core/slice/mod.rs
1//! Slice management and manipulation.
2//!
3//! For more details see [`std::slice`].
4//!
5//! [`std::slice`]: ../../std/slice/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9use crate::cmp::Ordering::{self, Equal, Greater, Less};
10use crate::intrinsics::{exact_div, unchecked_sub};
11use crate::mem::{self, MaybeUninit, SizedTypeProperties};
12use crate::num::NonZero;
13use crate::ops::{OneSidedRange, OneSidedRangeBound, Range, RangeBounds, RangeInclusive};
14use crate::panic::const_panic;
15use crate::simd::{self, Simd};
16use crate::ub_checks::assert_unsafe_precondition;
17use crate::{fmt, hint, ptr, range, slice};
18
19#[unstable(
20 feature = "slice_internals",
21 issue = "none",
22 reason = "exposed from core to be reused in std; use the memchr crate"
23)]
24/// Pure Rust memchr implementation, taken from rust-memchr
25pub mod memchr;
26
27#[unstable(
28 feature = "slice_internals",
29 issue = "none",
30 reason = "exposed from core to be reused in std;"
31)]
32#[doc(hidden)]
33pub mod sort;
34
35mod ascii;
36mod cmp;
37pub(crate) mod index;
38mod iter;
39mod raw;
40mod rotate;
41mod specialize;
42
43#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
44pub use ascii::EscapeAscii;
45#[unstable(feature = "str_internals", issue = "none")]
46#[doc(hidden)]
47pub use ascii::is_ascii_simple;
48#[stable(feature = "slice_get_slice", since = "1.28.0")]
49pub use index::SliceIndex;
50#[unstable(feature = "slice_range", issue = "76393")]
51pub use index::{range, try_range};
52#[unstable(feature = "array_windows", issue = "75027")]
53pub use iter::ArrayWindows;
54#[unstable(feature = "array_chunks", issue = "74985")]
55pub use iter::{ArrayChunks, ArrayChunksMut};
56#[stable(feature = "slice_group_by", since = "1.77.0")]
57pub use iter::{ChunkBy, ChunkByMut};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use iter::{Chunks, ChunksMut, Windows};
60#[stable(feature = "chunks_exact", since = "1.31.0")]
61pub use iter::{ChunksExact, ChunksExactMut};
62#[stable(feature = "rust1", since = "1.0.0")]
63pub use iter::{Iter, IterMut};
64#[stable(feature = "rchunks", since = "1.31.0")]
65pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
66#[stable(feature = "slice_rsplit", since = "1.27.0")]
67pub use iter::{RSplit, RSplitMut};
68#[stable(feature = "rust1", since = "1.0.0")]
69pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
70#[stable(feature = "split_inclusive", since = "1.51.0")]
71pub use iter::{SplitInclusive, SplitInclusiveMut};
72#[stable(feature = "from_ref", since = "1.28.0")]
73pub use raw::{from_mut, from_ref};
74#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
75pub use raw::{from_mut_ptr_range, from_ptr_range};
76#[stable(feature = "rust1", since = "1.0.0")]
77pub use raw::{from_raw_parts, from_raw_parts_mut};
78
79/// Calculates the direction and split point of a one-sided range.
80///
81/// This is a helper function for `split_off` and `split_off_mut` that returns
82/// the direction of the split (front or back) as well as the index at
83/// which to split. Returns `None` if the split index would overflow.
84#[inline]
85fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
86 use OneSidedRangeBound::{End, EndInclusive, StartInclusive};
87
88 Some(match range.bound() {
89 (StartInclusive, i) => (Direction::Back, i),
90 (End, i) => (Direction::Front, i),
91 (EndInclusive, i) => (Direction::Front, i.checked_add(1)?),
92 })
93}
94
95enum Direction {
96 Front,
97 Back,
98}
99
100impl<T> [T] {
101 /// Returns the number of elements in the slice.
102 ///
103 /// # Examples
104 ///
105 /// ```
106 /// let a = [1, 2, 3];
107 /// assert_eq!(a.len(), 3);
108 /// ```
109 #[lang = "slice_len_fn"]
110 #[stable(feature = "rust1", since = "1.0.0")]
111 #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
112 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
113 #[inline]
114 #[must_use]
115 pub const fn len(&self) -> usize {
116 ptr::metadata(self)
117 }
118
119 /// Returns `true` if the slice has a length of 0.
120 ///
121 /// # Examples
122 ///
123 /// ```
124 /// let a = [1, 2, 3];
125 /// assert!(!a.is_empty());
126 ///
127 /// let b: &[i32] = &[];
128 /// assert!(b.is_empty());
129 /// ```
130 #[stable(feature = "rust1", since = "1.0.0")]
131 #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
132 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
133 #[inline]
134 #[must_use]
135 pub const fn is_empty(&self) -> bool {
136 self.len() == 0
137 }
138
139 /// Returns the first element of the slice, or `None` if it is empty.
140 ///
141 /// # Examples
142 ///
143 /// ```
144 /// let v = [10, 40, 30];
145 /// assert_eq!(Some(&10), v.first());
146 ///
147 /// let w: &[i32] = &[];
148 /// assert_eq!(None, w.first());
149 /// ```
150 #[stable(feature = "rust1", since = "1.0.0")]
151 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
152 #[inline]
153 #[must_use]
154 pub const fn first(&self) -> Option<&T> {
155 if let [first, ..] = self { Some(first) } else { None }
156 }
157
158 /// Returns a mutable reference to the first element of the slice, or `None` if it is empty.
159 ///
160 /// # Examples
161 ///
162 /// ```
163 /// let x = &mut [0, 1, 2];
164 ///
165 /// if let Some(first) = x.first_mut() {
166 /// *first = 5;
167 /// }
168 /// assert_eq!(x, &[5, 1, 2]);
169 ///
170 /// let y: &mut [i32] = &mut [];
171 /// assert_eq!(None, y.first_mut());
172 /// ```
173 #[stable(feature = "rust1", since = "1.0.0")]
174 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
175 #[inline]
176 #[must_use]
177 pub const fn first_mut(&mut self) -> Option<&mut T> {
178 if let [first, ..] = self { Some(first) } else { None }
179 }
180
181 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
182 ///
183 /// # Examples
184 ///
185 /// ```
186 /// let x = &[0, 1, 2];
187 ///
188 /// if let Some((first, elements)) = x.split_first() {
189 /// assert_eq!(first, &0);
190 /// assert_eq!(elements, &[1, 2]);
191 /// }
192 /// ```
193 #[stable(feature = "slice_splits", since = "1.5.0")]
194 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
195 #[inline]
196 #[must_use]
197 pub const fn split_first(&self) -> Option<(&T, &[T])> {
198 if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
199 }
200
201 /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
202 ///
203 /// # Examples
204 ///
205 /// ```
206 /// let x = &mut [0, 1, 2];
207 ///
208 /// if let Some((first, elements)) = x.split_first_mut() {
209 /// *first = 3;
210 /// elements[0] = 4;
211 /// elements[1] = 5;
212 /// }
213 /// assert_eq!(x, &[3, 4, 5]);
214 /// ```
215 #[stable(feature = "slice_splits", since = "1.5.0")]
216 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
217 #[inline]
218 #[must_use]
219 pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
220 if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
221 }
222
223 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
224 ///
225 /// # Examples
226 ///
227 /// ```
228 /// let x = &[0, 1, 2];
229 ///
230 /// if let Some((last, elements)) = x.split_last() {
231 /// assert_eq!(last, &2);
232 /// assert_eq!(elements, &[0, 1]);
233 /// }
234 /// ```
235 #[stable(feature = "slice_splits", since = "1.5.0")]
236 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
237 #[inline]
238 #[must_use]
239 pub const fn split_last(&self) -> Option<(&T, &[T])> {
240 if let [init @ .., last] = self { Some((last, init)) } else { None }
241 }
242
243 /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
244 ///
245 /// # Examples
246 ///
247 /// ```
248 /// let x = &mut [0, 1, 2];
249 ///
250 /// if let Some((last, elements)) = x.split_last_mut() {
251 /// *last = 3;
252 /// elements[0] = 4;
253 /// elements[1] = 5;
254 /// }
255 /// assert_eq!(x, &[4, 5, 3]);
256 /// ```
257 #[stable(feature = "slice_splits", since = "1.5.0")]
258 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
259 #[inline]
260 #[must_use]
261 pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
262 if let [init @ .., last] = self { Some((last, init)) } else { None }
263 }
264
265 /// Returns the last element of the slice, or `None` if it is empty.
266 ///
267 /// # Examples
268 ///
269 /// ```
270 /// let v = [10, 40, 30];
271 /// assert_eq!(Some(&30), v.last());
272 ///
273 /// let w: &[i32] = &[];
274 /// assert_eq!(None, w.last());
275 /// ```
276 #[stable(feature = "rust1", since = "1.0.0")]
277 #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
278 #[inline]
279 #[must_use]
280 pub const fn last(&self) -> Option<&T> {
281 if let [.., last] = self { Some(last) } else { None }
282 }
283
284 /// Returns a mutable reference to the last item in the slice, or `None` if it is empty.
285 ///
286 /// # Examples
287 ///
288 /// ```
289 /// let x = &mut [0, 1, 2];
290 ///
291 /// if let Some(last) = x.last_mut() {
292 /// *last = 10;
293 /// }
294 /// assert_eq!(x, &[0, 1, 10]);
295 ///
296 /// let y: &mut [i32] = &mut [];
297 /// assert_eq!(None, y.last_mut());
298 /// ```
299 #[stable(feature = "rust1", since = "1.0.0")]
300 #[rustc_const_stable(feature = "const_slice_first_last", since = "1.83.0")]
301 #[inline]
302 #[must_use]
303 pub const fn last_mut(&mut self) -> Option<&mut T> {
304 if let [.., last] = self { Some(last) } else { None }
305 }
306
307 /// Returns an array reference to the first `N` items in the slice.
308 ///
309 /// If the slice is not at least `N` in length, this will return `None`.
310 ///
311 /// # Examples
312 ///
313 /// ```
314 /// let u = [10, 40, 30];
315 /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
316 ///
317 /// let v: &[i32] = &[10];
318 /// assert_eq!(None, v.first_chunk::<2>());
319 ///
320 /// let w: &[i32] = &[];
321 /// assert_eq!(Some(&[]), w.first_chunk::<0>());
322 /// ```
323 #[inline]
324 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
325 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
326 pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
327 if self.len() < N {
328 None
329 } else {
330 // SAFETY: We explicitly check for the correct number of elements,
331 // and do not let the reference outlive the slice.
332 Some(unsafe { &*(self.as_ptr().cast::<[T; N]>()) })
333 }
334 }
335
336 /// Returns a mutable array reference to the first `N` items in the slice.
337 ///
338 /// If the slice is not at least `N` in length, this will return `None`.
339 ///
340 /// # Examples
341 ///
342 /// ```
343 /// let x = &mut [0, 1, 2];
344 ///
345 /// if let Some(first) = x.first_chunk_mut::<2>() {
346 /// first[0] = 5;
347 /// first[1] = 4;
348 /// }
349 /// assert_eq!(x, &[5, 4, 2]);
350 ///
351 /// assert_eq!(None, x.first_chunk_mut::<4>());
352 /// ```
353 #[inline]
354 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
355 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
356 pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
357 if self.len() < N {
358 None
359 } else {
360 // SAFETY: We explicitly check for the correct number of elements,
361 // do not let the reference outlive the slice,
362 // and require exclusive access to the entire slice to mutate the chunk.
363 Some(unsafe { &mut *(self.as_mut_ptr().cast::<[T; N]>()) })
364 }
365 }
366
367 /// Returns an array reference to the first `N` items in the slice and the remaining slice.
368 ///
369 /// If the slice is not at least `N` in length, this will return `None`.
370 ///
371 /// # Examples
372 ///
373 /// ```
374 /// let x = &[0, 1, 2];
375 ///
376 /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
377 /// assert_eq!(first, &[0, 1]);
378 /// assert_eq!(elements, &[2]);
379 /// }
380 ///
381 /// assert_eq!(None, x.split_first_chunk::<4>());
382 /// ```
383 #[inline]
384 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
385 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
386 pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
387 let Some((first, tail)) = self.split_at_checked(N) else { return None };
388
389 // SAFETY: We explicitly check for the correct number of elements,
390 // and do not let the references outlive the slice.
391 Some((unsafe { &*(first.as_ptr().cast::<[T; N]>()) }, tail))
392 }
393
394 /// Returns a mutable array reference to the first `N` items in the slice and the remaining
395 /// slice.
396 ///
397 /// If the slice is not at least `N` in length, this will return `None`.
398 ///
399 /// # Examples
400 ///
401 /// ```
402 /// let x = &mut [0, 1, 2];
403 ///
404 /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
405 /// first[0] = 3;
406 /// first[1] = 4;
407 /// elements[0] = 5;
408 /// }
409 /// assert_eq!(x, &[3, 4, 5]);
410 ///
411 /// assert_eq!(None, x.split_first_chunk_mut::<4>());
412 /// ```
413 #[inline]
414 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
415 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
416 pub const fn split_first_chunk_mut<const N: usize>(
417 &mut self,
418 ) -> Option<(&mut [T; N], &mut [T])> {
419 let Some((first, tail)) = self.split_at_mut_checked(N) else { return None };
420
421 // SAFETY: We explicitly check for the correct number of elements,
422 // do not let the reference outlive the slice,
423 // and enforce exclusive mutability of the chunk by the split.
424 Some((unsafe { &mut *(first.as_mut_ptr().cast::<[T; N]>()) }, tail))
425 }
426
427 /// Returns an array reference to the last `N` items in the slice and the remaining slice.
428 ///
429 /// If the slice is not at least `N` in length, this will return `None`.
430 ///
431 /// # Examples
432 ///
433 /// ```
434 /// let x = &[0, 1, 2];
435 ///
436 /// if let Some((elements, last)) = x.split_last_chunk::<2>() {
437 /// assert_eq!(elements, &[0]);
438 /// assert_eq!(last, &[1, 2]);
439 /// }
440 ///
441 /// assert_eq!(None, x.split_last_chunk::<4>());
442 /// ```
443 #[inline]
444 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
445 #[rustc_const_stable(feature = "slice_first_last_chunk", since = "1.77.0")]
446 pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])> {
447 let Some(index) = self.len().checked_sub(N) else { return None };
448 let (init, last) = self.split_at(index);
449
450 // SAFETY: We explicitly check for the correct number of elements,
451 // and do not let the references outlive the slice.
452 Some((init, unsafe { &*(last.as_ptr().cast::<[T; N]>()) }))
453 }
454
455 /// Returns a mutable array reference to the last `N` items in the slice and the remaining
456 /// slice.
457 ///
458 /// If the slice is not at least `N` in length, this will return `None`.
459 ///
460 /// # Examples
461 ///
462 /// ```
463 /// let x = &mut [0, 1, 2];
464 ///
465 /// if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
466 /// last[0] = 3;
467 /// last[1] = 4;
468 /// elements[0] = 5;
469 /// }
470 /// assert_eq!(x, &[5, 3, 4]);
471 ///
472 /// assert_eq!(None, x.split_last_chunk_mut::<4>());
473 /// ```
474 #[inline]
475 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
476 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
477 pub const fn split_last_chunk_mut<const N: usize>(
478 &mut self,
479 ) -> Option<(&mut [T], &mut [T; N])> {
480 let Some(index) = self.len().checked_sub(N) else { return None };
481 let (init, last) = self.split_at_mut(index);
482
483 // SAFETY: We explicitly check for the correct number of elements,
484 // do not let the reference outlive the slice,
485 // and enforce exclusive mutability of the chunk by the split.
486 Some((init, unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) }))
487 }
488
489 /// Returns an array reference to the last `N` items in the slice.
490 ///
491 /// If the slice is not at least `N` in length, this will return `None`.
492 ///
493 /// # Examples
494 ///
495 /// ```
496 /// let u = [10, 40, 30];
497 /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
498 ///
499 /// let v: &[i32] = &[10];
500 /// assert_eq!(None, v.last_chunk::<2>());
501 ///
502 /// let w: &[i32] = &[];
503 /// assert_eq!(Some(&[]), w.last_chunk::<0>());
504 /// ```
505 #[inline]
506 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
507 #[rustc_const_stable(feature = "const_slice_last_chunk", since = "1.80.0")]
508 pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
509 // FIXME(const-hack): Without const traits, we need this instead of `get`.
510 let Some(index) = self.len().checked_sub(N) else { return None };
511 let (_, last) = self.split_at(index);
512
513 // SAFETY: We explicitly check for the correct number of elements,
514 // and do not let the references outlive the slice.
515 Some(unsafe { &*(last.as_ptr().cast::<[T; N]>()) })
516 }
517
518 /// Returns a mutable array reference to the last `N` items in the slice.
519 ///
520 /// If the slice is not at least `N` in length, this will return `None`.
521 ///
522 /// # Examples
523 ///
524 /// ```
525 /// let x = &mut [0, 1, 2];
526 ///
527 /// if let Some(last) = x.last_chunk_mut::<2>() {
528 /// last[0] = 10;
529 /// last[1] = 20;
530 /// }
531 /// assert_eq!(x, &[0, 10, 20]);
532 ///
533 /// assert_eq!(None, x.last_chunk_mut::<4>());
534 /// ```
535 #[inline]
536 #[stable(feature = "slice_first_last_chunk", since = "1.77.0")]
537 #[rustc_const_stable(feature = "const_slice_first_last_chunk", since = "1.83.0")]
538 pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
539 // FIXME(const-hack): Without const traits, we need this instead of `get`.
