) = delimiter.into_searcher(self).next_match()?;
1921        // SAFETY: `Searcher` is known to return valid indices.
1922        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1923    }
1924
1925    /// Splits the string on the last occurrence of the specified delimiter and
1926    /// returns prefix before delimiter and suffix after delimiter.
1927    ///
1928    /// # Examples
1929    ///
1930    /// ```
1931    /// assert_eq!("cfg".rsplit_once('='), None);
1932    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1933    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1934    /// ```
1935    #[stable(feature = "str_split_once", since = "1.52.0")]
1936    #[inline]
1937    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1938    where
1939        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1940    {
1941        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1942        // SAFETY: `Searcher` is known to return valid indices.
1943        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1944    }
1945
1946    /// Returns an iterator over the disjoint matches of a pattern within the
1947    /// given string slice.
1948    ///
1949    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1950    /// function or closure that determines if a character matches.
1951    ///
1952    /// [`char`]: prim@char
1953    /// [pattern]: self::pattern
1954    ///
1955    /// # Iterator behavior
1956    ///
1957    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1958    /// allows a reverse search and forward/reverse search yields the same
1959    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1960    ///
1961    /// If the pattern allows a reverse search but its results might differ
1962    /// from a forward search, the [`rmatches`] method can be used.
1963    ///
1964    /// [`rmatches`]: str::rmatches
1965    ///
1966    /// # Examples
1967    ///
1968    /// ```
1969    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1970    /// assert_eq!(v, ["abc", "abc", "abc"]);
1971    ///
1972    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1973    /// assert_eq!(v, ["1", "2", "3"]);
1974    /// ```
1975    #[stable(feature = "str_matches", since = "1.2.0")]
1976    #[inline]
1977    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1978        Matches(MatchesInternal(pat.into_searcher(self)))
1979    }
1980
1981    /// Returns an iterator over the disjoint matches of a pattern within this
1982    /// string slice, yielded in reverse order.
1983    ///
1984    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1985    /// function or closure that determines if a character matches.
1986    ///
1987    /// [`char`]: prim@char
1988    /// [pattern]: self::pattern
1989    ///
1990    /// # Iterator behavior
1991    ///
1992    /// The returned iterator requires that the pattern supports a reverse
1993    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1994    /// search yields the same elements.
1995    ///
1996    /// For iterating from the front, the [`matches`] method can be used.
1997    ///
1998    /// [`matches`]: str::matches
1999    ///
2000    /// # Examples
2001    ///
2002    /// ```
2003    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2004    /// assert_eq!(v, ["abc", "abc", "abc"]);
2005    ///
2006    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2007    /// assert_eq!(v, ["3", "2", "1"]);
2008    /// ```
2009    #[stable(feature = "str_matches", since = "1.2.0")]
2010    #[inline]
2011    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2012    where
2013        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2014    {
2015        RMatches(self.matches(pat).0)
2016    }
2017
2018    /// Returns an iterator over the disjoint matches of a pattern within this string
2019    /// slice as well as the index that the match starts at.
2020    ///
2021    /// For matches of `pat` within `self` that overlap, only the indices
2022    /// corresponding to the first match are returned.
2023    ///
2024    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2025    /// function or closure that determines if a character matches.
2026    ///
2027    /// [`char`]: prim@char
2028    /// [pattern]: self::pattern
2029    ///
2030    /// # Iterator behavior
2031    ///
2032    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2033    /// allows a reverse search and forward/reverse search yields the same
2034    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2035    ///
2036    /// If the pattern allows a reverse search but its results might differ
2037    /// from a forward search, the [`rmatch_indices`] method can be used.
2038    ///
2039    /// [`rmatch_indices`]: str::rmatch_indices
2040    ///
2041    /// # Examples
2042    ///
2043    /// ```
2044    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2045    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2046    ///
2047    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2048    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2049    ///
2050    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2051    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2052    /// ```
2053    #[stable(feature = "str_match_indices", since = "1.5.0")]
2054    #[inline]
2055    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2056        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2057    }
2058
2059    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2060    /// yielded in reverse order along with the index of the match.
2061    ///
2062    /// For matches of `pat` within `self` that overlap, only the indices
2063    /// corresponding to the last match are returned.