540 let Some(index) = self.len().checked_sub(N) else { return None };
541 let (_, last) = self.split_at_mut(index);
542
543 // SAFETY: We explicitly check for the correct number of elements,
544 // do not let the reference outlive the slice,
545 // and require exclusive access to the entire slice to mutate the chunk.
546 Some(unsafe { &mut *(last.as_mut_ptr().cast::<[T; N]>()) })
547 }
548
549 /// Returns a reference to an element or subslice depending on the type of
550 /// index.
551 ///
552 /// - If given a position, returns a reference to the element at that
553 /// position or `None` if out of bounds.
554 /// - If given a range, returns the subslice corresponding to that range,
555 /// or `None` if out of bounds.
556 ///
557 /// # Examples
558 ///
559 /// ```
560 /// let v = [10, 40, 30];
561 /// assert_eq!(Some(&40), v.get(1));
562 /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
563 /// assert_eq!(None, v.get(3));
564 /// assert_eq!(None, v.get(0..4));
565 /// ```
566 #[stable(feature = "rust1", since = "1.0.0")]
567 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
568 #[inline]
569 #[must_use]
570 pub fn get<I>(&self, index: I) -> Option<&I::Output>
571 where
572 I: SliceIndex<Self>,
573 {
574 index.get(self)
575 }
576
577 /// Returns a mutable reference to an element or subslice depending on the
578 /// type of index (see [`get`]) or `None` if the index is out of bounds.
579 ///
580 /// [`get`]: slice::get
581 ///
582 /// # Examples
583 ///
584 /// ```
585 /// let x = &mut [0, 1, 2];
586 ///
587 /// if let Some(elem) = x.get_mut(1) {
588 /// *elem = 42;
589 /// }
590 /// assert_eq!(x, &[0, 42, 2]);
591 /// ```
592 #[stable(feature = "rust1", since = "1.0.0")]
593 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
594 #[inline]
595 #[must_use]
596 pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
597 where
598 I: SliceIndex<Self>,
599 {
600 index.get_mut(self)
601 }
602
603 /// Returns a reference to an element or subslice, without doing bounds
604 /// checking.
605 ///
606 /// For a safe alternative see [`get`].
607 ///
608 /// # Safety
609 ///
610 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
611 /// even if the resulting reference is not used.
612 ///
613 /// You can think of this like `.get(index).unwrap_unchecked()`. It's UB
614 /// to call `.get_unchecked(len)`, even if you immediately convert to a
615 /// pointer. And it's UB to call `.get_unchecked(..len + 1)`,
616 /// `.get_unchecked(..=len)`, or similar.
617 ///
618 /// [`get`]: slice::get
619 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
620 ///
621 /// # Examples
622 ///
623 /// ```
624 /// let x = &[1, 2, 4];
625 ///
626 /// unsafe {
627 /// assert_eq!(x.get_unchecked(1), &2);
628 /// }
629 /// ```
630 #[stable(feature = "rust1", since = "1.0.0")]
631 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
632 #[inline]
633 #[must_use]
634 pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
635 where
636 I: SliceIndex<Self>,
637 {
638 // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
639 // the slice is dereferenceable because `self` is a safe reference.
640 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
641 unsafe { &*index.get_unchecked(self) }
642 }
643
644 /// Returns a mutable reference to an element or subslice, without doing
645 /// bounds checking.
646 ///
647 /// For a safe alternative see [`get_mut`].
648 ///
649 /// # Safety
650 ///
651 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
652 /// even if the resulting reference is not used.
653 ///
654 /// You can think of this like `.get_mut(index).unwrap_unchecked()`. It's
655 /// UB to call `.get_unchecked_mut(len)`, even if you immediately convert
656 /// to a pointer. And it's UB to call `.get_unchecked_mut(..len + 1)`,
657 /// `.get_unchecked_mut(..=len)`, or similar.
658 ///
659 /// [`get_mut`]: slice::get_mut
660 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
661 ///
662 /// # Examples
663 ///
664 /// ```
665 /// let x = &mut [1, 2, 4];
666 ///
667 /// unsafe {
668 /// let elem = x.get_unchecked_mut(1);
669 /// *elem = 13;
670 /// }
671 /// assert_eq!(x, &[1, 13, 4]);
672 /// ```
673 #[stable(feature = "rust1", since = "1.0.0")]
674 #[cfg_attr(not(bootstrap), rustc_no_implicit_autorefs)]
675 #[inline]
676 #[must_use]
677 pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
678 where
679 I: SliceIndex<Self>,
680 {
681 // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
682 // the slice is dereferenceable because `self` is a safe reference.
683 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
684 unsafe { &mut *index.get_unchecked_mut(self) }
685 }
686
687 /// Returns a raw pointer to the slice's buffer.
688 ///
689 /// The caller must ensure that the slice outlives the pointer this
690 /// function returns, or else it will end up dangling.
691 ///
692 /// The caller must also ensure that the memory the pointer (non-transitively) points to
693 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
694 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
695 ///
696 /// Modifying the container referenced by this slice may cause its buffer
697 /// to be reallocated, which would also make any pointers to it invalid.
698 ///
699 /// # Examples
700 ///
701 /// ```
702 /// let x = &[1, 2, 4];
703 /// let x_ptr = x.as_ptr();
704 ///
705 /// unsafe {
706 /// for i in 0..x.len() {
707 /// assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
708 /// }
709 /// }
710 /// ```
711 ///
712 /// [`as_mut_ptr`]: slice::as_mut_ptr
713 #[stable(feature = "rust1", since = "1.0.0")]
714 #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
715 #[rustc_never_returns_null_ptr]
716 #[rustc_as_ptr]
717 #[inline(always)]
718 #[must_use]
719 pub const fn as_ptr(&self) -> *const T {
720 self as *const [T] as *const T
721 }
722
723 /// Returns an unsafe mutable pointer to the slice's buffer.
724 ///
725 /// The caller must ensure that the slice outlives the pointer this
726 /// function returns, or else it will end up dangling.
727 ///
728 /// Modifying the container referenced by this slice may cause its buffer
729 /// to be reallocated, which would also make any pointers to it invalid.
730 ///
731 /// # Examples
732 ///
733 /// ```
734 /// let x = &mut [1, 2, 4];
735 /// let x_ptr = x.as_mut_ptr();
736 ///
737 /// unsafe {
738 /// for i in 0..x.len() {
739 /// *x_ptr.add(i) += 2;
740 /// }
741 /// }
742 /// assert_eq!(x, &[3, 4, 6]);
743 /// ```
744 #[stable(feature = "rust1", since = "1.0.0")]
745 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
746 #[rustc_never_returns_null_ptr]
747 #[rustc_as_ptr]
748 #[inline(always)]
749 #[must_use]
750 pub const fn as_mut_ptr(&mut self) -> *mut T {
751 self as *mut [T] as *mut T
752 }
753
754 /// Returns the two raw pointers spanning the slice.
755 ///
756 /// The returned range is half-open, which means that the end pointer
757 /// points *one past* the last element of the slice. This way, an empty
758 /// slice is represented by two equal pointers, and the difference between
759 /// the two pointers represents the size of the slice.
760 ///
761 /// See [`as_ptr`] for warnings on using these pointers. The end pointer
762 /// requires extra caution, as it does not point to a valid element in the
763 /// slice.
764 ///
765 /// This function is useful for interacting with foreign interfaces which
766 /// use two pointers to refer to a range of elements in memory, as is
767 /// common in C++.
768 ///
769 /// It can also be useful to check if a pointer to an element refers to an
770 /// element of this slice:
771 ///
772 /// ```
773 /// let a = [1, 2, 3];
774 /// let x = &a[1] as *const _;
775 /// let y = &5 as *const _;
776 ///
777 /// assert!(a.as_ptr_range().contains(&x));
778 /// assert!(!a.as_ptr_range().contains(&y));
779 /// ```
780 ///
781 /// [`as_ptr`]: slice::as_ptr
782 #[stable(feature = "slice_ptr_range", since = "1.48.0")]
783 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
784 #[inline]
785 #[must_use]
786 pub const fn as_ptr_range(&self) -> Range<*const T> {
787 let start = self.as_ptr();
788 // SAFETY: The `add` here is safe, because:
789 //
790 // - Both pointers are part of the same object, as pointing directly
791 // past the object also counts.
792 //
793 // - The size of the slice is never larger than `isize::MAX` bytes, as
794 // noted here:
795 // - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
796 // - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
797 // - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
798 // (This doesn't seem normative yet, but the very same assumption is
799 // made in many places, including the Index implementation of slices.)
800 //
801 // - There is no wrapping around involved, as slices do not wrap past
802 // the end of the address space.
803 //
804 // See the documentation of [`pointer::add`].
805 let end = unsafe { start.add(self.len()) };
806 start..end
807 }
808
809 /// Returns the two unsafe mutable pointers spanning the slice.
810 ///
811 /// The returned range is half-open, which means that the end pointer
812 /// points *one past* the last element of the slice. This way, an empty
813 /// slice is represented by two equal pointers, and the difference between
814 /// the two pointers represents the size of the slice.
815 ///
816 /// See [`as_mut_ptr`] for warnings on using these pointers. The end
817 /// pointer requires extra caution, as it does not point to a valid element
818 /// in the slice.
819 ///
820 /// This function is useful for interacting with foreign interfaces which
821 /// use two pointers to refer to a range of elements in memory, as is
822 /// common in C++.
823 ///
824 /// [`as_mut_ptr`]: slice::as_mut_ptr
825 #[stable(feature = "slice_ptr_range", since = "1.48.0")]
826 #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
827 #[inline]
828 #[must_use]
829 pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
830 let start = self.as_mut_ptr();
831 // SAFETY: See as_ptr_range() above for why `add` here is safe.
832 let end = unsafe { start.add(self.len()) };
833 start..end
834 }
835
836 /// Gets a reference to the underlying array.
837 ///
838 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
839 #[unstable(feature = "slice_as_array", issue = "133508")]
840 #[inline]
841 #[must_use]
842 pub const fn as_array<const N: usize>(&self) -> Option<&[T; N]> {
843 if self.len() == N {
844 let ptr = self.as_ptr() as *const [T; N];
845
846 // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
847 let me = unsafe { &*ptr };
848 Some(me)
849 } else {
850 None
851 }
852 }
853
854 /// Gets a mutable reference to the slice's underlying array.
855 ///
856 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
857 #[unstable(feature = "slice_as_array", issue = "133508")]
858 #[inline]
859 #[must_use]
860 pub const fn as_mut_array<const N: usize>(&mut self) -> Option<&mut [T; N]> {
861 if self.len() == N {
862 let ptr = self.as_mut_ptr() as *mut [T; N];
863
864 // SAFETY: The underlying array of a slice can be reinterpreted as an actual array `[T; N]` if `N` is not greater than the slice's length.
865 let me = unsafe { &mut *ptr };
866 Some(me)
867 } else {
868 None
869 }
870 }
871
872 /// Swaps two elements in the slice.
873 ///
874 /// If `a` equals to `b`, it's guaranteed that elements won't change value.
875 ///
876 /// # Arguments
877 ///
878 /// * a - The index of the first element
879 /// * b - The index of the second element
880 ///
881 /// # Panics
882 ///
883 /// Panics if `a` or `b` are out of bounds.
884 ///
885 /// # Examples
886 ///
887 /// ```
888 /// let mut v = ["a", "b", "c", "d", "e"];
889 /// v.swap(2, 4);
890 /// assert!(v == ["a", "b", "e", "d", "c"]);
891 /// ```
892 #[stable(feature = "rust1", since = "1.0.0")]
893 #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
894 #[inline]
895 #[track_caller]
896 pub const fn swap(&mut self, a: usize, b: usize) {
897 // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
898 // Can't take two mutable loans from one vector, so instead use raw pointers.
899 let pa = &raw mut self[a];
900 let pb = &raw mut self[b];
901 // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
902 // to elements in the slice and therefore are guaranteed to be valid and aligned.
903 // Note that accessing the elements behind `a` and `b` is checked and will
904 // panic when out of bounds.
905 unsafe {
906 ptr::swap(pa, pb);
907 }
908 }
909
910 /// Swaps two elements in the slice, without doing bounds checking.
911 ///
912 /// For a safe alternative see [`swap`].
913 ///
914 /// # Arguments
915 ///
916 /// * a - The index of the first element
917 /// * b - The index of the second element
918 ///
919 /// # Safety
920 ///
921 /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
922 /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
923 ///
924 /// # Examples
925 ///
926 /// ```
927 /// #![feature(slice_swap_unchecked)]
928 ///
929 /// let mut v = ["a", "b", "c", "d"];
930 /// // SAFETY: we know that 1 and 3 are both indices of the slice
931 /// unsafe { v.swap_unchecked(1, 3) };
932 /// assert!(v == ["a", "d", "c", "b"]);
933 /// ```
934 ///
935 /// [`swap`]: slice::swap
936 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
937 #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
938 pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
939 assert_unsafe_precondition!(
940 check_library_ub,
941 "slice::swap_unchecked requires that the indices are within the slice",
942 (
943 len: usize = self.len(),
944 a: usize = a,
945 b: usize = b,
946 ) => a < len && b < len,
947 );
948
949 let ptr = self.as_mut_ptr();
950 // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
951 unsafe {
952 ptr::swap(ptr.add(a), ptr.add(b));
953 }
954 }
955
956 /// Reverses the order of elements in the slice, in place.
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// let mut v = [1, 2, 3];
962 /// v.reverse();
963 /// assert!(v == [3, 2, 1]);
964 /// ```
965 #[stable(feature = "rust1", since = "1.0.0")]
966 #[rustc_const_unstable(feature = "const_slice_reverse", issue = "135120")]
967 #[inline]
968 pub const fn reverse(&mut self) {
969 let half_len = self.len() / 2;
970 let Range { start, end } = self.as_mut_ptr_range();
971
972 // These slices will skip the middle item for an odd length,
973 // since that one doesn't need to move.
974 let (front_half, back_half) =
975 // SAFETY: Both are subparts of the original slice, so the memory
976 // range is valid, and they don't overlap because they're each only
977 // half (or less) of the original slice.
978 unsafe {
979 (
980 slice::from_raw_parts_mut(start, half_len),
981 slice::from_raw_parts_mut(end.sub(half_len), half_len),
982 )
983 };
984
985 // Introducing a function boundary here means that the two halves
986 // get `noalias` markers, allowing better optimization as LLVM
987 // knows that they're disjoint, unlike in the original slice.
988 revswap(front_half, back_half, half_len);
989
990 #[inline]
991 const fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
992 debug_assert!(a.len() == n);
993 debug_assert!(b.len() == n);
994
995 // Because this function is first compiled in isolation,
996 // this check tells LLVM that the indexing below is
997 // in-bounds. Then after inlining -- once the actual
998 // lengths of the slices are known -- it's removed.
999 let (a, _) = a.split_at_mut(n);
1000 let (b, _) = b.split_at_mut(n);
1001
1002 let mut i = 0;
1003 while i < n {
1004 mem::swap(&mut a[i], &mut b[n - 1 - i]);
1005 i += 1;
1006 }
1007 }
1008 }
1009
1010 /// Returns an iterator over the slice.
1011 ///
1012 /// The iterator yields all items from start to end.
1013 ///
1014 /// # Examples
1015 ///
1016 /// ```
1017 /// let x = &[1, 2, 4];
1018 /// let mut iterator = x.iter();
1019 ///
1020 /// assert_eq!(iterator.next(), Some(&1));
1021 /// assert_eq!(iterator.next(), Some(&2));
1022 /// assert_eq!(iterator.next(), Some(&4));
1023 /// assert_eq!(iterator.next(), None);
1024 /// ```
1025 #[stable(feature = "rust1", since = "1.0.0")]
1026 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1027 #[inline]
1028 #[rustc_diagnostic_item = "slice_iter"]
1029 pub const fn iter(&self) -> Iter<'_, T> {
1030 Iter::new(self)
1031 }
1032
1033 /// Returns an iterator that allows modifying each value.
1034 ///
1035 /// The iterator yields all items from start to end.
1036 ///
1037 /// # Examples
1038 ///
1039 /// ```
1040 /// let x = &mut [1, 2, 4];
1041 /// for elem in x.iter_mut() {
1042 /// *elem += 2;
1043 /// }
1044 /// assert_eq!(x, &[3, 4, 6]);
1045 /// ```
1046 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1047 #[stable(feature = "rust1", since = "1.0.0")]
1048 #[inline]
1049 pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1050 IterMut::new(self)
1051 }
1052
1053 /// Returns an iterator over all contiguous windows of length
1054 /// `size`. The windows overlap. If the slice is shorter than
1055 /// `size`, the iterator returns no values.
1056 ///
1057 /// # Panics
1058 ///
1059 /// Panics if `size` is zero.