2064    ///
2065    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2066    /// function or closure that determines if a character matches.
2067    ///
2068    /// [`char`]: prim@char
2069    /// [pattern]: self::pattern
2070    ///
2071    /// # Iterator behavior
2072    ///
2073    /// The returned iterator requires that the pattern supports a reverse
2074    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2075    /// search yields the same elements.
2076    ///
2077    /// For iterating from the front, the [`match_indices`] method can be used.
2078    ///
2079    /// [`match_indices`]: str::match_indices
2080    ///
2081    /// # Examples
2082    ///
2083    /// ```
2084    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2085    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2086    ///
2087    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2088    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2089    ///
2090    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2091    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2092    /// ```
2093    #[stable(feature = "str_match_indices", since = "1.5.0")]
2094    #[inline]
2095    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2096    where
2097        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2098    {
2099        RMatchIndices(self.match_indices(pat).0)
2100    }
2101
2102    /// Returns a string slice with leading and trailing whitespace removed.
2103    ///
2104    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2105    /// Core Property `White_Space`, which includes newlines.
2106    ///
2107    /// # Examples
2108    ///
2109    /// ```
2110    /// let s = "\n Hello\tworld\t\n";
2111    ///
2112    /// assert_eq!("Hello\tworld", s.trim());
2113    /// ```
2114    #[inline]
2115    #[must_use = "this returns the trimmed string as a slice, \
2116                  without modifying the original"]
2117    #[stable(feature = "rust1", since = "1.0.0")]
2118    #[rustc_diagnostic_item = "str_trim"]
2119    pub fn trim(&self) -> &str {
2120        self.trim_matches(char::is_whitespace)
2121    }
2122
2123    /// Returns a string slice with leading whitespace removed.
2124    ///
2125    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2126    /// Core Property `White_Space`, which includes newlines.
2127    ///
2128    /// # Text directionality
2129    ///
2130    /// A string is a sequence of bytes. `start` in this context means the first
2131    /// position of that byte string; for a left-to-right language like English or
2132    /// Russian, this will be left side, and for right-to-left languages like
2133    /// Arabic or Hebrew, this will be the right side.
2134    ///
2135    /// # Examples
2136    ///
2137    /// Basic usage:
2138    ///
2139    /// ```
2140    /// let s = "\n Hello\tworld\t\n";
2141    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2142    /// ```
2143    ///
2144    /// Directionality:
2145    ///
2146    /// ```
2147    /// let s = "  English  ";
2148    /// assert!(Some('E') == s.trim_start().chars().next());
2149    ///
2150    /// let s = "  עברית  ";
2151    /// assert!(Some('ע') == s.trim_start().chars().next());
2152    /// ```
2153    #[inline]
2154    #[must_use = "this returns the trimmed string as a new slice, \
2155                  without modifying the original"]
2156    #[stable(feature = "trim_direction", since = "1.30.0")]
2157    #[rustc_diagnostic_item = "str_trim_start"]
2158    pub fn trim_start(&self) -> &str {
2159        self.trim_start_matches(char::is_whitespace)
2160    }
2161
2162    /// Returns a string slice with trailing whitespace removed.
2163    ///
2164    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2165    /// Core Property `White_Space`, which includes newlines.
2166    ///
2167    /// # Text directionality
2168    ///
2169    /// A string is a sequence of bytes. `end` in this context means the last
2170    /// position of that byte string; for a left-to-right language like English or
2171    /// Russian, this will be right side, and for right-to-left languages like
2172    /// Arabic or Hebrew, this will be the left side.
2173    ///
2174    /// # Examples
2175    ///
2176    /// Basic usage:
2177    ///
2178    /// ```
2179    /// let s = "\n Hello\tworld\t\n";
2180    /// assert_eq!("\n Hello\tworld", s.trim_end());
2181    /// ```
2182    ///
2183    /// Directionality:
2184    ///
2185    /// ```
2186    /// let s = "  English  ";
2187    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2188    ///
2189    /// let s = "  עברית  ";
2190    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2191    /// ```
2192    #[inline]
2193    #[must_use = "this returns the trimmed string as a new slice, \
2194                  without modifying the original"]
2195    #[stable(feature = "trim_direction", since = "1.30.0")]
2196    #[rustc_diagnostic_item = "str_trim_end"]
2197    pub fn trim_end(&self) -> &str {
2198        self.trim_end_matches(char::is_whitespace)
2199    }
2200
2201    /// Returns a string slice with leading whitespace removed.