1060 ///
1061 /// # Examples
1062 ///
1063 /// ```
1064 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1065 /// let mut iter = slice.windows(3);
1066 /// assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
1067 /// assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
1068 /// assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
1069 /// assert!(iter.next().is_none());
1070 /// ```
1071 ///
1072 /// If the slice is shorter than `size`:
1073 ///
1074 /// ```
1075 /// let slice = ['f', 'o', 'o'];
1076 /// let mut iter = slice.windows(4);
1077 /// assert!(iter.next().is_none());
1078 /// ```
1079 ///
1080 /// Because the [Iterator] trait cannot represent the required lifetimes,
1081 /// there is no `windows_mut` analog to `windows`;
1082 /// `[0,1,2].windows_mut(2).collect()` would violate [the rules of references]
1083 /// (though a [LendingIterator] analog is possible). You can sometimes use
1084 /// [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1085 /// conjunction with `windows` instead:
1086 ///
1087 /// [the rules of references]: https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html#the-rules-of-references
1088 /// [LendingIterator]: https://blog.rust-lang.org/2022/10/28/gats-stabilization.html
1089 /// ```
1090 /// use std::cell::Cell;
1091 ///
1092 /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1093 /// let slice = &mut array[..];
1094 /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1095 /// for w in slice_of_cells.windows(3) {
1096 /// Cell::swap(&w[0], &w[2]);
1097 /// }
1098 /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1099 /// ```
1100 #[stable(feature = "rust1", since = "1.0.0")]
1101 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1102 #[inline]
1103 #[track_caller]
1104 pub const fn windows(&self, size: usize) -> Windows<'_, T> {
1105 let size = NonZero::new(size).expect("window size must be non-zero");
1106 Windows::new(self, size)
1107 }
1108
1109 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1110 /// beginning of the slice.
1111 ///
1112 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1113 /// slice, then the last chunk will not have length `chunk_size`.
1114 ///
1115 /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1116 /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1117 /// slice.
1118 ///
1119 /// # Panics
1120 ///
1121 /// Panics if `chunk_size` is zero.
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1127 /// let mut iter = slice.chunks(2);
1128 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1129 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1130 /// assert_eq!(iter.next().unwrap(), &['m']);
1131 /// assert!(iter.next().is_none());
1132 /// ```
1133 ///
1134 /// [`chunks_exact`]: slice::chunks_exact
1135 /// [`rchunks`]: slice::rchunks
1136 #[stable(feature = "rust1", since = "1.0.0")]
1137 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1138 #[inline]
1139 #[track_caller]
1140 pub const fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1141 assert!(chunk_size != 0, "chunk size must be non-zero");
1142 Chunks::new(self, chunk_size)
1143 }
1144
1145 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1146 /// beginning of the slice.
1147 ///
1148 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1149 /// length of the slice, then the last chunk will not have length `chunk_size`.
1150 ///
1151 /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1152 /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1153 /// the end of the slice.
1154 ///
1155 /// # Panics
1156 ///
1157 /// Panics if `chunk_size` is zero.
1158 ///
1159 /// # Examples
1160 ///
1161 /// ```
1162 /// let v = &mut [0, 0, 0, 0, 0];
1163 /// let mut count = 1;
1164 ///
1165 /// for chunk in v.chunks_mut(2) {
1166 /// for elem in chunk.iter_mut() {
1167 /// *elem += count;
1168 /// }
1169 /// count += 1;
1170 /// }
1171 /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1172 /// ```
1173 ///
1174 /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1175 /// [`rchunks_mut`]: slice::rchunks_mut
1176 #[stable(feature = "rust1", since = "1.0.0")]
1177 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1178 #[inline]
1179 #[track_caller]
1180 pub const fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1181 assert!(chunk_size != 0, "chunk size must be non-zero");
1182 ChunksMut::new(self, chunk_size)
1183 }
1184
1185 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1186 /// beginning of the slice.
1187 ///
1188 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1189 /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1190 /// from the `remainder` function of the iterator.
1191 ///
1192 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1193 /// resulting code better than in the case of [`chunks`].
1194 ///
1195 /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1196 /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1197 ///
1198 /// # Panics
1199 ///
1200 /// Panics if `chunk_size` is zero.
1201 ///
1202 /// # Examples
1203 ///
1204 /// ```
1205 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1206 /// let mut iter = slice.chunks_exact(2);
1207 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1208 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1209 /// assert!(iter.next().is_none());
1210 /// assert_eq!(iter.remainder(), &['m']);
1211 /// ```
1212 ///
1213 /// [`chunks`]: slice::chunks
1214 /// [`rchunks_exact`]: slice::rchunks_exact
1215 #[stable(feature = "chunks_exact", since = "1.31.0")]
1216 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1217 #[inline]
1218 #[track_caller]
1219 pub const fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1220 assert!(chunk_size != 0, "chunk size must be non-zero");
1221 ChunksExact::new(self, chunk_size)
1222 }
1223
1224 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1225 /// beginning of the slice.
1226 ///
1227 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1228 /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1229 /// retrieved from the `into_remainder` function of the iterator.
1230 ///
1231 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1232 /// resulting code better than in the case of [`chunks_mut`].
1233 ///
1234 /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1235 /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1236 /// the slice.
1237 ///
1238 /// # Panics
1239 ///
1240 /// Panics if `chunk_size` is zero.
1241 ///
1242 /// # Examples
1243 ///
1244 /// ```
1245 /// let v = &mut [0, 0, 0, 0, 0];
1246 /// let mut count = 1;
1247 ///
1248 /// for chunk in v.chunks_exact_mut(2) {
1249 /// for elem in chunk.iter_mut() {
1250 /// *elem += count;
1251 /// }
1252 /// count += 1;
1253 /// }
1254 /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1255 /// ```
1256 ///
1257 /// [`chunks_mut`]: slice::chunks_mut
1258 /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1259 #[stable(feature = "chunks_exact", since = "1.31.0")]
1260 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1261 #[inline]
1262 #[track_caller]
1263 pub const fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1264 assert!(chunk_size != 0, "chunk size must be non-zero");
1265 ChunksExactMut::new(self, chunk_size)
1266 }
1267
1268 /// Splits the slice into a slice of `N`-element arrays,
1269 /// assuming that there's no remainder.
1270 ///
1271 /// This is the inverse operation to [`as_flattened`].
1272 ///
1273 /// [`as_flattened`]: slice::as_flattened
1274 ///
1275 /// As this is `unsafe`, consider whether you could use [`as_chunks`] or
1276 /// [`as_rchunks`] instead, perhaps via something like
1277 /// `if let (chunks, []) = slice.as_chunks()` or
1278 /// `let (chunks, []) = slice.as_chunks() else { unreachable!() };`.
1279 ///
1280 /// [`as_chunks`]: slice::as_chunks
1281 /// [`as_rchunks`]: slice::as_rchunks
1282 ///
1283 /// # Safety
1284 ///
1285 /// This may only be called when
1286 /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1287 /// - `N != 0`.
1288 ///
1289 /// # Examples
1290 ///
1291 /// ```
1292 /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1293 /// let chunks: &[[char; 1]] =
1294 /// // SAFETY: 1-element chunks never have remainder
1295 /// unsafe { slice.as_chunks_unchecked() };
1296 /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1297 /// let chunks: &[[char; 3]] =
1298 /// // SAFETY: The slice length (6) is a multiple of 3
1299 /// unsafe { slice.as_chunks_unchecked() };
1300 /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1301 ///
1302 /// // These would be unsound:
1303 /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1304 /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1305 /// ```
1306 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1307 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1308 #[inline]
1309 #[must_use]
1310 pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1311 assert_unsafe_precondition!(
1312 check_language_ub,
1313 "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1314 (n: usize = N, len: usize = self.len()) => n != 0 && len % n == 0,
1315 );
1316 // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1317 let new_len = unsafe { exact_div(self.len(), N) };
1318 // SAFETY: We cast a slice of `new_len * N` elements into
1319 // a slice of `new_len` many `N` elements chunks.
1320 unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1321 }
1322
1323 /// Splits the slice into a slice of `N`-element arrays,
1324 /// starting at the beginning of the slice,
1325 /// and a remainder slice with length strictly less than `N`.
1326 ///
1327 /// The remainder is meaningful in the division sense. Given
1328 /// `let (chunks, remainder) = slice.as_chunks()`, then:
1329 /// - `chunks.len()` equals `slice.len() / N`,
1330 /// - `remainder.len()` equals `slice.len() % N`, and
1331 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1332 ///
1333 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1334 ///
1335 /// [`as_flattened`]: slice::as_flattened
1336 ///
1337 /// # Panics
1338 ///
1339 /// Panics if `N` is zero.
1340 ///
1341 /// Note that this check is against a const generic parameter, not a runtime
1342 /// value, and thus a particular monomorphization will either always panic
1343 /// or it will never panic.
1344 ///
1345 /// # Examples
1346 ///
1347 /// ```
1348 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1349 /// let (chunks, remainder) = slice.as_chunks();
1350 /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1351 /// assert_eq!(remainder, &['m']);
1352 /// ```
1353 ///
1354 /// If you expect the slice to be an exact multiple, you can combine
1355 /// `let`-`else` with an empty slice pattern:
1356 /// ```
1357 /// let slice = ['R', 'u', 's', 't'];
1358 /// let (chunks, []) = slice.as_chunks::<2>() else {
1359 /// panic!("slice didn't have even length")
1360 /// };
1361 /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1362 /// ```
1363 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1364 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1365 #[inline]
1366 #[track_caller]
1367 #[must_use]
1368 pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1369 assert!(N != 0, "chunk size must be non-zero");
1370 let len_rounded_down = self.len() / N * N;
1371 // SAFETY: The rounded-down value is always the same or smaller than the
1372 // original length, and thus must be in-bounds of the slice.
1373 let (multiple_of_n, remainder) = unsafe { self.split_at_unchecked(len_rounded_down) };
1374 // SAFETY: We already panicked for zero, and ensured by construction
1375 // that the length of the subslice is a multiple of N.
1376 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1377 (array_slice, remainder)
1378 }
1379
1380 /// Splits the slice into a slice of `N`-element arrays,
1381 /// starting at the end of the slice,
1382 /// and a remainder slice with length strictly less than `N`.
1383 ///
1384 /// The remainder is meaningful in the division sense. Given
1385 /// `let (remainder, chunks) = slice.as_rchunks()`, then:
1386 /// - `remainder.len()` equals `slice.len() % N`,
1387 /// - `chunks.len()` equals `slice.len() / N`, and
1388 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1389 ///
1390 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened`].
1391 ///
1392 /// [`as_flattened`]: slice::as_flattened
1393 ///
1394 /// # Panics
1395 ///
1396 /// Panics if `N` is zero.
1397 ///
1398 /// Note that this check is against a const generic parameter, not a runtime
1399 /// value, and thus a particular monomorphization will either always panic
1400 /// or it will never panic.
1401 ///
1402 /// # Examples
1403 ///
1404 /// ```
1405 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1406 /// let (remainder, chunks) = slice.as_rchunks();
1407 /// assert_eq!(remainder, &['l']);
1408 /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1409 /// ```
1410 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1411 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1412 #[inline]
1413 #[track_caller]
1414 #[must_use]
1415 pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1416 assert!(N != 0, "chunk size must be non-zero");
1417 let len = self.len() / N;
1418 let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1419 // SAFETY: We already panicked for zero, and ensured by construction
1420 // that the length of the subslice is a multiple of N.
1421 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1422 (remainder, array_slice)
1423 }
1424
1425 /// Returns an iterator over `N` elements of the slice at a time, starting at the
1426 /// beginning of the slice.
1427 ///
1428 /// The chunks are array references and do not overlap. If `N` does not divide the
1429 /// length of the slice, then the last up to `N-1` elements will be omitted and can be
1430 /// retrieved from the `remainder` function of the iterator.
1431 ///
1432 /// This method is the const generic equivalent of [`chunks_exact`].
1433 ///
1434 /// # Panics
1435 ///
1436 /// Panics if `N` is zero. This check will most probably get changed to a compile time
1437 /// error before this method gets stabilized.
1438 ///
1439 /// # Examples
1440 ///
1441 /// ```
1442 /// #![feature(array_chunks)]
1443 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1444 /// let mut iter = slice.array_chunks();
1445 /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1446 /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1447 /// assert!(iter.next().is_none());
1448 /// assert_eq!(iter.remainder(), &['m']);
1449 /// ```
1450 ///
1451 /// [`chunks_exact`]: slice::chunks_exact
1452 #[unstable(feature = "array_chunks", issue = "74985")]
1453 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1454 #[inline]
1455 #[track_caller]
1456 pub const fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> {
1457 assert!(N != 0, "chunk size must be non-zero");
1458 ArrayChunks::new(self)
1459 }
1460
1461 /// Splits the slice into a slice of `N`-element arrays,
1462 /// assuming that there's no remainder.
1463 ///
1464 /// This is the inverse operation to [`as_flattened_mut`].
1465 ///
1466 /// [`as_flattened_mut`]: slice::as_flattened_mut
1467 ///
1468 /// As this is `unsafe`, consider whether you could use [`as_chunks_mut`] or
1469 /// [`as_rchunks_mut`] instead, perhaps via something like
1470 /// `if let (chunks, []) = slice.as_chunks_mut()` or
1471 /// `let (chunks, []) = slice.as_chunks_mut() else { unreachable!() };`.
1472 ///
1473 /// [`as_chunks_mut`]: slice::as_chunks_mut
1474 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
1475 ///
1476 /// # Safety
1477 ///
1478 /// This may only be called when
1479 /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1480 /// - `N != 0`.
1481 ///
1482 /// # Examples
1483 ///
1484 /// ```
1485 /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1486 /// let chunks: &mut [[char; 1]] =
1487 /// // SAFETY: 1-element chunks never have remainder
1488 /// unsafe { slice.as_chunks_unchecked_mut() };
1489 /// chunks[0] = ['L'];
1490 /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1491 /// let chunks: &mut [[char; 3]] =
1492 /// // SAFETY: The slice length (6) is a multiple of 3
1493 /// unsafe { slice.as_chunks_unchecked_mut() };
1494 /// chunks[1] = ['a', 'x', '?'];
1495 /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1496 ///
1497 /// // These would be unsound:
1498 /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1499 /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1500 /// ```
1501 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1502 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1503 #[inline]
1504 #[must_use]
1505 pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1506 assert_unsafe_precondition!(
1507 check_language_ub,
1508 "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1509 (n: usize = N, len: usize = self.len()) => n != 0 && len % n == 0
1510 );
1511 // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1512 let new_len = unsafe { exact_div(self.len(), N) };
1513 // SAFETY: We cast a slice of `new_len * N` elements into
1514 // a slice of `new_len` many `N` elements chunks.
1515 unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1516 }
1517
1518 /// Splits the slice into a slice of `N`-element arrays,
1519 /// starting at the beginning of the slice,
1520 /// and a remainder slice with length strictly less than `N`.
1521 ///
1522 /// The remainder is meaningful in the division sense. Given
1523 /// `let (chunks, remainder) = slice.as_chunks_mut()`, then:
1524 /// - `chunks.len()` equals `slice.len() / N`,
1525 /// - `remainder.len()` equals `slice.len() % N`, and
1526 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1527 ///
1528 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1529 ///
1530 /// [`as_flattened_mut`]: slice::as_flattened_mut
1531 ///
1532 /// # Panics
1533 ///
1534 /// Panics if `N` is zero.
1535 ///
1536 /// Note that this check is against a const generic parameter, not a runtime
1537 /// value, and thus a particular monomorphization will either always panic
1538 /// or it will never panic.
1539 ///
1540 /// # Examples
1541 ///
1542 /// ```
1543 /// let v = &mut [0, 0, 0, 0, 0];
1544 /// let mut count = 1;
1545 ///
1546 /// let (chunks, remainder) = v.as_chunks_mut();
1547 /// remainder[0] = 9;
1548 /// for chunk in chunks {
1549 /// *chunk = [count; 2];
1550 /// count += 1;
1551 /// }
1552 /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1553 /// ```
1554 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1555 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1556 #[inline]
1557 #[track_caller]
1558 #[must_use]
1559 pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1560 assert!(N != 0, "chunk size must be non-zero");
1561 let len_rounded_down = self.len() / N * N;
1562 // SAFETY: The rounded-down value is always the same or smaller than the
1563 // original length, and thus must be in-bounds of the slice.
1564 let (multiple_of_n, remainder) = unsafe { self.split_at_mut_unchecked(len_rounded_down) };
1565 // SAFETY: We already panicked for zero, and ensured by construction
1566 // that the length of the subslice is a multiple of N.
1567 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1568 (array_slice, remainder)
1569 }
1570
1571 /// Splits the slice into a slice of `N`-element arrays,
1572 /// starting at the end of the slice,
1573 /// and a remainder slice with length strictly less than `N`.
1574 ///
1575 /// The remainder is meaningful in the division sense. Given
1576 /// `let (remainder, chunks) = slice.as_rchunks_mut()`, then:
1577 /// - `remainder.len()` equals `slice.len() % N`,
1578 /// - `chunks.len()` equals `slice.len() / N`, and
1579 /// - `slice.len()` equals `chunks.len() * N + remainder.len()`.
1580 ///
1581 /// You can flatten the chunks back into a slice-of-`T` with [`as_flattened_mut`].
1582 ///
1583 /// [`as_flattened_mut`]: slice::as_flattened_mut
1584 ///
1585 /// # Panics
1586 ///
1587 /// Panics if `N` is zero.
1588 ///
1589 /// Note that this check is against a const generic parameter, not a runtime
1590 /// value, and thus a particular monomorphization will either always panic
1591 /// or it will never panic.