2202    ///
2203    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2204    /// Core Property `White_Space`.
2205    ///
2206    /// # Text directionality
2207    ///
2208    /// A string is a sequence of bytes. 'Left' in this context means the first
2209    /// position of that byte string; for a language like Arabic or Hebrew
2210    /// which are 'right to left' rather than 'left to right', this will be
2211    /// the _right_ side, not the left.
2212    ///
2213    /// # Examples
2214    ///
2215    /// Basic usage:
2216    ///
2217    /// ```
2218    /// let s = " Hello\tworld\t";
2219    ///
2220    /// assert_eq!("Hello\tworld\t", s.trim_left());
2221    /// ```
2222    ///
2223    /// Directionality:
2224    ///
2225    /// ```
2226    /// let s = "  English";
2227    /// assert!(Some('E') == s.trim_left().chars().next());
2228    ///
2229    /// let s = "  עברית";
2230    /// assert!(Some('ע') == s.trim_left().chars().next());
2231    /// ```
2232    #[must_use = "this returns the trimmed string as a new slice, \
2233                  without modifying the original"]
2234    #[inline]
2235    #[stable(feature = "rust1", since = "1.0.0")]
2236    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2237    pub fn trim_left(&self) -> &str {
2238        self.trim_start()
2239    }
2240
2241    /// Returns a string slice with trailing whitespace removed.
2242    ///
2243    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2244    /// Core Property `White_Space`.
2245    ///
2246    /// # Text directionality
2247    ///
2248    /// A string is a sequence of bytes. 'Right' in this context means the last
2249    /// position of that byte string; for a language like Arabic or Hebrew
2250    /// which are 'right to left' rather than 'left to right', this will be
2251    /// the _left_ side, not the right.
2252    ///
2253    /// # Examples
2254    ///
2255    /// Basic usage:
2256    ///
2257    /// ```
2258    /// let s = " Hello\tworld\t";
2259    ///
2260    /// assert_eq!(" Hello\tworld", s.trim_right());
2261    /// ```
2262    ///
2263    /// Directionality:
2264    ///
2265    /// ```
2266    /// let s = "English  ";
2267    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2268    ///
2269    /// let s = "עברית  ";
2270    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2271    /// ```
2272    #[must_use = "this returns the trimmed string as a new slice, \
2273                  without modifying the original"]
2274    #[inline]
2275    #[stable(feature = "rust1", since = "1.0.0")]
2276    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2277    pub fn trim_right(&self) -> &str {
2278        self.trim_end()
2279    }
2280
2281    /// Returns a string slice with all prefixes and suffixes that match a
2282    /// pattern repeatedly removed.
2283    ///
2284    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2285    /// or closure that determines if a character matches.
2286    ///
2287    /// [`char`]: prim@char
2288    /// [pattern]: self::pattern
2289    ///
2290    /// # Examples
2291    ///
2292    /// Simple patterns:
2293    ///
2294    /// ```
2295    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2296    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2297    ///
2298    /// let x: &[_] = &['1', '2'];
2299    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2300    /// ```
2301    ///
2302    /// A more complex pattern, using a closure:
2303    ///
2304    /// ```
2305    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2306    /// ```
2307    #[must_use = "this returns the trimmed string as a new slice, \
2308                  without modifying the original"]
2309    #[stable(feature = "rust1", since = "1.0.0")]
2310    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2311    where
2312        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2313    {
2314        let mut i = 0;
2315        let mut j = 0;
2316        let mut matcher = pat.into_searcher(self);
2317        if let Some((a, b)) = matcher.next_reject() {
2318            i = a;
2319            j = b; // Remember earliest known match, correct it below if
2320            // last match is different
2321        }
2322        if let Some((_, b)) = matcher.next_reject_back() {
2323            j = b;
2324        }
2325        // SAFETY: `Searcher` is known to return valid indices.