1592 ///
1593 /// # Examples
1594 ///
1595 /// ```
1596 /// let v = &mut [0, 0, 0, 0, 0];
1597 /// let mut count = 1;
1598 ///
1599 /// let (remainder, chunks) = v.as_rchunks_mut();
1600 /// remainder[0] = 9;
1601 /// for chunk in chunks {
1602 /// *chunk = [count; 2];
1603 /// count += 1;
1604 /// }
1605 /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1606 /// ```
1607 #[stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1608 #[rustc_const_stable(feature = "slice_as_chunks", since = "CURRENT_RUSTC_VERSION")]
1609 #[inline]
1610 #[track_caller]
1611 #[must_use]
1612 pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1613 assert!(N != 0, "chunk size must be non-zero");
1614 let len = self.len() / N;
1615 let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1616 // SAFETY: We already panicked for zero, and ensured by construction
1617 // that the length of the subslice is a multiple of N.
1618 let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1619 (remainder, array_slice)
1620 }
1621
1622 /// Returns an iterator over `N` elements of the slice at a time, starting at the
1623 /// beginning of the slice.
1624 ///
1625 /// The chunks are mutable array references and do not overlap. If `N` does not divide
1626 /// the length of the slice, then the last up to `N-1` elements will be omitted and
1627 /// can be retrieved from the `into_remainder` function of the iterator.
1628 ///
1629 /// This method is the const generic equivalent of [`chunks_exact_mut`].
1630 ///
1631 /// # Panics
1632 ///
1633 /// Panics if `N` is zero. This check will most probably get changed to a compile time
1634 /// error before this method gets stabilized.
1635 ///
1636 /// # Examples
1637 ///
1638 /// ```
1639 /// #![feature(array_chunks)]
1640 /// let v = &mut [0, 0, 0, 0, 0];
1641 /// let mut count = 1;
1642 ///
1643 /// for chunk in v.array_chunks_mut() {
1644 /// *chunk = [count; 2];
1645 /// count += 1;
1646 /// }
1647 /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1648 /// ```
1649 ///
1650 /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1651 #[unstable(feature = "array_chunks", issue = "74985")]
1652 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1653 #[inline]
1654 #[track_caller]
1655 pub const fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N> {
1656 assert!(N != 0, "chunk size must be non-zero");
1657 ArrayChunksMut::new(self)
1658 }
1659
1660 /// Returns an iterator over overlapping windows of `N` elements of a slice,
1661 /// starting at the beginning of the slice.
1662 ///
1663 /// This is the const generic equivalent of [`windows`].
1664 ///
1665 /// If `N` is greater than the size of the slice, it will return no windows.
1666 ///
1667 /// # Panics
1668 ///
1669 /// Panics if `N` is zero. This check will most probably get changed to a compile time
1670 /// error before this method gets stabilized.
1671 ///
1672 /// # Examples
1673 ///
1674 /// ```
1675 /// #![feature(array_windows)]
1676 /// let slice = [0, 1, 2, 3];
1677 /// let mut iter = slice.array_windows();
1678 /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1679 /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1680 /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1681 /// assert!(iter.next().is_none());
1682 /// ```
1683 ///
1684 /// [`windows`]: slice::windows
1685 #[unstable(feature = "array_windows", issue = "75027")]
1686 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1687 #[inline]
1688 #[track_caller]
1689 pub const fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1690 assert!(N != 0, "window size must be non-zero");
1691 ArrayWindows::new(self)
1692 }
1693
1694 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1695 /// of the slice.
1696 ///
1697 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1698 /// slice, then the last chunk will not have length `chunk_size`.
1699 ///
1700 /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1701 /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1702 /// of the slice.
1703 ///
1704 /// # Panics
1705 ///
1706 /// Panics if `chunk_size` is zero.
1707 ///
1708 /// # Examples
1709 ///
1710 /// ```
1711 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1712 /// let mut iter = slice.rchunks(2);
1713 /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1714 /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1715 /// assert_eq!(iter.next().unwrap(), &['l']);
1716 /// assert!(iter.next().is_none());
1717 /// ```
1718 ///
1719 /// [`rchunks_exact`]: slice::rchunks_exact
1720 /// [`chunks`]: slice::chunks
1721 #[stable(feature = "rchunks", since = "1.31.0")]
1722 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1723 #[inline]
1724 #[track_caller]
1725 pub const fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1726 assert!(chunk_size != 0, "chunk size must be non-zero");
1727 RChunks::new(self, chunk_size)
1728 }
1729
1730 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1731 /// of the slice.
1732 ///
1733 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1734 /// length of the slice, then the last chunk will not have length `chunk_size`.
1735 ///
1736 /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1737 /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1738 /// beginning of the slice.
1739 ///
1740 /// # Panics
1741 ///
1742 /// Panics if `chunk_size` is zero.
1743 ///
1744 /// # Examples
1745 ///
1746 /// ```
1747 /// let v = &mut [0, 0, 0, 0, 0];
1748 /// let mut count = 1;
1749 ///
1750 /// for chunk in v.rchunks_mut(2) {
1751 /// for elem in chunk.iter_mut() {
1752 /// *elem += count;
1753 /// }
1754 /// count += 1;
1755 /// }
1756 /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1757 /// ```
1758 ///
1759 /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1760 /// [`chunks_mut`]: slice::chunks_mut
1761 #[stable(feature = "rchunks", since = "1.31.0")]
1762 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1763 #[inline]
1764 #[track_caller]
1765 pub const fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1766 assert!(chunk_size != 0, "chunk size must be non-zero");
1767 RChunksMut::new(self, chunk_size)
1768 }
1769
1770 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1771 /// end of the slice.
1772 ///
1773 /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1774 /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1775 /// from the `remainder` function of the iterator.
1776 ///
1777 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1778 /// resulting code better than in the case of [`rchunks`].
1779 ///
1780 /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1781 /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1782 /// slice.
1783 ///
1784 /// # Panics
1785 ///
1786 /// Panics if `chunk_size` is zero.
1787 ///
1788 /// # Examples
1789 ///
1790 /// ```
1791 /// let slice = ['l', 'o', 'r', 'e', 'm'];
1792 /// let mut iter = slice.rchunks_exact(2);
1793 /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1794 /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1795 /// assert!(iter.next().is_none());
1796 /// assert_eq!(iter.remainder(), &['l']);
1797 /// ```
1798 ///
1799 /// [`chunks`]: slice::chunks
1800 /// [`rchunks`]: slice::rchunks
1801 /// [`chunks_exact`]: slice::chunks_exact
1802 #[stable(feature = "rchunks", since = "1.31.0")]
1803 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1804 #[inline]
1805 #[track_caller]
1806 pub const fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1807 assert!(chunk_size != 0, "chunk size must be non-zero");
1808 RChunksExact::new(self, chunk_size)
1809 }
1810
1811 /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1812 /// of the slice.
1813 ///
1814 /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1815 /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1816 /// retrieved from the `into_remainder` function of the iterator.
1817 ///
1818 /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1819 /// resulting code better than in the case of [`chunks_mut`].
1820 ///
1821 /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1822 /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1823 /// of the slice.
1824 ///
1825 /// # Panics
1826 ///
1827 /// Panics if `chunk_size` is zero.
1828 ///
1829 /// # Examples
1830 ///
1831 /// ```
1832 /// let v = &mut [0, 0, 0, 0, 0];
1833 /// let mut count = 1;
1834 ///
1835 /// for chunk in v.rchunks_exact_mut(2) {
1836 /// for elem in chunk.iter_mut() {
1837 /// *elem += count;
1838 /// }
1839 /// count += 1;
1840 /// }
1841 /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1842 /// ```
1843 ///
1844 /// [`chunks_mut`]: slice::chunks_mut
1845 /// [`rchunks_mut`]: slice::rchunks_mut
1846 /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1847 #[stable(feature = "rchunks", since = "1.31.0")]
1848 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1849 #[inline]
1850 #[track_caller]
1851 pub const fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1852 assert!(chunk_size != 0, "chunk size must be non-zero");
1853 RChunksExactMut::new(self, chunk_size)
1854 }
1855
1856 /// Returns an iterator over the slice producing non-overlapping runs
1857 /// of elements using the predicate to separate them.
1858 ///
1859 /// The predicate is called for every pair of consecutive elements,
1860 /// meaning that it is called on `slice[0]` and `slice[1]`,
1861 /// followed by `slice[1]` and `slice[2]`, and so on.
1862 ///
1863 /// # Examples
1864 ///
1865 /// ```
1866 /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1867 ///
1868 /// let mut iter = slice.chunk_by(|a, b| a == b);
1869 ///
1870 /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1871 /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1872 /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1873 /// assert_eq!(iter.next(), None);
1874 /// ```
1875 ///
1876 /// This method can be used to extract the sorted subslices:
1877 ///
1878 /// ```
1879 /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1880 ///
1881 /// let mut iter = slice.chunk_by(|a, b| a <= b);
1882 ///
1883 /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1884 /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1885 /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1886 /// assert_eq!(iter.next(), None);
1887 /// ```
1888 #[stable(feature = "slice_group_by", since = "1.77.0")]
1889 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1890 #[inline]
1891 pub const fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
1892 where
1893 F: FnMut(&T, &T) -> bool,
1894 {
1895 ChunkBy::new(self, pred)
1896 }
1897
1898 /// Returns an iterator over the slice producing non-overlapping mutable
1899 /// runs of elements using the predicate to separate them.
1900 ///
1901 /// The predicate is called for every pair of consecutive elements,
1902 /// meaning that it is called on `slice[0]` and `slice[1]`,
1903 /// followed by `slice[1]` and `slice[2]`, and so on.
1904 ///
1905 /// # Examples
1906 ///
1907 /// ```
1908 /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1909 ///
1910 /// let mut iter = slice.chunk_by_mut(|a, b| a == b);
1911 ///
1912 /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1913 /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1914 /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1915 /// assert_eq!(iter.next(), None);
1916 /// ```
1917 ///
1918 /// This method can be used to extract the sorted subslices:
1919 ///
1920 /// ```
1921 /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1922 ///
1923 /// let mut iter = slice.chunk_by_mut(|a, b| a <= b);
1924 ///
1925 /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1926 /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1927 /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1928 /// assert_eq!(iter.next(), None);
1929 /// ```
1930 #[stable(feature = "slice_group_by", since = "1.77.0")]
1931 #[rustc_const_unstable(feature = "const_slice_make_iter", issue = "137737")]
1932 #[inline]
1933 pub const fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
1934 where
1935 F: FnMut(&T, &T) -> bool,
1936 {
1937 ChunkByMut::new(self, pred)
1938 }
1939
1940 /// Divides one slice into two at an index.
1941 ///
1942 /// The first will contain all indices from `[0, mid)` (excluding
1943 /// the index `mid` itself) and the second will contain all
1944 /// indices from `[mid, len)` (excluding the index `len` itself).
1945 ///
1946 /// # Panics
1947 ///
1948 /// Panics if `mid > len`. For a non-panicking alternative see
1949 /// [`split_at_checked`](slice::split_at_checked).
1950 ///
1951 /// # Examples
1952 ///
1953 /// ```
1954 /// let v = ['a', 'b', 'c'];
1955 ///
1956 /// {
1957 /// let (left, right) = v.split_at(0);
1958 /// assert_eq!(left, []);
1959 /// assert_eq!(right, ['a', 'b', 'c']);
1960 /// }
1961 ///
1962 /// {
1963 /// let (left, right) = v.split_at(2);
1964 /// assert_eq!(left, ['a', 'b']);
1965 /// assert_eq!(right, ['c']);
1966 /// }
1967 ///
1968 /// {
1969 /// let (left, right) = v.split_at(3);
1970 /// assert_eq!(left, ['a', 'b', 'c']);
1971 /// assert_eq!(right, []);
1972 /// }
1973 /// ```
1974 #[stable(feature = "rust1", since = "1.0.0")]
1975 #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1976 #[inline]
1977 #[track_caller]
1978 #[must_use]
1979 pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1980 match self.split_at_checked(mid) {
1981 Some(pair) => pair,
1982 None => panic!("mid > len"),
1983 }
1984 }
1985
1986 /// Divides one mutable slice into two at an index.
1987 ///
1988 /// The first will contain all indices from `[0, mid)` (excluding
1989 /// the index `mid` itself) and the second will contain all
1990 /// indices from `[mid, len)` (excluding the index `len` itself).
1991 ///
1992 /// # Panics
1993 ///
1994 /// Panics if `mid > len`. For a non-panicking alternative see
1995 /// [`split_at_mut_checked`](slice::split_at_mut_checked).
1996 ///
1997 /// # Examples
1998 ///
1999 /// ```
2000 /// let mut v = [1, 0, 3, 0, 5, 6];
2001 /// let (left, right) = v.split_at_mut(2);
2002 /// assert_eq!(left, [1, 0]);
2003 /// assert_eq!(right, [3, 0, 5, 6]);
2004 /// left[1] = 2;
2005 /// right[1] = 4;
2006 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2007 /// ```
2008 #[stable(feature = "rust1", since = "1.0.0")]
2009 #[inline]
2010 #[track_caller]
2011 #[must_use]
2012 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2013 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2014 match self.split_at_mut_checked(mid) {
2015 Some(pair) => pair,
2016 None => panic!("mid > len"),
2017 }
2018 }
2019
2020 /// Divides one slice into two at an index, without doing bounds checking.
2021 ///
2022 /// The first will contain all indices from `[0, mid)` (excluding
2023 /// the index `mid` itself) and the second will contain all
2024 /// indices from `[mid, len)` (excluding the index `len` itself).
2025 ///
2026 /// For a safe alternative see [`split_at`].
2027 ///
2028 /// # Safety
2029 ///
2030 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2031 /// even if the resulting reference is not used. The caller has to ensure that
2032 /// `0 <= mid <= self.len()`.
2033 ///
2034 /// [`split_at`]: slice::split_at
2035 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2036 ///
2037 /// # Examples
2038 ///
2039 /// ```
2040 /// let v = ['a', 'b', 'c'];
2041 ///
2042 /// unsafe {
2043 /// let (left, right) = v.split_at_unchecked(0);
2044 /// assert_eq!(left, []);
2045 /// assert_eq!(right, ['a', 'b', 'c']);
2046 /// }
2047 ///
2048 /// unsafe {
2049 /// let (left, right) = v.split_at_unchecked(2);
2050 /// assert_eq!(left, ['a', 'b']);
2051 /// assert_eq!(right, ['c']);
2052 /// }
2053 ///
2054 /// unsafe {
2055 /// let (left, right) = v.split_at_unchecked(3);
2056 /// assert_eq!(left, ['a', 'b', 'c']);
2057 /// assert_eq!(right, []);
2058 /// }
2059 /// ```
2060 #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2061 #[rustc_const_stable(feature = "const_slice_split_at_unchecked", since = "1.77.0")]
2062 #[inline]
2063 #[must_use]
2064 pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
2065 // FIXME(const-hack): the const function `from_raw_parts` is used to make this
2066 // function const; previously the implementation used
2067 // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
2068
2069 let len = self.len();
2070 let ptr = self.as_ptr();
2071
2072 assert_unsafe_precondition!(
2073 check_library_ub,
2074 "slice::split_at_unchecked requires the index to be within the slice",
2075 (mid: usize = mid, len: usize = len) => mid <= len,
2076 );
2077
2078 // SAFETY: Caller has to check that `0 <= mid <= self.len()`
2079 unsafe { (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), unchecked_sub(len, mid))) }
2080 }
2081
2082 /// Divides one mutable slice into two at an index, without doing bounds checking.
2083 ///
2084 /// The first will contain all indices from `[0, mid)` (excluding
2085 /// the index `mid` itself) and the second will contain all
2086 /// indices from `[mid, len)` (excluding the index `len` itself).
2087 ///
2088 /// For a safe alternative see [`split_at_mut`].
2089 ///
2090 /// # Safety
2091 ///
2092 /// Calling this method with an out-of-bounds index is *[undefined behavior]*
2093 /// even if the resulting reference is not used. The caller has to ensure that
2094 /// `0 <= mid <= self.len()`.
2095 ///
2096 /// [`split_at_mut`]: slice::split_at_mut
2097 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2098 ///
2099 /// # Examples
2100 ///
2101 /// ```
2102 /// let mut v = [1, 0, 3, 0, 5, 6];
2103 /// // scoped to restrict the lifetime of the borrows
2104 /// unsafe {
2105 /// let (left, right) = v.split_at_mut_unchecked(2);
2106 /// assert_eq!(left, [1, 0]);
2107 /// assert_eq!(right, [3, 0, 5, 6]);
2108 /// left[1] = 2;
2109 /// right[1] = 4;
2110 /// }
2111 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2112 /// ```
2113 #[stable(feature = "slice_split_at_unchecked", since = "1.79.0")]
2114 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2115 #[inline]
2116 #[must_use]
2117 pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2118 let len = self.len();
2119 let ptr = self.as_mut_ptr();
2120
2121 assert_unsafe_precondition!(
2122 check_library_ub,
2123 "slice::split_at_mut_unchecked requires the index to be within the slice",
2124 (mid: usize = mid, len: usize = len) => mid <= len,
2125 );
2126
2127 // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2128 //
2129 // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2130 // is fine.
2131 unsafe {
2132 (
2133 from_raw_parts_mut(ptr, mid),
2134 from_raw_parts_mut(ptr.add(mid), unchecked_sub(len, mid)),
2135 )
2136 }
2137 }
2138
2139 /// Divides one slice into two at an index, returning `None` if the slice is
2140 /// too short.
2141 ///
2142 /// If `mid ≤ len` returns a pair of slices where the first will contain all
2143 /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2144 /// second will contain all indices from `[mid, len)` (excluding the index
2145 /// `len` itself).
2146 ///
2147 /// Otherwise, if `mid > len`, returns `None`.
2148 ///
2149 /// # Examples
2150 ///
2151 /// ```
2152 /// let v = [1, -2, 3, -4, 5, -6];
2153 ///
2154 /// {
2155 /// let (left, right) = v.split_at_checked(0).unwrap();
2156 /// assert_eq!(left, []);
2157 /// assert_eq!(right, [1, -2, 3, -4, 5, -6]);
2158 /// }
2159 ///
2160 /// {
2161 /// let (left, right) = v.split_at_checked(2).unwrap();
2162 /// assert_eq!(left, [1, -2]);
2163 /// assert_eq!(right, [3, -4, 5, -6]);
2164 /// }
2165 ///
2166 /// {
2167 /// let (left, right) = v.split_at_checked(6).unwrap();
2168 /// assert_eq!(left, [1, -2, 3, -4, 5, -6]);
2169 /// assert_eq!(right, []);
2170 /// }
2171 ///
2172 /// assert_eq!(None, v.split_at_checked(7));
2173 /// ```
2174 #[stable(feature = "split_at_checked", since = "1.80.0")]
2175 #[rustc_const_stable(feature = "split_at_checked", since = "1.80.0")]
2176 #[inline]
2177 #[must_use]
2178 pub const fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])> {
2179 if mid <= self.len() {
2180 // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2181 // fulfills the requirements of `split_at_unchecked`.
2182 Some(unsafe { self.split_at_unchecked(mid) })
2183 } else {
2184 None
2185 }
2186 }
2187
2188 /// Divides one mutable slice into two at an index, returning `None` if the
2189 /// slice is too short.
2190 ///
2191 /// If `mid ≤ len` returns a pair of slices where the first will contain all
2192 /// indices from `[0, mid)` (excluding the index `mid` itself) and the
2193 /// second will contain all indices from `[mid, len)` (excluding the index
2194 /// `len` itself).
2195 ///
2196 /// Otherwise, if `mid > len`, returns `None`.
2197 ///
2198 /// # Examples
2199 ///
2200 /// ```
2201 /// let mut v = [1, 0, 3, 0, 5, 6];
2202 ///
2203 /// if let Some((left, right)) = v.split_at_mut_checked(2) {
2204 /// assert_eq!(left, [1, 0]);
2205 /// assert_eq!(right, [3, 0, 5, 6]);
2206 /// left[1] = 2;
2207 /// right[1] = 4;
2208 /// }
2209 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2210 ///
2211 /// assert_eq!(None, v.split_at_mut_checked(7));
2212 /// ```
2213 #[stable(feature = "split_at_checked", since = "1.80.0")]
2214 #[rustc_const_stable(feature = "const_slice_split_at_mut", since = "1.83.0")]
2215 #[inline]
2216 #[must_use]
2217 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut [T], &mut [T])> {
2218 if mid <= self.len() {
2219 // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
2220 // fulfills the requirements of `split_at_unchecked`.
2221 Some(unsafe { self.split_at_mut_unchecked(mid) })
2222 } else {
2223 None
2224 }
2225 }
2226
2227 /// Returns an iterator over subslices separated by elements that match
2228 /// `pred`. The matched element is not contained in the subslices.
2229 ///
2230 /// # Examples
2231 ///
2232 /// ```
2233 /// let slice = [10, 40, 33, 20];
2234 /// let mut iter = slice.split(|num| num % 3 == 0);
2235 ///
2236 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2237 /// assert_eq!(iter.next().unwrap(), &[20]);
2238 /// assert!(iter.next().is_none());
2239 /// ```
2240 ///
2241 /// If the first element is matched, an empty slice will be the first item
2242 /// returned by the iterator. Similarly, if the last element in the slice
2243 /// is matched, an empty slice will be the last item returned by the
2244 /// iterator:
2245 ///
2246 /// ```
2247 /// let slice = [10, 40, 33];
2248 /// let mut iter = slice.split(|num| num % 3 == 0);
2249 ///
2250 /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2251 /// assert_eq!(iter.next().unwrap(), &[]);
2252 /// assert!(iter.next().is_none());
2253 /// ```
2254 ///
2255 /// If two matched elements are directly adjacent, an empty slice will be
2256 /// present between them:
2257 ///
2258 /// ```
2259 /// let slice = [10, 6, 33, 20];
2260 /// let mut iter = slice.split(|num| num % 3 == 0);
2261 ///
2262 /// assert_eq!(iter.next().unwrap(), &[10]);
2263 /// assert_eq!(iter.next().unwrap(), &[]);
2264 /// assert_eq!(iter.next().unwrap(), &[20]);
2265 /// assert!(iter.next().is_none());
2266 /// ```
2267 #[stable(feature = "rust1", since = "1.0.0")]
2268 #[inline]
2269 pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2270 where
2271 F: FnMut(&T) -> bool,
2272 {
2273 Split::new(self, pred)
2274 }
2275
2276 /// Returns an iterator over mutable subslices separated by elements that
2277 /// match `pred`. The matched element is not contained in the subslices.
2278 ///
2279 /// # Examples
2280 ///
2281 /// ```
2282 /// let mut v = [10, 40, 30, 20, 60, 50];
2283 ///
2284 /// for group in v.split_mut(|num| *num % 3 == 0) {
2285 /// group[0] = 1;
2286 /// }
2287 /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2288 /// ```
2289 #[stable(feature = "rust1", since = "1.0.0")]
2290 #[inline]
2291 pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2292 where
2293 F: FnMut(&T) -> bool,
2294 {
2295 SplitMut::new(self, pred)
2296 }
2297
2298 /// Returns an iterator over subslices separated by elements that match
2299 /// `pred`. The matched element is contained in the end of the previous
2300 /// subslice as a terminator.
2301 ///
2302 /// # Examples
2303 ///
2304 /// ```
2305 /// let slice = [10, 40, 33, 20];
2306 /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2307 ///
2308 /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2309 /// assert_eq!(iter.next().unwrap(), &[20]);
2310 /// assert!(iter.next().is_none());
2311 /// ```
2312 ///
2313 /// If the last element of the slice is matched,
2314 /// that element will be considered the terminator of the preceding slice.
2315 /// That slice will be the last item returned by the iterator.
2316 ///
2317 /// ```
2318 /// let slice = [3, 10, 40, 33];
2319 /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2320 ///
2321 /// assert_eq!(iter.next().unwrap(), &[3]);
2322 /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2323 /// assert!(iter.next().is_none());
2324 /// ```
2325 #[stable(feature = "split_inclusive", since = "1.51.0")]
2326 #[inline]
2327 pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2328 where
2329 F: FnMut(&T) -> bool,
2330 {
2331 SplitInclusive::new(self, pred)
2332 }
2333
2334 /// Returns an iterator over mutable subslices separated by elements that
2335 /// match `pred`. The matched element is contained in the previous
2336 /// subslice as a terminator.
2337 ///
2338 /// # Examples
2339 ///
2340 /// ```
2341 /// let mut v = [10, 40, 30, 20, 60, 50];
2342 ///
2343 /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2344 /// let terminator_idx = group.len()-1;
2345 /// group[terminator_idx] = 1;
2346 /// }
2347 /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2348 /// ```
2349 #[stable(feature = "split_inclusive", since = "1.51.0")]
2350 #[inline]
2351 pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2352 where
2353 F: FnMut(&T) -> bool,
2354 {
2355 SplitInclusiveMut::new(self, pred)
2356 }
2357
2358 /// Returns an iterator over subslices separated by elements that match
2359 /// `pred`, starting at the end of the slice and working backwards.
2360 /// The matched element is not contained in the subslices.
2361 ///
2362 /// # Examples
2363 ///
2364 /// ```
2365 /// let slice = [11, 22, 33, 0, 44, 55];
2366 /// let mut iter = slice.rsplit(|num| *num == 0);
2367 ///
2368 /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2369 /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2370 /// assert_eq!(iter.next(), None);
2371 /// ```
2372 ///
2373 /// As with `split()`, if the first or last element is matched, an empty
2374 /// slice will be the first (or last) item returned by the iterator.
2375 ///
2376 /// ```
2377 /// let v = &[0, 1, 1, 2, 3, 5, 8];
2378 /// let mut it = v.rsplit(|n| *n % 2 == 0);
2379 /// assert_eq!(it.next().unwrap(), &[]);
2380 /// assert_eq!(it.next().unwrap(), &[3, 5]);
2381 /// assert_eq!(it.next().unwrap(), &[1, 1]);
2382 /// assert_eq!(it.next().unwrap(), &[]);
2383 /// assert_eq!(it.next(), None);
2384 /// ```
2385 #[stable(feature = "slice_rsplit", since = "1.27.0")]
2386 #[inline]
2387 pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2388 where
2389 F: FnMut(&T) -> bool,
2390 {
2391 RSplit::new(self, pred)
2392 }
2393
2394 /// Returns an iterator over mutable subslices separated by elements that
2395 /// match `pred`, starting at the end of the slice and working
2396 /// backwards. The matched element is not contained in the subslices.
2397 ///
2398 /// # Examples
2399 ///
2400 /// ```
2401 /// let mut v = [100, 400, 300, 200, 600, 500];
2402 ///
2403 /// let mut count = 0;
2404 /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2405 /// count += 1;
2406 /// group[0] = count;
2407 /// }
2408 /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2409 /// ```
2410 ///
2411 #[stable(feature = "slice_rsplit", since = "1.27.0")]
2412 #[inline]
2413 pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2414 where
2415 F: FnMut(&T) -> bool,
2416 {
2417 RSplitMut::new(self, pred)
2418 }
2419
2420 /// Returns an iterator over subslices separated by elements that match
2421 /// `pred`, limited to returning at most `n` items. The matched element is
2422 /// not contained in the subslices.
2423 ///
2424 /// The last element returned, if any, will contain the remainder of the
2425 /// slice.
2426 ///
2427 /// # Examples
2428 ///
2429 /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2430 /// `[20, 60, 50]`):
2431 ///
2432 /// ```
2433 /// let v = [10, 40, 30, 20, 60, 50];
2434 ///
2435 /// for group in v.splitn(2, |num| *num % 3 == 0) {
2436 /// println!("{group:?}");
2437 /// }
2438 /// ```
2439 #[stable(feature = "rust1", since = "1.0.0")]
2440 #[inline]
2441 pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2442 where
2443 F: FnMut(&T) -> bool,
2444 {
2445 SplitN::new(self.split(pred), n)
2446 }
2447
2448 /// Returns an iterator over mutable subslices separated by elements that match
2449 /// `pred`, limited to returning at most `n` items. The matched element is
2450 /// not contained in the subslices.
2451 ///
2452 /// The last element returned, if any, will contain the remainder of the
2453 /// slice.
2454 ///
2455 /// # Examples
2456 ///
2457 /// ```
2458 /// let mut v = [10, 40, 30, 20, 60, 50];
2459 ///
2460 /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2461 /// group[0] = 1;
2462 /// }
2463 /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2464 /// ```
2465 #[stable(feature = "rust1", since = "1.0.0")]
2466 #[inline]
2467 pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2468 where
2469 F: FnMut(&T) -> bool,
2470 {
2471 SplitNMut::new(self.split_mut(pred), n)
2472 }
2473
2474 /// Returns an iterator over subslices separated by elements that match
2475 /// `pred` limited to returning at most `n` items. This starts at the end of
2476 /// the slice and works backwards. The matched element is not contained in
2477 /// the subslices.
2478 ///
2479 /// The last element returned, if any, will contain the remainder of the
2480 /// slice.
2481 ///
2482 /// # Examples
2483 ///
2484 /// Print the slice split once, starting from the end, by numbers divisible
2485 /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2486 ///
2487 /// ```
2488 /// let v = [10, 40, 30, 20, 60, 50];
2489 ///
2490 /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2491 /// println!("{group:?}");
2492 /// }
2493 /// ```
2494 #[stable(feature = "rust1", since = "1.0.0")]
2495 #[inline]
2496 pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2497 where
2498 F: FnMut(&T) -> bool,
2499 {
2500 RSplitN::new(self.rsplit(pred), n)
2501 }
2502
2503 /// Returns an iterator over subslices separated by elements that match
2504 /// `pred` limited to returning at most `n` items. This starts at the end of
2505 /// the slice and works backwards. The matched element is not contained in
2506 /// the subslices.
2507 ///
2508 /// The last element returned, if any, will contain the remainder of the
2509 /// slice.
2510 ///
2511 /// # Examples
2512 ///
2513 /// ```
2514 /// let mut s = [10, 40, 30, 20, 60, 50];
2515 ///
2516 /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2517 /// group[0] = 1;
2518 /// }
2519 /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2520 /// ```
2521 #[stable(feature = "rust1", since = "1.0.0")]
2522 #[inline]
2523 pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2524 where
2525 F: FnMut(&T) -> bool,
2526 {
2527 RSplitNMut::new(self.rsplit_mut(pred), n)
2528 }
2529
2530 /// Splits the slice on the first element that matches the specified
2531 /// predicate.
2532 ///
2533 /// If any matching elements are present in the slice, returns the prefix
2534 /// before the match and suffix after. The matching element itself is not
2535 /// included. If no elements match, returns `None`.
2536 ///
2537 /// # Examples
2538 ///
2539 /// ```
2540 /// #![feature(slice_split_once)]
2541 /// let s = [1, 2, 3, 2, 4];
2542 /// assert_eq!(s.split_once(|&x| x == 2), Some((
2543 /// &[1][..],
2544 /// &[3, 2, 4][..]
2545 /// )));
2546 /// assert_eq!(s.split_once(|&x| x == 0), None);
2547 /// ```
2548 #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2549 #[inline]
2550 pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2551 where
2552 F: FnMut(&T) -> bool,
2553 {
2554 let index = self.iter().position(pred)?;
2555 Some((&self[..index], &self[index + 1..]))
2556 }
2557
2558 /// Splits the slice on the last element that matches the specified
2559 /// predicate.
2560 ///
2561 /// If any matching elements are present in the slice, returns the prefix
2562 /// before the match and suffix after. The matching element itself is not
2563 /// included. If no elements match, returns `None`.
2564 ///
2565 /// # Examples
2566 ///
2567 /// ```
2568 /// #![feature(slice_split_once)]
2569 /// let s = [1, 2, 3, 2, 4];
2570 /// assert_eq!(s.rsplit_once(|&x| x == 2), Some((
2571 /// &[1, 2, 3][..],
2572 /// &[4][..]
2573 /// )));
2574 /// assert_eq!(s.rsplit_once(|&x| x == 0), None);
2575 /// ```
2576 #[unstable(feature = "slice_split_once", reason = "newly added", issue = "112811")]
2577 #[inline]
2578 pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
2579 where
2580 F: FnMut(&T) -> bool,
2581 {
2582 let index = self.iter().rposition(pred)?;
2583 Some((&self[..index], &self[index + 1..]))
2584 }
2585
2586 /// Returns `true` if the slice contains an element with the given value.
2587 ///
2588 /// This operation is *O*(*n*).
2589 ///
2590 /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2591 ///
2592 /// [`binary_search`]: slice::binary_search
2593 ///
2594 /// # Examples
2595 ///
2596 /// ```
2597 /// let v = [10, 40, 30];
2598 /// assert!(v.contains(&30));
2599 /// assert!(!v.contains(&50));
2600 /// ```
2601 ///
2602 /// If you do not have a `&T`, but some other value that you can compare
2603 /// with one (for example, `String` implements `PartialEq<str>`), you can
2604 /// use `iter().any`:
2605 ///
2606 /// ```
2607 /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2608 /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2609 /// assert!(!v.iter().any(|e| e == "hi"));
2610 /// ```
2611 #[stable(feature = "rust1", since = "1.0.0")]
2612 #[inline]
2613 #[must_use]
2614 pub fn contains(&self, x: &T) -> bool
2615 where
2616 T: PartialEq,
2617 {
2618 cmp::SliceContains::slice_contains(x, self)
2619 }
2620
2621 /// Returns `true` if `needle` is a prefix of the slice or equal to the slice.
2622 ///
2623 /// # Examples
2624 ///
2625 /// ```
2626 /// let v = [10, 40, 30];
2627 /// assert!(v.starts_with(&[10]));
2628 /// assert!(v.starts_with(&[10, 40]));
2629 /// assert!(v.starts_with(&v));
2630 /// assert!(!v.starts_with(&[50]));
2631 /// assert!(!v.starts_with(&[10, 50]));
2632 /// ```
2633 ///
2634 /// Always returns `true` if `needle` is an empty slice:
2635 ///
2636 /// ```
2637 /// let v = &[10, 40, 30];
2638 /// assert!(v.starts_with(&[]));
2639 /// let v: &[u8] = &[];
2640 /// assert!(v.starts_with(&[]));
2641 /// ```
2642 #[stable(feature = "rust1", since = "1.0.0")]
2643 #[must_use]
2644 pub fn starts_with(&self, needle: &[T]) -> bool
2645 where
2646 T: PartialEq,
2647 {
2648 let n = needle.len();
2649 self.len() >= n && needle == &self[..n]
2650 }
2651
2652 /// Returns `true` if `needle` is a suffix of the slice or equal to the slice.