2326        unsafe { self.get_unchecked(i..j) }
2327    }
2328
2329    /// Returns a string slice with all prefixes that match a pattern
2330    /// repeatedly removed.
2331    ///
2332    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2333    /// function or closure that determines if a character matches.
2334    ///
2335    /// [`char`]: prim@char
2336    /// [pattern]: self::pattern
2337    ///
2338    /// # Text directionality
2339    ///
2340    /// A string is a sequence of bytes. `start` in this context means the first
2341    /// position of that byte string; for a left-to-right language like English or
2342    /// Russian, this will be left side, and for right-to-left languages like
2343    /// Arabic or Hebrew, this will be the right side.
2344    ///
2345    /// # Examples
2346    ///
2347    /// ```
2348    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2349    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2350    ///
2351    /// let x: &[_] = &['1', '2'];
2352    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2353    /// ```
2354    #[must_use = "this returns the trimmed string as a new slice, \
2355                  without modifying the original"]
2356    #[stable(feature = "trim_direction", since = "1.30.0")]
2357    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2358        let mut i = self.len();
2359        let mut matcher = pat.into_searcher(self);
2360        if let Some((a, _)) = matcher.next_reject() {
2361            i = a;
2362        }
2363        // SAFETY: `Searcher` is known to return valid indices.
2364        unsafe { self.get_unchecked(i..self.len()) }
2365    }
2366
2367    /// Returns a string slice with the prefix removed.
2368    ///
2369    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2370    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2371    ///
2372    /// If the string does not start with `prefix`, returns `None`.
2373    ///
2374    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2375    /// function or closure that determines if a character matches.
2376    ///
2377    /// [`char`]: prim@char
2378    /// [pattern]: self::pattern
2379    /// [`trim_start_matches`]: Self::trim_start_matches
2380    ///
2381    /// # Examples
2382    ///
2383    /// ```
2384    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2385    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2386    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2387    /// ```
2388    #[must_use = "this returns the remaining substring as a new slice, \
2389                  without modifying the original"]
2390    #[stable(feature = "str_strip", since = "1.45.0")]
2391    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2392        prefix.strip_prefix_of(self)
2393    }
2394
2395    /// Returns a string slice with the suffix removed.
2396    ///
2397    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2398    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2399    ///
2400    /// If the string does not end with `suffix`, returns `None`.
2401    ///
2402    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2403    /// function or closure that determines if a character matches.
2404    ///
2405    /// [`char`]: prim@char
2406    /// [pattern]: self::pattern
2407    /// [`trim_end_matches`]: Self::trim_end_matches
2408    ///
2409    /// # Examples
2410    ///
2411    /// ```
2412    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2413    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2414    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2415    /// ```
2416    #[must_use = "this returns the remaining substring as a new slice, \
2417                  without modifying the original"]
2418    #[stable(feature = "str_strip", since = "1.45.0")]
2419    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2420    where
2421        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2422    {
2423        suffix.strip_suffix_of(self)
2424    }
2425
2426    /// Returns a string slice with all suffixes that match a pattern
2427    /// repeatedly removed.
2428    ///
2429    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2430    /// function or closure that determines if a character matches.
2431    ///
2432    /// [`char`]: prim@char
2433    /// [pattern]: self::pattern
2434    ///
2435    /// # Text directionality
2436    ///
2437    /// A string is a sequence of bytes. `end` in this context means the last
2438    /// position of that byte string; for a left-to-right language like English or
2439    /// Russian, this will be right side, and for right-to-left languages like
2440    /// Arabic or Hebrew, this will be the left side.
2441    ///
2442    /// # Examples
2443    ///
2444    /// Simple patterns:
2445    ///
2446    /// ```
2447    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2448    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2449    ///
2450    /// let x: &[_] = &['1', '2'];
2451    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2452    /// ```
2453    ///
2454    /// A more complex pattern, using a closure:
2455    ///
2456    /// ```
2457    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2458    /// ```
2459    #[must_use = "this returns the trimmed string as a new slice, \
2460                  without modifying the original"]
2461    #[stable(feature = "trim_direction", since = "1.30.0")]
2462    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2463    where
2464        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2465    {
2466        let mut j = 0;
2467        let mut matcher = pat.into_searcher(self);
2468        if let Some((_, b)) = matcher.next_reject_back() {
2469            j = b;
2470        }
2471        // SAFETY: `Searcher` is known to return valid indices.