2653 ///
2654 /// # Examples
2655 ///
2656 /// ```
2657 /// let v = [10, 40, 30];
2658 /// assert!(v.ends_with(&[30]));
2659 /// assert!(v.ends_with(&[40, 30]));
2660 /// assert!(v.ends_with(&v));
2661 /// assert!(!v.ends_with(&[50]));
2662 /// assert!(!v.ends_with(&[50, 30]));
2663 /// ```
2664 ///
2665 /// Always returns `true` if `needle` is an empty slice:
2666 ///
2667 /// ```
2668 /// let v = &[10, 40, 30];
2669 /// assert!(v.ends_with(&[]));
2670 /// let v: &[u8] = &[];
2671 /// assert!(v.ends_with(&[]));
2672 /// ```
2673 #[stable(feature = "rust1", since = "1.0.0")]
2674 #[must_use]
2675 pub fn ends_with(&self, needle: &[T]) -> bool
2676 where
2677 T: PartialEq,
2678 {
2679 let (m, n) = (self.len(), needle.len());
2680 m >= n && needle == &self[m - n..]
2681 }
2682
2683 /// Returns a subslice with the prefix removed.
2684 ///
2685 /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2686 /// If `prefix` is empty, simply returns the original slice. If `prefix` is equal to the
2687 /// original slice, returns an empty slice.
2688 ///
2689 /// If the slice does not start with `prefix`, returns `None`.
2690 ///
2691 /// # Examples
2692 ///
2693 /// ```
2694 /// let v = &[10, 40, 30];
2695 /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2696 /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2697 /// assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
2698 /// assert_eq!(v.strip_prefix(&[50]), None);
2699 /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2700 ///
2701 /// let prefix : &str = "he";
2702 /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2703 /// Some(b"llo".as_ref()));
2704 /// ```
2705 #[must_use = "returns the subslice without modifying the original"]
2706 #[stable(feature = "slice_strip", since = "1.51.0")]
2707 pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2708 where
2709 T: PartialEq,
2710 {
2711 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2712 let prefix = prefix.as_slice();
2713 let n = prefix.len();
2714 if n <= self.len() {
2715 let (head, tail) = self.split_at(n);
2716 if head == prefix {
2717 return Some(tail);
2718 }
2719 }
2720 None
2721 }
2722
2723 /// Returns a subslice with the suffix removed.
2724 ///
2725 /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2726 /// If `suffix` is empty, simply returns the original slice. If `suffix` is equal to the
2727 /// original slice, returns an empty slice.
2728 ///
2729 /// If the slice does not end with `suffix`, returns `None`.
2730 ///
2731 /// # Examples
2732 ///
2733 /// ```
2734 /// let v = &[10, 40, 30];
2735 /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2736 /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2737 /// assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
2738 /// assert_eq!(v.strip_suffix(&[50]), None);
2739 /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2740 /// ```
2741 #[must_use = "returns the subslice without modifying the original"]
2742 #[stable(feature = "slice_strip", since = "1.51.0")]
2743 pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2744 where
2745 T: PartialEq,
2746 {
2747 // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2748 let suffix = suffix.as_slice();
2749 let (len, n) = (self.len(), suffix.len());
2750 if n <= len {
2751 let (head, tail) = self.split_at(len - n);
2752 if tail == suffix {
2753 return Some(head);
2754 }
2755 }
2756 None
2757 }
2758
2759 /// Binary searches this slice for a given element.
2760 /// If the slice is not sorted, the returned result is unspecified and
2761 /// meaningless.
2762 ///
2763 /// If the value is found then [`Result::Ok`] is returned, containing the
2764 /// index of the matching element. If there are multiple matches, then any
2765 /// one of the matches could be returned. The index is chosen
2766 /// deterministically, but is subject to change in future versions of Rust.
2767 /// If the value is not found then [`Result::Err`] is returned, containing
2768 /// the index where a matching element could be inserted while maintaining
2769 /// sorted order.
2770 ///
2771 /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2772 ///
2773 /// [`binary_search_by`]: slice::binary_search_by
2774 /// [`binary_search_by_key`]: slice::binary_search_by_key
2775 /// [`partition_point`]: slice::partition_point
2776 ///
2777 /// # Examples
2778 ///
2779 /// Looks up a series of four elements. The first is found, with a
2780 /// uniquely determined position; the second and third are not
2781 /// found; the fourth could match any position in `[1, 4]`.
2782 ///
2783 /// ```
2784 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2785 ///
2786 /// assert_eq!(s.binary_search(&13), Ok(9));
2787 /// assert_eq!(s.binary_search(&4), Err(7));
2788 /// assert_eq!(s.binary_search(&100), Err(13));
2789 /// let r = s.binary_search(&1);
2790 /// assert!(match r { Ok(1..=4) => true, _ => false, });
2791 /// ```
2792 ///
2793 /// If you want to find that whole *range* of matching items, rather than
2794 /// an arbitrary matching one, that can be done using [`partition_point`]:
2795 /// ```
2796 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2797 ///
2798 /// let low = s.partition_point(|x| x < &1);
2799 /// assert_eq!(low, 1);
2800 /// let high = s.partition_point(|x| x <= &1);
2801 /// assert_eq!(high, 5);
2802 /// let r = s.binary_search(&1);
2803 /// assert!((low..high).contains(&r.unwrap()));
2804 ///
2805 /// assert!(s[..low].iter().all(|&x| x < 1));
2806 /// assert!(s[low..high].iter().all(|&x| x == 1));
2807 /// assert!(s[high..].iter().all(|&x| x > 1));
2808 ///
2809 /// // For something not found, the "range" of equal items is empty
2810 /// assert_eq!(s.partition_point(|x| x < &11), 9);
2811 /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2812 /// assert_eq!(s.binary_search(&11), Err(9));
2813 /// ```
2814 ///
2815 /// If you want to insert an item to a sorted vector, while maintaining
2816 /// sort order, consider using [`partition_point`]:
2817 ///
2818 /// ```
2819 /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2820 /// let num = 42;
2821 /// let idx = s.partition_point(|&x| x <= num);
2822 /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2823 /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
2824 /// // to shift less elements.
2825 /// s.insert(idx, num);
2826 /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2827 /// ```
2828 #[stable(feature = "rust1", since = "1.0.0")]
2829 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2830 where
2831 T: Ord,
2832 {
2833 self.binary_search_by(|p| p.cmp(x))
2834 }
2835
2836 /// Binary searches this slice with a comparator function.
2837 ///
2838 /// The comparator function should return an order code that indicates
2839 /// whether its argument is `Less`, `Equal` or `Greater` the desired
2840 /// target.
2841 /// If the slice is not sorted or if the comparator function does not
2842 /// implement an order consistent with the sort order of the underlying
2843 /// slice, the returned result is unspecified and meaningless.
2844 ///
2845 /// If the value is found then [`Result::Ok`] is returned, containing the
2846 /// index of the matching element. If there are multiple matches, then any
2847 /// one of the matches could be returned. The index is chosen
2848 /// deterministically, but is subject to change in future versions of Rust.
2849 /// If the value is not found then [`Result::Err`] is returned, containing
2850 /// the index where a matching element could be inserted while maintaining
2851 /// sorted order.
2852 ///
2853 /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2854 ///
2855 /// [`binary_search`]: slice::binary_search
2856 /// [`binary_search_by_key`]: slice::binary_search_by_key
2857 /// [`partition_point`]: slice::partition_point
2858 ///
2859 /// # Examples
2860 ///
2861 /// Looks up a series of four elements. The first is found, with a
2862 /// uniquely determined position; the second and third are not
2863 /// found; the fourth could match any position in `[1, 4]`.
2864 ///
2865 /// ```
2866 /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2867 ///
2868 /// let seek = 13;
2869 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2870 /// let seek = 4;
2871 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2872 /// let seek = 100;
2873 /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2874 /// let seek = 1;
2875 /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2876 /// assert!(match r { Ok(1..=4) => true, _ => false, });
2877 /// ```
2878 #[stable(feature = "rust1", since = "1.0.0")]
2879 #[inline]
2880 pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2881 where
2882 F: FnMut(&'a T) -> Ordering,
2883 {
2884 let mut size = self.len();
2885 if size == 0 {
2886 return Err(0);
2887 }
2888 let mut base = 0usize;
2889
2890 // This loop intentionally doesn't have an early exit if the comparison
2891 // returns Equal. We want the number of loop iterations to depend *only*
2892 // on the size of the input slice so that the CPU can reliably predict
2893 // the loop count.
2894 while size > 1 {
2895 let half = size / 2;
2896 let mid = base + half;
2897
2898 // SAFETY: the call is made safe by the following invariants:
2899 // - `mid >= 0`: by definition
2900 // - `mid < size`: `mid = size / 2 + size / 4 + size / 8 ...`
2901 let cmp = f(unsafe { self.get_unchecked(mid) });
2902
2903 // Binary search interacts poorly with branch prediction, so force
2904 // the compiler to use conditional moves if supported by the target
2905 // architecture.
2906 base = hint::select_unpredictable(cmp == Greater, base, mid);
2907
2908 // This is imprecise in the case where `size` is odd and the
2909 // comparison returns Greater: the mid element still gets included
2910 // by `size` even though it's known to be larger than the element
2911 // being searched for.
2912 //
2913 // This is fine though: we gain more performance by keeping the
2914 // loop iteration count invariant (and thus predictable) than we
2915 // lose from considering one additional element.
2916 size -= half;
2917 }
2918
2919 // SAFETY: base is always in [0, size) because base <= mid.
2920 let cmp = f(unsafe { self.get_unchecked(base) });
2921 if cmp == Equal {
2922 // SAFETY: same as the `get_unchecked` above.
2923 unsafe { hint::assert_unchecked(base < self.len()) };
2924 Ok(base)
2925 } else {
2926 let result = base + (cmp == Less) as usize;
2927 // SAFETY: same as the `get_unchecked` above.
2928 // Note that this is `<=`, unlike the assume in the `Ok` path.
2929 unsafe { hint::assert_unchecked(result <= self.len()) };
2930 Err(result)
2931 }
2932 }
2933
2934 /// Binary searches this slice with a key extraction function.
2935 ///
2936 /// Assumes that the slice is sorted by the key, for instance with
2937 /// [`sort_by_key`] using the same key extraction function.
2938 /// If the slice is not sorted by the key, the returned result is
2939 /// unspecified and meaningless.
2940 ///
2941 /// If the value is found then [`Result::Ok`] is returned, containing the
2942 /// index of the matching element. If there are multiple matches, then any
2943 /// one of the matches could be returned. The index is chosen
2944 /// deterministically, but is subject to change in future versions of Rust.
2945 /// If the value is not found then [`Result::Err`] is returned, containing
2946 /// the index where a matching element could be inserted while maintaining
2947 /// sorted order.
2948 ///
2949 /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
2950 ///
2951 /// [`sort_by_key`]: slice::sort_by_key
2952 /// [`binary_search`]: slice::binary_search
2953 /// [`binary_search_by`]: slice::binary_search_by
2954 /// [`partition_point`]: slice::partition_point
2955 ///
2956 /// # Examples
2957 ///
2958 /// Looks up a series of four elements in a slice of pairs sorted by
2959 /// their second elements. The first is found, with a uniquely
2960 /// determined position; the second and third are not found; the
2961 /// fourth could match any position in `[1, 4]`.
2962 ///
2963 /// ```
2964 /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
2965 /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
2966 /// (1, 21), (2, 34), (4, 55)];
2967 ///
2968 /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
2969 /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
2970 /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
2971 /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
2972 /// assert!(match r { Ok(1..=4) => true, _ => false, });
2973 /// ```
2974 // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
2975 // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
2976 // This breaks links when slice is displayed in core, but changing it to use relative links
2977 // would break when the item is re-exported. So allow the core links to be broken for now.
2978 #[allow(rustdoc::broken_intra_doc_links)]
2979 #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
2980 #[inline]
2981 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
2982 where
2983 F: FnMut(&'a T) -> B,
2984 B: Ord,
2985 {
2986 self.binary_search_by(|k| f(k).cmp(b))
2987 }
2988
2989 /// Sorts the slice **without** preserving the initial order of equal elements.
2990 ///
2991 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
2992 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
2993 ///
2994 /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
2995 /// may panic; even if the function exits normally, the resulting order of elements in the slice
2996 /// is unspecified. See also the note on panicking below.
2997 ///
2998 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
2999 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3000 /// examples see the [`Ord`] documentation.
3001 ///
3002 ///
3003 /// All original elements will remain in the slice and any possible modifications via interior
3004 /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `T` panics.
3005 ///
3006 /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
3007 /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
3008 /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
3009 /// `slice::sort_unstable_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a
3010 /// [total order] users can sort slices containing floating-point values. Alternatively, if all
3011 /// values in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`]
3012 /// forms a [total order], it's possible to sort the slice with `sort_unstable_by(|a, b|
3013 /// a.partial_cmp(b).unwrap())`.
3014 ///
3015 /// # Current implementation
3016 ///
3017 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3018 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3019 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3020 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3021 ///
3022 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3023 /// slice is partially sorted.
3024 ///
3025 /// # Panics
3026 ///
3027 /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
3028 /// the [`Ord`] implementation panics.
3029 ///
3030 /// # Examples
3031 ///
3032 /// ```
3033 /// let mut v = [4, -5, 1, -3, 2];
3034 ///
3035 /// v.sort_unstable();
3036 /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3037 /// ```
3038 ///
3039 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3040 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3041 #[stable(feature = "sort_unstable", since = "1.20.0")]
3042 #[inline]
3043 pub fn sort_unstable(&mut self)
3044 where
3045 T: Ord,
3046 {
3047 sort::unstable::sort(self, &mut T::lt);
3048 }
3049
3050 /// Sorts the slice with a comparison function, **without** preserving the initial order of
3051 /// equal elements.
3052 ///
3053 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3054 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3055 ///
3056 /// If the comparison function `compare` does not implement a [total order], the function
3057 /// may panic; even if the function exits normally, the resulting order of elements in the slice
3058 /// is unspecified. See also the note on panicking below.
3059 ///
3060 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3061 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3062 /// examples see the [`Ord`] documentation.
3063 ///
3064 /// All original elements will remain in the slice and any possible modifications via interior
3065 /// mutability are observed in the input. Same is true if `compare` panics.
3066 ///
3067 /// # Current implementation
3068 ///
3069 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3070 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3071 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3072 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3073 ///
3074 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3075 /// slice is partially sorted.
3076 ///
3077 /// # Panics
3078 ///
3079 /// May panic if the `compare` does not implement a [total order], or if
3080 /// the `compare` itself panics.
3081 ///
3082 /// # Examples
3083 ///
3084 /// ```
3085 /// let mut v = [4, -5, 1, -3, 2];
3086 /// v.sort_unstable_by(|a, b| a.cmp(b));
3087 /// assert_eq!(v, [-5, -3, 1, 2, 4]);
3088 ///
3089 /// // reverse sorting
3090 /// v.sort_unstable_by(|a, b| b.cmp(a));
3091 /// assert_eq!(v, [4, 2, 1, -3, -5]);
3092 /// ```
3093 ///
3094 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3095 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3096 #[stable(feature = "sort_unstable", since = "1.20.0")]
3097 #[inline]
3098 pub fn sort_unstable_by<F>(&mut self, mut compare: F)
3099 where
3100 F: FnMut(&T, &T) -> Ordering,
3101 {
3102 sort::unstable::sort(self, &mut |a, b| compare(a, b) == Ordering::Less);
3103 }
3104
3105 /// Sorts the slice with a key extraction function, **without** preserving the initial order of
3106 /// equal elements.
3107 ///
3108 /// This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not
3109 /// allocate), and *O*(*n* \* log(*n*)) worst-case.
3110 ///
3111 /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
3112 /// may panic; even if the function exits normally, the resulting order of elements in the slice
3113 /// is unspecified. See also the note on panicking below.
3114 ///
3115 /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
3116 /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
3117 /// examples see the [`Ord`] documentation.
3118 ///
3119 /// All original elements will remain in the slice and any possible modifications via interior
3120 /// mutability are observed in the input. Same is true if the implementation of [`Ord`] for `K` panics.
3121 ///
3122 /// # Current implementation
3123 ///
3124 /// The current implementation is based on [ipnsort] by Lukas Bergdoll and Orson Peters, which
3125 /// combines the fast average case of quicksort with the fast worst case of heapsort, achieving
3126 /// linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the
3127 /// expected time to sort the data is *O*(*n* \* log(*k*)).
3128 ///
3129 /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
3130 /// slice is partially sorted.
3131 ///
3132 /// # Panics
3133 ///
3134 /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
3135 /// the [`Ord`] implementation panics.
3136 ///
3137 /// # Examples
3138 ///
3139 /// ```
3140 /// let mut v = [4i32, -5, 1, -3, 2];
3141 ///
3142 /// v.sort_unstable_by_key(|k| k.abs());
3143 /// assert_eq!(v, [1, 2, -3, 4, -5]);
3144 /// ```
3145 ///
3146 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3147 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3148 #[stable(feature = "sort_unstable", since = "1.20.0")]
3149 #[inline]
3150 pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
3151 where
3152 F: FnMut(&T) -> K,
3153 K: Ord,
3154 {
3155 sort::unstable::sort(self, &mut |a, b| f(a).lt(&f(b)));
3156 }
3157
3158 /// Reorders the slice such that the element at `index` is at a sort-order position. All
3159 /// elements before `index` will be `<=` to this value, and all elements after will be `>=` to
3160 /// it.
3161 ///
3162 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3163 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3164 /// function is also known as "kth element" in other libraries.