2472        unsafe { self.get_unchecked(0..j) }
2473    }
2474
2475    /// Returns a string slice with all prefixes that match a pattern
2476    /// repeatedly removed.
2477    ///
2478    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2479    /// function or closure that determines if a character matches.
2480    ///
2481    /// [`char`]: prim@char
2482    /// [pattern]: self::pattern
2483    ///
2484    /// # Text directionality
2485    ///
2486    /// A string is a sequence of bytes. 'Left' in this context means the first
2487    /// position of that byte string; for a language like Arabic or Hebrew
2488    /// which are 'right to left' rather than 'left to right', this will be
2489    /// the _right_ side, not the left.
2490    ///
2491    /// # Examples
2492    ///
2493    /// ```
2494    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2495    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2496    ///
2497    /// let x: &[_] = &['1', '2'];
2498    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2499    /// ```
2500    #[stable(feature = "rust1", since = "1.0.0")]
2501    #[deprecated(
2502        since = "1.33.0",
2503        note = "superseded by `trim_start_matches`",
2504        suggestion = "trim_start_matches"
2505    )]
2506    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2507        self.trim_start_matches(pat)
2508    }
2509
2510    /// Returns a string slice with all suffixes that match a pattern
2511    /// repeatedly removed.
2512    ///
2513    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2514    /// function or closure that determines if a character matches.
2515    ///
2516    /// [`char`]: prim@char
2517    /// [pattern]: self::pattern
2518    ///
2519    /// # Text directionality
2520    ///
2521    /// A string is a sequence of bytes. 'Right' in this context means the last
2522    /// position of that byte string; for a language like Arabic or Hebrew
2523    /// which are 'right to left' rather than 'left to right', this will be
2524    /// the _left_ side, not the right.
2525    ///
2526    /// # Examples
2527    ///
2528    /// Simple patterns:
2529    ///
2530    /// ```
2531    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2532    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2533    ///
2534    /// let x: &[_] = &['1', '2'];
2535    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2536    /// ```
2537    ///
2538    /// A more complex pattern, using a closure:
2539    ///
2540    /// ```
2541    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2542    /// ```
2543    #[stable(feature = "rust1", since = "1.0.0")]
2544    #[deprecated(
2545        since = "1.33.0",
2546        note = "superseded by `trim_end_matches`",
2547        suggestion = "trim_end_matches"
2548    )]
2549    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2550    where
2551        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2552    {
2553        self.trim_end_matches(pat)
2554    }
2555
2556    /// Parses this string slice into another type.
2557    ///
2558    /// Because `parse` is so general, it can cause problems with type
2559    /// inference. As such, `parse` is one of the few times you'll see
2560    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2561    /// helps the inference algorithm understand specifically which type
2562    /// you're trying to parse into.
2563    ///
2564    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2565
2566    ///
2567    /// # Errors
2568    ///
2569    /// Will return [`Err`] if it's not possible to parse this string slice into
2570    /// the desired type.
2571    ///
2572    /// [`Err`]: FromStr::Err
2573    ///
2574    /// # Examples
2575    ///
2576    /// Basic usage:
2577    ///
2578    /// ```
2579    /// let four: u32 = "4".parse().unwrap();
2580    ///
2581    /// assert_eq!(4, four);
2582    /// ```
2583    ///
2584    /// Using the 'turbofish' instead of annotating `four`:
2585    ///
2586    /// ```
2587    /// let four = "4".parse::<u32>();
2588    ///
2589    /// assert_eq!(Ok(4), four);
2590    /// ```
2591    ///
2592    /// Failing to parse:
2593    ///
2594    /// ```
2595    /// let nope = "j".parse::<u32>();
2596    ///
2597    /// assert!(nope.is_err());
2598    /// ```
2599    #[inline]
2600    #[stable(feature = "rust1", since = "1.0.0")]
2601    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2602        FromStr::from_str(self)
2603    }
2604
2605    /// Checks if all characters in this string are within the ASCII range.
2606    ///
2607    /// # Examples
2608    ///
2609    /// ```
2610    /// let ascii = "hello!\n";
2611    /// let non_ascii = "Grüße, Jürgen ❤";
2612    ///
2613    /// assert!(ascii.is_ascii());
2614    /// assert!(!non_ascii.is_ascii());
2615    /// ```
2616    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2617    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2618    #[must_use]
2619    #[inline]
2620    pub const fn is_ascii(&self) -> bool {
2621        // We can treat each byte as character here: all multibyte characters
2622        // start with a byte that is not in the ASCII range, so we will stop
2623        // there already.
2624        self.as_bytes().is_ascii()
2625    }
2626
2627    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2628    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2629    #[unstable(feature = "ascii_char", issue = "110998")]
2630    #[must_use]
2631    #[inline]
2632    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2633        // Like in `is_ascii`, we can work on the bytes directly.
2634        self.as_bytes().as_ascii()
2635    }
2636
2637    /// Checks that two strings are an ASCII case-insensitive match.
2638    ///
2639    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2640    /// but without allocating and copying temporaries.
2641    ///
2642    /// # Examples
2643    ///
2644    /// ```
2645    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2646    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2647    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2648    /// ```
2649    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2650    #[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
2651    #[must_use]
2652    #[inline]
2653    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2654        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2655    }
2656
2657    /// Converts this string to its ASCII upper case equivalent in-place.
2658    ///
2659    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2660    /// but non-ASCII letters are unchanged.
2661    ///
2662    /// To return a new uppercased value without modifying the existing one, use
2663    /// [`to_ascii_uppercase()`].
2664    ///
2665    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2666    ///
2667    /// # Examples
2668    ///
2669    /// ```
2670    /// let mut s = String::from("Grüße, Jürgen ❤");
2671    ///
2672    /// s.make_ascii_uppercase();
2673    ///
2674    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2675    /// ```
2676    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2677    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2678    #[inline]
2679    pub const fn make_ascii_uppercase(&mut self) {
2680        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2681        let me = unsafe { self.as_bytes_mut() };
2682        me.make_ascii_uppercase()
2683    }
2684
2685    /// Converts this string to its ASCII lower case equivalent in-place.
2686    ///
2687    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2688    /// but non-ASCII letters are unchanged.
2689    ///
2690    /// To return a new lowercased value without modifying the existing one, use
2691    /// [`to_ascii_lowercase()`].
2692    ///
2693    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2694    ///
2695    /// # Examples
2696    ///
2697    /// ```
2698    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2699    ///
2700    /// s.make_ascii_lowercase();
2701    ///
2702    /// assert_eq!("grÜße, jÜrgen ❤", s);
2703    /// ```
2704    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2705    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2706    #[inline]
2707    pub const fn make_ascii_lowercase(&mut self) {
2708        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2709        let me = unsafe { self.as_bytes_mut() };
2710        me.make_ascii_lowercase()
2711    }
2712
2713    /// Returns a string slice with leading ASCII whitespace removed.
2714    ///
2715    /// 'Whitespace' refers to the definition used by
2716    /// [`u8::is_ascii_whitespace`].
2717    ///
2718    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2719    ///
2720    /// # Examples
2721    ///
2722    /// ```
2723    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2724    /// assert_eq!("  ".trim_ascii_start(), "");
2725    /// assert_eq!("".trim_ascii_start(), "");
2726    /// ```
2727    #[must_use = "this returns the trimmed string as a new slice, \
2728                  without modifying the original"]
2729    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2730    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2731    #[inline]
2732    pub const fn trim_ascii_start(&self) -> &str {
2733        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2734        // UTF-8.
2735        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2736    }
2737
2738    /// Returns a string slice with trailing ASCII whitespace removed.
2739    ///
2740    /// 'Whitespace' refers to the definition used by
2741    /// [`u8::is_ascii_whitespace`].