3165 ///
3166 /// Returns a triple that partitions the reordered slice:
3167 ///
3168 /// * The unsorted subslice before `index`, whose elements all satisfy `x <= self[index]`.
3169 ///
3170 /// * The element at `index`.
3171 ///
3172 /// * The unsorted subslice after `index`, whose elements all satisfy `x >= self[index]`.
3173 ///
3174 /// # Current implementation
3175 ///
3176 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3177 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3178 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3179 /// for all inputs.
3180 ///
3181 /// [`sort_unstable`]: slice::sort_unstable
3182 ///
3183 /// # Panics
3184 ///
3185 /// Panics when `index >= len()`, and so always panics on empty slices.
3186 ///
3187 /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order].
3188 ///
3189 /// # Examples
3190 ///
3191 /// ```
3192 /// let mut v = [-5i32, 4, 2, -3, 1];
3193 ///
3194 /// // Find the items `<=` to the median, the median itself, and the items `>=` to it.
3195 /// let (lesser, median, greater) = v.select_nth_unstable(2);
3196 ///
3197 /// assert!(lesser == [-3, -5] || lesser == [-5, -3]);
3198 /// assert_eq!(median, &mut 1);
3199 /// assert!(greater == [4, 2] || greater == [2, 4]);
3200 ///
3201 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3202 /// // about the specified index.
3203 /// assert!(v == [-3, -5, 1, 2, 4] ||
3204 /// v == [-5, -3, 1, 2, 4] ||
3205 /// v == [-3, -5, 1, 4, 2] ||
3206 /// v == [-5, -3, 1, 4, 2]);
3207 /// ```
3208 ///
3209 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3210 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3211 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3212 #[inline]
3213 pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3214 where
3215 T: Ord,
3216 {
3217 sort::select::partition_at_index(self, index, T::lt)
3218 }
3219
3220 /// Reorders the slice with a comparator function such that the element at `index` is at a
3221 /// sort-order position. All elements before `index` will be `<=` to this value, and all
3222 /// elements after will be `>=` to it, according to the comparator function.
3223 ///
3224 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3225 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3226 /// function is also known as "kth element" in other libraries.
3227 ///
3228 /// Returns a triple partitioning the reordered slice:
3229 ///
3230 /// * The unsorted subslice before `index`, whose elements all satisfy
3231 /// `compare(x, self[index]).is_le()`.
3232 ///
3233 /// * The element at `index`.
3234 ///
3235 /// * The unsorted subslice after `index`, whose elements all satisfy
3236 /// `compare(x, self[index]).is_ge()`.
3237 ///
3238 /// # Current implementation
3239 ///
3240 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3241 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3242 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3243 /// for all inputs.
3244 ///
3245 /// [`sort_unstable`]: slice::sort_unstable
3246 ///
3247 /// # Panics
3248 ///
3249 /// Panics when `index >= len()`, and so always panics on empty slices.
3250 ///
3251 /// May panic if `compare` does not implement a [total order].
3252 ///
3253 /// # Examples
3254 ///
3255 /// ```
3256 /// let mut v = [-5i32, 4, 2, -3, 1];
3257 ///
3258 /// // Find the items `>=` to the median, the median itself, and the items `<=` to it, by using
3259 /// // a reversed comparator.
3260 /// let (before, median, after) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3261 ///
3262 /// assert!(before == [4, 2] || before == [2, 4]);
3263 /// assert_eq!(median, &mut 1);
3264 /// assert!(after == [-3, -5] || after == [-5, -3]);
3265 ///
3266 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3267 /// // about the specified index.
3268 /// assert!(v == [2, 4, 1, -5, -3] ||
3269 /// v == [2, 4, 1, -3, -5] ||
3270 /// v == [4, 2, 1, -5, -3] ||
3271 /// v == [4, 2, 1, -3, -5]);
3272 /// ```
3273 ///
3274 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3275 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3276 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3277 #[inline]
3278 pub fn select_nth_unstable_by<F>(
3279 &mut self,
3280 index: usize,
3281 mut compare: F,
3282 ) -> (&mut [T], &mut T, &mut [T])
3283 where
3284 F: FnMut(&T, &T) -> Ordering,
3285 {
3286 sort::select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3287 }
3288
3289 /// Reorders the slice with a key extraction function such that the element at `index` is at a
3290 /// sort-order position. All elements before `index` will have keys `<=` to the key at `index`,
3291 /// and all elements after will have keys `>=` to it.
3292 ///
3293 /// This reordering is unstable (i.e. any element that compares equal to the nth element may end
3294 /// up at that position), in-place (i.e. does not allocate), and runs in *O*(*n*) time. This
3295 /// function is also known as "kth element" in other libraries.
3296 ///
3297 /// Returns a triple partitioning the reordered slice:
3298 ///
3299 /// * The unsorted subslice before `index`, whose elements all satisfy `f(x) <= f(self[index])`.
3300 ///
3301 /// * The element at `index`.
3302 ///
3303 /// * The unsorted subslice after `index`, whose elements all satisfy `f(x) >= f(self[index])`.
3304 ///
3305 /// # Current implementation
3306 ///
3307 /// The current algorithm is an introselect implementation based on [ipnsort] by Lukas Bergdoll
3308 /// and Orson Peters, which is also the basis for [`sort_unstable`]. The fallback algorithm is
3309 /// Median of Medians using Tukey's Ninther for pivot selection, which guarantees linear runtime
3310 /// for all inputs.
3311 ///
3312 /// [`sort_unstable`]: slice::sort_unstable
3313 ///
3314 /// # Panics
3315 ///
3316 /// Panics when `index >= len()`, meaning it always panics on empty slices.
3317 ///
3318 /// May panic if `K: Ord` does not implement a total order.
3319 ///
3320 /// # Examples
3321 ///
3322 /// ```
3323 /// let mut v = [-5i32, 4, 1, -3, 2];
3324 ///
3325 /// // Find the items `<=` to the absolute median, the absolute median itself, and the items
3326 /// // `>=` to it.
3327 /// let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
3328 ///
3329 /// assert!(lesser == [1, 2] || lesser == [2, 1]);
3330 /// assert_eq!(median, &mut -3);
3331 /// assert!(greater == [4, -5] || greater == [-5, 4]);
3332 ///
3333 /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3334 /// // about the specified index.
3335 /// assert!(v == [1, 2, -3, 4, -5] ||
3336 /// v == [1, 2, -3, -5, 4] ||
3337 /// v == [2, 1, -3, 4, -5] ||
3338 /// v == [2, 1, -3, -5, 4]);
3339 /// ```
3340 ///
3341 /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
3342 /// [total order]: https://en.wikipedia.org/wiki/Total_order
3343 #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3344 #[inline]
3345 pub fn select_nth_unstable_by_key<K, F>(
3346 &mut self,
3347 index: usize,
3348 mut f: F,
3349 ) -> (&mut [T], &mut T, &mut [T])
3350 where
3351 F: FnMut(&T) -> K,
3352 K: Ord,
3353 {
3354 sort::select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3355 }
3356
3357 /// Moves all consecutive repeated elements to the end of the slice according to the
3358 /// [`PartialEq`] trait implementation.
3359 ///
3360 /// Returns two slices. The first contains no consecutive repeated elements.
3361 /// The second contains all the duplicates in no specified order.
3362 ///
3363 /// If the slice is sorted, the first returned slice contains no duplicates.
3364 ///
3365 /// # Examples
3366 ///
3367 /// ```
3368 /// #![feature(slice_partition_dedup)]
3369 ///
3370 /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3371 ///
3372 /// let (dedup, duplicates) = slice.partition_dedup();
3373 ///
3374 /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3375 /// assert_eq!(duplicates, [2, 3, 1]);
3376 /// ```
3377 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3378 #[inline]
3379 pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3380 where
3381 T: PartialEq,
3382 {
3383 self.partition_dedup_by(|a, b| a == b)
3384 }
3385
3386 /// Moves all but the first of consecutive elements to the end of the slice satisfying
3387 /// a given equality relation.
3388 ///
3389 /// Returns two slices. The first contains no consecutive repeated elements.
3390 /// The second contains all the duplicates in no specified order.
3391 ///
3392 /// The `same_bucket` function is passed references to two elements from the slice and
3393 /// must determine if the elements compare equal. The elements are passed in opposite order
3394 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3395 /// at the end of the slice.
3396 ///
3397 /// If the slice is sorted, the first returned slice contains no duplicates.
3398 ///
3399 /// # Examples
3400 ///
3401 /// ```
3402 /// #![feature(slice_partition_dedup)]
3403 ///
3404 /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3405 ///
3406 /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3407 ///
3408 /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3409 /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3410 /// ```
3411 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3412 #[inline]
3413 pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3414 where
3415 F: FnMut(&mut T, &mut T) -> bool,
3416 {
3417 // Although we have a mutable reference to `self`, we cannot make
3418 // *arbitrary* changes. The `same_bucket` calls could panic, so we
3419 // must ensure that the slice is in a valid state at all times.
3420 //
3421 // The way that we handle this is by using swaps; we iterate
3422 // over all the elements, swapping as we go so that at the end
3423 // the elements we wish to keep are in the front, and those we
3424 // wish to reject are at the back. We can then split the slice.
3425 // This operation is still `O(n)`.
3426 //
3427 // Example: We start in this state, where `r` represents "next
3428 // read" and `w` represents "next_write".
3429 //
3430 // r
3431 // +---+---+---+---+---+---+
3432 // | 0 | 1 | 1 | 2 | 3 | 3 |
3433 // +---+---+---+---+---+---+
3434 // w
3435 //
3436 // Comparing self[r] against self[w-1], this is not a duplicate, so
3437 // we swap self[r] and self[w] (no effect as r==w) and then increment both
3438 // r and w, leaving us with:
3439 //
3440 // r
3441 // +---+---+---+---+---+---+
3442 // | 0 | 1 | 1 | 2 | 3 | 3 |
3443 // +---+---+---+---+---+---+
3444 // w
3445 //
3446 // Comparing self[r] against self[w-1], this value is a duplicate,
3447 // so we increment `r` but leave everything else unchanged:
3448 //
3449 // r
3450 // +---+---+---+---+---+---+
3451 // | 0 | 1 | 1 | 2 | 3 | 3 |
3452 // +---+---+---+---+---+---+
3453 // w
3454 //
3455 // Comparing self[r] against self[w-1], this is not a duplicate,
3456 // so swap self[r] and self[w] and advance r and w:
3457 //
3458 // r
3459 // +---+---+---+---+---+---+
3460 // | 0 | 1 | 2 | 1 | 3 | 3 |
3461 // +---+---+---+---+---+---+
3462 // w
3463 //
3464 // Not a duplicate, repeat:
3465 //
3466 // r
3467 // +---+---+---+---+---+---+
3468 // | 0 | 1 | 2 | 3 | 1 | 3 |
3469 // +---+---+---+---+---+---+
3470 // w
3471 //
3472 // Duplicate, advance r. End of slice. Split at w.
3473
3474 let len = self.len();
3475 if len <= 1 {
3476 return (self, &mut []);
3477 }
3478
3479 let ptr = self.as_mut_ptr();
3480 let mut next_read: usize = 1;
3481 let mut next_write: usize = 1;
3482
3483 // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3484 // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3485 // one element before `ptr_write`, but `next_write` starts at 1, so
3486 // `prev_ptr_write` is never less than 0 and is inside the slice.
3487 // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3488 // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3489 // and `prev_ptr_write.offset(1)`.
3490 //
3491 // `next_write` is also incremented at most once per loop at most meaning
3492 // no element is skipped when it may need to be swapped.
3493 //
3494 // `ptr_read` and `prev_ptr_write` never point to the same element. This
3495 // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3496 // The explanation is simply that `next_read >= next_write` is always true,
3497 // thus `next_read > next_write - 1` is too.
3498 unsafe {
3499 // Avoid bounds checks by using raw pointers.
3500 while next_read < len {
3501 let ptr_read = ptr.add(next_read);
3502 let prev_ptr_write = ptr.add(next_write - 1);
3503 if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3504 if next_read != next_write {
3505 let ptr_write = prev_ptr_write.add(1);
3506 mem::swap(&mut *ptr_read, &mut *ptr_write);
3507 }
3508 next_write += 1;
3509 }
3510 next_read += 1;
3511 }
3512 }
3513
3514 self.split_at_mut(next_write)
3515 }
3516
3517 /// Moves all but the first of consecutive elements to the end of the slice that resolve
3518 /// to the same key.
3519 ///
3520 /// Returns two slices. The first contains no consecutive repeated elements.
3521 /// The second contains all the duplicates in no specified order.
3522 ///
3523 /// If the slice is sorted, the first returned slice contains no duplicates.
3524 ///
3525 /// # Examples
3526 ///
3527 /// ```
3528 /// #![feature(slice_partition_dedup)]
3529 ///
3530 /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3531 ///
3532 /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3533 ///
3534 /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3535 /// assert_eq!(duplicates, [21, 30, 13]);
3536 /// ```
3537 #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3538 #[inline]
3539 pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3540 where
3541 F: FnMut(&mut T) -> K,
3542 K: PartialEq,
3543 {
3544 self.partition_dedup_by(|a, b| key(a) == key(b))
3545 }
3546
3547 /// Rotates the slice in-place such that the first `mid` elements of the
3548 /// slice move to the end while the last `self.len() - mid` elements move to
3549 /// the front.
3550 ///
3551 /// After calling `rotate_left`, the element previously at index `mid` will
3552 /// become the first element in the slice.
3553 ///
3554 /// # Panics
3555 ///
3556 /// This function will panic if `mid` is greater than the length of the
3557 /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3558 /// rotation.
3559 ///
3560 /// # Complexity
3561 ///
3562 /// Takes linear (in `self.len()`) time.
3563 ///
3564 /// # Examples
3565 ///
3566 /// ```
3567 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3568 /// a.rotate_left(2);
3569 /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3570 /// ```
3571 ///
3572 /// Rotating a subslice:
3573 ///
3574 /// ```
3575 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3576 /// a[1..5].rotate_left(1);
3577 /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3578 /// ```
3579 #[stable(feature = "slice_rotate", since = "1.26.0")]
3580 pub fn rotate_left(&mut self, mid: usize) {
3581 assert!(mid <= self.len());
3582 let k = self.len() - mid;
3583 let p = self.as_mut_ptr();
3584
3585 // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3586 // valid for reading and writing, as required by `ptr_rotate`.
3587 unsafe {
3588 rotate::ptr_rotate(mid, p.add(mid), k);
3589 }
3590 }
3591
3592 /// Rotates the slice in-place such that the first `self.len() - k`
3593 /// elements of the slice move to the end while the last `k` elements move
3594 /// to the front.
3595 ///
3596 /// After calling `rotate_right`, the element previously at index
3597 /// `self.len() - k` will become the first element in the slice.
3598 ///
3599 /// # Panics
3600 ///
3601 /// This function will panic if `k` is greater than the length of the
3602 /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3603 /// rotation.
3604 ///
3605 /// # Complexity
3606 ///
3607 /// Takes linear (in `self.len()`) time.
3608 ///
3609 /// # Examples
3610 ///
3611 /// ```
3612 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3613 /// a.rotate_right(2);
3614 /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3615 /// ```
3616 ///
3617 /// Rotating a subslice:
3618 ///
3619 /// ```
3620 /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3621 /// a[1..5].rotate_right(1);
3622 /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3623 /// ```
3624 #[stable(feature = "slice_rotate", since = "1.26.0")]
3625 pub fn rotate_right(&mut self, k: usize) {
3626 assert!(k <= self.len());
3627 let mid = self.len() - k;
3628 let p = self.as_mut_ptr();
3629
3630 // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3631 // valid for reading and writing, as required by `ptr_rotate`.
3632 unsafe {
3633 rotate::ptr_rotate(mid, p.add(mid), k);
3634 }
3635 }
3636
3637 /// Fills `self` with elements by cloning `value`.
3638 ///
3639 /// # Examples
3640 ///
3641 /// ```
3642 /// let mut buf = vec![0; 10];
3643 /// buf.fill(1);
3644 /// assert_eq!(buf, vec![1; 10]);
3645 /// ```
3646 #[doc(alias = "memset")]
3647 #[stable(feature = "slice_fill", since = "1.50.0")]
3648 pub fn fill(&mut self, value: T)
3649 where
3650 T: Clone,
3651 {
3652 specialize::SpecFill::spec_fill(self, value);
3653 }
3654
3655 /// Fills `self` with elements returned by calling a closure repeatedly.
3656 ///
3657 /// This method uses a closure to create new values. If you'd rather
3658 /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3659 /// trait to generate values, you can pass [`Default::default`] as the
3660 /// argument.
3661 ///
3662 /// [`fill`]: slice::fill
3663 ///
3664 /// # Examples
3665 ///
3666 /// ```
3667 /// let mut buf = vec![1; 10];
3668 /// buf.fill_with(Default::default);
3669 /// assert_eq!(buf, vec![0; 10]);
3670 /// ```
3671 #[stable(feature = "slice_fill_with", since = "1.51.0")]
3672 pub fn fill_with<F>(&mut self, mut f: F)
3673 where
3674 F: FnMut() -> T,
3675 {
3676 for el in self {
3677 *el = f();
3678 }
3679 }
3680
3681 /// Copies the elements from `src` into `self`.
3682 ///
3683 /// The length of `src` must be the same as `self`.
3684 ///
3685 /// # Panics
3686 ///
3687 /// This function will panic if the two slices have different lengths.