2742    ///
2743    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2744    ///
2745    /// # Examples
2746    ///
2747    /// ```
2748    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2749    /// assert_eq!("  ".trim_ascii_end(), "");
2750    /// assert_eq!("".trim_ascii_end(), "");
2751    /// ```
2752    #[must_use = "this returns the trimmed string as a new slice, \
2753                  without modifying the original"]
2754    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2755    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2756    #[inline]
2757    pub const fn trim_ascii_end(&self) -> &str {
2758        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2759        // UTF-8.
2760        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2761    }
2762
2763    /// Returns a string slice with leading and trailing ASCII whitespace
2764    /// removed.
2765    ///
2766    /// 'Whitespace' refers to the definition used by
2767    /// [`u8::is_ascii_whitespace`].
2768    ///
2769    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2770    ///
2771    /// # Examples
2772    ///
2773    /// ```
2774    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2775    /// assert_eq!("  ".trim_ascii(), "");
2776    /// assert_eq!("".trim_ascii(), "");
2777    /// ```
2778    #[must_use = "this returns the trimmed string as a new slice, \
2779                  without modifying the original"]
2780    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2781    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2782    #[inline]
2783    pub const fn trim_ascii(&self) -> &str {
2784        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2785        // UTF-8.
2786        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2787    }
2788
2789    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2790    ///
2791    /// Note: only extended grapheme codepoints that begin the string will be
2792    /// escaped.
2793    ///
2794    /// # Examples
2795    ///
2796    /// As an iterator:
2797    ///
2798    /// ```
2799    /// for c in "❤\n!".escape_debug() {
2800    ///     print!("{c}");
2801    /// }
2802    /// println!();
2803    /// ```
2804    ///
2805    /// Using `println!` directly:
2806    ///
2807    /// ```
2808    /// println!("{}", "❤\n!".escape_debug());
2809    /// ```
2810    ///
2811    ///
2812    /// Both are equivalent to:
2813    ///
2814    /// ```
2815    /// println!("❤\\n!");
2816    /// ```
2817    ///
2818    /// Using `to_string`:
2819    ///
2820    /// ```
2821    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2822    /// ```
2823    #[must_use = "this returns the escaped string as an iterator, \
2824                  without modifying the original"]
2825    #[stable(feature = "str_escape", since = "1.34.0")]
2826    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2827        let mut chars = self.chars();
2828        EscapeDebug {
2829            inner: chars
2830                .next()
2831                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2832                .into_iter()
2833                .flatten()
2834                .chain(chars.flat_map(CharEscapeDebugContinue)),
2835        }
2836    }
2837
2838    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2839    ///
2840    /// # Examples
2841    ///
2842    /// As an iterator:
2843    ///
2844    /// ```
2845    /// for c in "❤\n!".escape_default() {
2846    ///     print!("{c}");
2847    /// }
2848    /// println!();
2849    /// ```
2850    ///
2851    /// Using `println!` directly:
2852    ///
2853    /// ```
2854    /// println!("{}", "❤\n!".escape_default());
2855    /// ```
2856    ///
2857    ///
2858    /// Both are equivalent to:
2859    ///
2860    /// ```
2861    /// println!("\\u{{2764}}\\n!");
2862    /// ```
2863    ///
2864    /// Using `to_string`:
2865    ///
2866    /// ```
2867    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2868    /// ```
2869    #[must_use = "this returns the escaped string as an iterator, \
2870                  without modifying the original"]
2871    #[stable(feature = "str_escape", since = "1.34.0")]
2872    pub fn escape_default(&self) -> EscapeDefault<'_> {
2873        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2874    }
2875
2876    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2877    ///
2878    /// # Examples
2879    ///
2880    /// As an iterator:
2881    ///
2882    /// ```
2883    /// for c in "❤\n!".escape_unicode() {
2884    ///     print!("{c}");
2885    /// }
2886    /// println!();
2887    /// ```
2888    ///
2889    /// Using `println!` directly:
2890    ///
2891    /// ```
2892    /// println!("{}", "❤\n!".escape_unicode());
2893    /// ```
2894    ///
2895    ///
2896    /// Both are equivalent to:
2897    ///
2898    /// ```
2899    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
2900    /// ```
2901    ///
2902    /// Using `to_string`:
2903    ///
2904    /// ```
2905    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
2906    /// ```
2907    #[must_use = "this returns the escaped string as an iterator, \
2908                  without modifying the original"]
2909    #[stable(feature = "str_escape", since = "1.34.0")]
2910    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
2911        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
2912    }
2913
2914    /// Returns the range that a substring points to.
2915    ///
2916    /// Returns `None` if `substr` does not point within `self`.
2917    ///
2918    /// Unlike [`str::find`], **this does not search through the string**.
2919    /// Instead, it uses pointer arithmetic to find where in the string
2920    /// `substr` is derived from.
2921    ///
2922    /// This is useful for extending [`str::split`] and similar methods.
2923    ///
2924    /// Note that this method may return false positives (typically either
2925    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
2926    /// zero-length `str` that points at the beginning or end of another,
2927    /// independent, `str`.
2928    ///
2929    /// # Examples
2930    /// ```
2931    /// #![feature(substr_range)]
2932    ///
2933    /// let data = "a, b, b, a";
2934    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
2935    ///
2936    /// assert_eq!(iter.next(), Some(0..1));
2937    /// assert_eq!(iter.next(), Some(3..4));
2938    /// assert_eq!(iter.next(), Some(6..7));
2939    /// assert_eq!(iter.next(), Some(9..10));
2940    /// ```
2941    #[must_use]
2942    #[unstable(feature = "substr_range", issue = "126769")]
2943    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
2944        self.as_bytes().subslice_range(substr.as_bytes())
2945    }
2946
2947    /// Returns the same string as a string slice `&str`.
2948    ///
2949    /// This method is redundant when used directly on `&str`, but
2950    /// it helps dereferencing other string-like types to string slices,
2951    /// for example references to `Box<str>` or `Arc<str>`.
2952    #[inline]
2953    #[unstable(feature = "str_as_str", issue = "130366")]
2954    pub fn as_str(&self) -> &str {
2955        self
2956    }
2957}
2958
2959#[stable(feature = "rust1", since = "1.0.0")]
2960impl AsRef<[u8]> for str {
2961    #[inline]
2962    fn as_ref(&self) -> &[u8] {
2963        self.as_bytes()
2964    }
2965}
2966
2967#[stable(feature = "rust1", since = "1.0.0")]
2968impl Default for &str {
2969    /// Creates an empty str
2970    #[inline]
2971    fn default() -> Self {
2972        ""
2973    }
2974}
2975
2976#[stable(feature = "default_mut_str", since = "1.28.0")]
2977impl Default for &mut str {
2978    /// Creates an empty mutable str
2979    #[inline]
2980    fn default() -> Self {
2981        // SAFETY: The empty string is valid UTF-8.
2982        unsafe { from_utf8_unchecked_mut(&mut []) }
2983    }
2984}
2985
2986impl_fn_for_zst! {
2987    /// A nameable, cloneable fn type
2988    #[derive(Clone)]
2989    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
2990        let Some(line) = line.strip_suffix('\n') else { return line };
2991        let Some(line) = line.strip_suffix('\r') else { return line };
2992        line
2993    };
2994
2995    #[derive(Clone)]
2996    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
2997        c.escape_debug_ext(EscapeDebugExtArgs {
2998            escape_grapheme_extended: false,
2999            escape_single_quote: true,
3000            escape_double_quote: true
3001        })
3002    };
3003
3004    #[derive(Clone)]
3005    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3006        c.escape_unicode()
3007    };
3008    #[derive(Clone)]
3009    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3010        c.escape_default()
3011    };
3012
3013    #[derive(Clone)]
3014    struct IsWhitespace impl Fn = |c: char| -> bool {
3015        c.is_whitespace()
3016    };
3017
3018    #[derive(Clone)]
3019    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3020        byte.is_ascii_whitespace()
3021    };
3022
3023    #[derive(Clone)]
3024    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3025        !s.is_empty()
3026    };
3027
3028    #[derive(Clone)]
3029    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3030        !s.is_empty()
3031    };
3032
3033    #[derive(Clone)]
3034    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3035        // SAFETY: not safe
3036        unsafe { from_utf8_unchecked(bytes) }
3037    };
3038}
3039
3040// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3041#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3042impl !crate::error::Error for &str {}