3688 ///
3689 /// # Examples
3690 ///
3691 /// Cloning two elements from a slice into another:
3692 ///
3693 /// ```
3694 /// let src = [1, 2, 3, 4];
3695 /// let mut dst = [0, 0];
3696 ///
3697 /// // Because the slices have to be the same length,
3698 /// // we slice the source slice from four elements
3699 /// // to two. It will panic if we don't do this.
3700 /// dst.clone_from_slice(&src[2..]);
3701 ///
3702 /// assert_eq!(src, [1, 2, 3, 4]);
3703 /// assert_eq!(dst, [3, 4]);
3704 /// ```
3705 ///
3706 /// Rust enforces that there can only be one mutable reference with no
3707 /// immutable references to a particular piece of data in a particular
3708 /// scope. Because of this, attempting to use `clone_from_slice` on a
3709 /// single slice will result in a compile failure:
3710 ///
3711 /// ```compile_fail
3712 /// let mut slice = [1, 2, 3, 4, 5];
3713 ///
3714 /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3715 /// ```
3716 ///
3717 /// To work around this, we can use [`split_at_mut`] to create two distinct
3718 /// sub-slices from a slice:
3719 ///
3720 /// ```
3721 /// let mut slice = [1, 2, 3, 4, 5];
3722 ///
3723 /// {
3724 /// let (left, right) = slice.split_at_mut(2);
3725 /// left.clone_from_slice(&right[1..]);
3726 /// }
3727 ///
3728 /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3729 /// ```
3730 ///
3731 /// [`copy_from_slice`]: slice::copy_from_slice
3732 /// [`split_at_mut`]: slice::split_at_mut
3733 #[stable(feature = "clone_from_slice", since = "1.7.0")]
3734 #[track_caller]
3735 pub fn clone_from_slice(&mut self, src: &[T])
3736 where
3737 T: Clone,
3738 {
3739 self.spec_clone_from(src);
3740 }
3741
3742 /// Copies all elements from `src` into `self`, using a memcpy.
3743 ///
3744 /// The length of `src` must be the same as `self`.
3745 ///
3746 /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3747 ///
3748 /// # Panics
3749 ///
3750 /// This function will panic if the two slices have different lengths.
3751 ///
3752 /// # Examples
3753 ///
3754 /// Copying two elements from a slice into another:
3755 ///
3756 /// ```
3757 /// let src = [1, 2, 3, 4];
3758 /// let mut dst = [0, 0];
3759 ///
3760 /// // Because the slices have to be the same length,
3761 /// // we slice the source slice from four elements
3762 /// // to two. It will panic if we don't do this.
3763 /// dst.copy_from_slice(&src[2..]);
3764 ///
3765 /// assert_eq!(src, [1, 2, 3, 4]);
3766 /// assert_eq!(dst, [3, 4]);
3767 /// ```
3768 ///
3769 /// Rust enforces that there can only be one mutable reference with no
3770 /// immutable references to a particular piece of data in a particular
3771 /// scope. Because of this, attempting to use `copy_from_slice` on a
3772 /// single slice will result in a compile failure:
3773 ///
3774 /// ```compile_fail
3775 /// let mut slice = [1, 2, 3, 4, 5];
3776 ///
3777 /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3778 /// ```
3779 ///
3780 /// To work around this, we can use [`split_at_mut`] to create two distinct
3781 /// sub-slices from a slice:
3782 ///
3783 /// ```
3784 /// let mut slice = [1, 2, 3, 4, 5];
3785 ///
3786 /// {
3787 /// let (left, right) = slice.split_at_mut(2);
3788 /// left.copy_from_slice(&right[1..]);
3789 /// }
3790 ///
3791 /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3792 /// ```
3793 ///
3794 /// [`clone_from_slice`]: slice::clone_from_slice
3795 /// [`split_at_mut`]: slice::split_at_mut
3796 #[doc(alias = "memcpy")]
3797 #[inline]
3798 #[stable(feature = "copy_from_slice", since = "1.9.0")]
3799 #[rustc_const_stable(feature = "const_copy_from_slice", since = "1.87.0")]
3800 #[track_caller]
3801 pub const fn copy_from_slice(&mut self, src: &[T])
3802 where
3803 T: Copy,
3804 {
3805 // The panic code path was put into a cold function to not bloat the
3806 // call site.
3807 #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never), cold)]
3808 #[cfg_attr(feature = "panic_immediate_abort", inline)]
3809 #[track_caller]
3810 const fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
3811 const_panic!(
3812 "copy_from_slice: source slice length does not match destination slice length",
3813 "copy_from_slice: source slice length ({src_len}) does not match destination slice length ({dst_len})",
3814 src_len: usize,
3815 dst_len: usize,
3816 )
3817 }
3818
3819 if self.len() != src.len() {
3820 len_mismatch_fail(self.len(), src.len());
3821 }
3822
3823 // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3824 // checked to have the same length. The slices cannot overlap because
3825 // mutable references are exclusive.
3826 unsafe {
3827 ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
3828 }
3829 }
3830
3831 /// Copies elements from one part of the slice to another part of itself,
3832 /// using a memmove.
3833 ///
3834 /// `src` is the range within `self` to copy from. `dest` is the starting
3835 /// index of the range within `self` to copy to, which will have the same
3836 /// length as `src`. The two ranges may overlap. The ends of the two ranges
3837 /// must be less than or equal to `self.len()`.
3838 ///
3839 /// # Panics
3840 ///
3841 /// This function will panic if either range exceeds the end of the slice,
3842 /// or if the end of `src` is before the start.
3843 ///
3844 /// # Examples
3845 ///
3846 /// Copying four bytes within a slice:
3847 ///
3848 /// ```
3849 /// let mut bytes = *b"Hello, World!";
3850 ///
3851 /// bytes.copy_within(1..5, 8);
3852 ///
3853 /// assert_eq!(&bytes, b"Hello, Wello!");
3854 /// ```
3855 #[stable(feature = "copy_within", since = "1.37.0")]
3856 #[track_caller]
3857 pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
3858 where
3859 T: Copy,
3860 {
3861 let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
3862 let count = src_end - src_start;
3863 assert!(dest <= self.len() - count, "dest is out of bounds");
3864 // SAFETY: the conditions for `ptr::copy` have all been checked above,
3865 // as have those for `ptr::add`.
3866 unsafe {
3867 // Derive both `src_ptr` and `dest_ptr` from the same loan
3868 let ptr = self.as_mut_ptr();
3869 let src_ptr = ptr.add(src_start);
3870 let dest_ptr = ptr.add(dest);
3871 ptr::copy(src_ptr, dest_ptr, count);
3872 }
3873 }
3874
3875 /// Swaps all elements in `self` with those in `other`.
3876 ///
3877 /// The length of `other` must be the same as `self`.
3878 ///
3879 /// # Panics
3880 ///
3881 /// This function will panic if the two slices have different lengths.
3882 ///
3883 /// # Example
3884 ///
3885 /// Swapping two elements across slices:
3886 ///
3887 /// ```
3888 /// let mut slice1 = [0, 0];
3889 /// let mut slice2 = [1, 2, 3, 4];
3890 ///
3891 /// slice1.swap_with_slice(&mut slice2[2..]);
3892 ///
3893 /// assert_eq!(slice1, [3, 4]);
3894 /// assert_eq!(slice2, [1, 2, 0, 0]);
3895 /// ```
3896 ///
3897 /// Rust enforces that there can only be one mutable reference to a
3898 /// particular piece of data in a particular scope. Because of this,
3899 /// attempting to use `swap_with_slice` on a single slice will result in
3900 /// a compile failure:
3901 ///
3902 /// ```compile_fail
3903 /// let mut slice = [1, 2, 3, 4, 5];
3904 /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
3905 /// ```
3906 ///
3907 /// To work around this, we can use [`split_at_mut`] to create two distinct
3908 /// mutable sub-slices from a slice:
3909 ///
3910 /// ```
3911 /// let mut slice = [1, 2, 3, 4, 5];
3912 ///
3913 /// {
3914 /// let (left, right) = slice.split_at_mut(2);
3915 /// left.swap_with_slice(&mut right[1..]);
3916 /// }
3917 ///
3918 /// assert_eq!(slice, [4, 5, 3, 1, 2]);
3919 /// ```
3920 ///
3921 /// [`split_at_mut`]: slice::split_at_mut
3922 #[stable(feature = "swap_with_slice", since = "1.27.0")]
3923 #[track_caller]
3924 pub fn swap_with_slice(&mut self, other: &mut [T]) {
3925 assert!(self.len() == other.len(), "destination and source slices have different lengths");
3926 // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3927 // checked to have the same length. The slices cannot overlap because
3928 // mutable references are exclusive.
3929 unsafe {
3930 ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
3931 }
3932 }
3933
3934 /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
3935 fn align_to_offsets<U>(&self) -> (usize, usize) {
3936 // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
3937 // lowest number of `T`s. And how many `T`s we need for each such "multiple".
3938 //
3939 // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
3940 // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
3941 // place of every 3 Ts in the `rest` slice. A bit more complicated.
3942 //
3943 // Formula to calculate this is:
3944 //
3945 // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
3946 // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
3947 //
3948 // Expanded and simplified:
3949 //
3950 // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
3951 // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
3952 //
3953 // Luckily since all this is constant-evaluated... performance here matters not!
3954 const fn gcd(a: usize, b: usize) -> usize {
3955 if b == 0 { a } else { gcd(b, a % b) }
3956 }
3957
3958 // Explicitly wrap the function call in a const block so it gets
3959 // constant-evaluated even in debug mode.
3960 let gcd: usize = const { gcd(size_of::<T>(), size_of::<U>()) };
3961 let ts: usize = size_of::<U>() / gcd;
3962 let us: usize = size_of::<T>() / gcd;
3963
3964 // Armed with this knowledge, we can find how many `U`s we can fit!
3965 let us_len = self.len() / ts * us;
3966 // And how many `T`s will be in the trailing slice!
3967 let ts_len = self.len() % ts;
3968 (us_len, ts_len)
3969 }
3970
3971 /// Transmutes the slice to a slice of another type, ensuring alignment of the types is
3972 /// maintained.
3973 ///
3974 /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
3975 /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
3976 /// the given alignment constraint and element size.
3977 ///
3978 /// This method has no purpose when either input element `T` or output element `U` are
3979 /// zero-sized and will return the original slice without splitting anything.
3980 ///
3981 /// # Safety
3982 ///
3983 /// This method is essentially a `transmute` with respect to the elements in the returned
3984 /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
3985 ///
3986 /// # Examples
3987 ///
3988 /// Basic usage:
3989 ///
3990 /// ```
3991 /// unsafe {
3992 /// let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
3993 /// let (prefix, shorts, suffix) = bytes.align_to::<u16>();
3994 /// // less_efficient_algorithm_for_bytes(prefix);
3995 /// // more_efficient_algorithm_for_aligned_shorts(shorts);
3996 /// // less_efficient_algorithm_for_bytes(suffix);
3997 /// }
3998 /// ```
3999 #[stable(feature = "slice_align_to", since = "1.30.0")]
4000 #[must_use]
4001 pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
4002 // Note that most of this function will be constant-evaluated,
4003 if U::IS_ZST || T::IS_ZST {
4004 // handle ZSTs specially, which is – don't handle them at all.
4005 return (self, &[], &[]);
4006 }
4007
4008 // First, find at what point do we split between the first and 2nd slice. Easy with
4009 // ptr.align_offset.
4010 let ptr = self.as_ptr();
4011 // SAFETY: See the `align_to_mut` method for the detailed safety comment.
4012 let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4013 if offset > self.len() {
4014 (self, &[], &[])
4015 } else {
4016 let (left, rest) = self.split_at(offset);
4017 let (us_len, ts_len) = rest.align_to_offsets::<U>();
4018 // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4019 #[cfg(miri)]
4020 crate::intrinsics::miri_promise_symbolic_alignment(
4021 rest.as_ptr().cast(),
4022 align_of::<U>(),
4023 );
4024 // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
4025 // since the caller guarantees that we can transmute `T` to `U` safely.
4026 unsafe {
4027 (
4028 left,
4029 from_raw_parts(rest.as_ptr() as *const U, us_len),
4030 from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
4031 )
4032 }
4033 }
4034 }
4035
4036 /// Transmutes the mutable slice to a mutable slice of another type, ensuring alignment of the
4037 /// types is maintained.
4038 ///
4039 /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
4040 /// slice of a new type, and the suffix slice. The middle part will be as big as possible under
4041 /// the given alignment constraint and element size.
4042 ///
4043 /// This method has no purpose when either input element `T` or output element `U` are
4044 /// zero-sized and will return the original slice without splitting anything.
4045 ///
4046 /// # Safety
4047 ///
4048 /// This method is essentially a `transmute` with respect to the elements in the returned
4049 /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
4050 ///
4051 /// # Examples
4052 ///
4053 /// Basic usage:
4054 ///
4055 /// ```
4056 /// unsafe {
4057 /// let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
4058 /// let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
4059 /// // less_efficient_algorithm_for_bytes(prefix);
4060 /// // more_efficient_algorithm_for_aligned_shorts(shorts);
4061 /// // less_efficient_algorithm_for_bytes(suffix);
4062 /// }
4063 /// ```
4064 #[stable(feature = "slice_align_to", since = "1.30.0")]
4065 #[must_use]
4066 pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
4067 // Note that most of this function will be constant-evaluated,
4068 if U::IS_ZST || T::IS_ZST {
4069 // handle ZSTs specially, which is – don't handle them at all.
4070 return (self, &mut [], &mut []);
4071 }
4072
4073 // First, find at what point do we split between the first and 2nd slice. Easy with
4074 // ptr.align_offset.
4075 let ptr = self.as_ptr();
4076 // SAFETY: Here we are ensuring we will use aligned pointers for U for the
4077 // rest of the method. This is done by passing a pointer to &[T] with an
4078 // alignment targeted for U.
4079 // `crate::ptr::align_offset` is called with a correctly aligned and
4080 // valid pointer `ptr` (it comes from a reference to `self`) and with
4081 // a size that is a power of two (since it comes from the alignment for U),
4082 // satisfying its safety constraints.
4083 let offset = unsafe { crate::ptr::align_offset(ptr, align_of::<U>()) };
4084 if offset > self.len() {
4085 (self, &mut [], &mut [])
4086 } else {
4087 let (left, rest) = self.split_at_mut(offset);
4088 let (us_len, ts_len) = rest.align_to_offsets::<U>();
4089 let rest_len = rest.len();
4090 let mut_ptr = rest.as_mut_ptr();
4091 // Inform Miri that we want to consider the "middle" pointer to be suitably aligned.
4092 #[cfg(miri)]
4093 crate::intrinsics::miri_promise_symbolic_alignment(
4094 mut_ptr.cast() as *const (),
4095 align_of::<U>(),
4096 );
4097 // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
4098 // SAFETY: see comments for `align_to`.
4099 unsafe {
4100 (
4101 left,
4102 from_raw_parts_mut(mut_ptr as *mut U, us_len),
4103 from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
4104 )
4105 }
4106 }
4107 }
4108
4109 /// Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
4110 ///
4111 /// This is a safe wrapper around [`slice::align_to`], so inherits the same
4112 /// guarantees as that method.
4113 ///
4114 /// # Panics
4115 ///
4116 /// This will panic if the size of the SIMD type is different from
4117 /// `LANES` times that of the scalar.
4118 ///
4119 /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4120 /// that from ever happening, as only power-of-two numbers of lanes are
4121 /// supported. It's possible that, in the future, those restrictions might
4122 /// be lifted in a way that would make it possible to see panics from this
4123 /// method for something like `LANES == 3`.
4124 ///
4125 /// # Examples
4126 ///
4127 /// ```
4128 /// #![feature(portable_simd)]
4129 /// use core::simd::prelude::*;
4130 ///
4131 /// let short = &[1, 2, 3];
4132 /// let (prefix, middle, suffix) = short.as_simd::<4>();
4133 /// assert_eq!(middle, []); // Not enough elements for anything in the middle
4134 ///
4135 /// // They might be split in any possible way between prefix and suffix
4136 /// let it = prefix.iter().chain(suffix).copied();
4137 /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
4138 ///
4139 /// fn basic_simd_sum(x: &[f32]) -> f32 {
4140 /// use std::ops::Add;
4141 /// let (prefix, middle, suffix) = x.as_simd();
4142 /// let sums = f32x4::from_array([
4143 /// prefix.iter().copied().sum(),
4144 /// 0.0,
4145 /// 0.0,
4146 /// suffix.iter().copied().sum(),
4147 /// ]);
4148 /// let sums = middle.iter().copied().fold(sums, f32x4::add);
4149 /// sums.reduce_sum()
4150 /// }
4151 ///
4152 /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
4153 /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
4154 /// ```
4155 #[unstable(feature = "portable_simd", issue = "86656")]
4156 #[must_use]
4157 pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
4158 where
4159 Simd<T, LANES>: AsRef<[T; LANES]>,
4160 T: simd::SimdElement,
4161 simd::LaneCount<LANES>: simd::SupportedLaneCount,
4162 {
4163 // These are expected to always match, as vector types are laid out like
4164 // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4165 // might as well double-check since it'll optimize away anyhow.
4166 assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4167
4168 // SAFETY: The simd types have the same layout as arrays, just with
4169 // potentially-higher alignment, so the de-facto transmutes are sound.
4170 unsafe { self.align_to() }
4171 }
4172
4173 /// Splits a mutable slice into a mutable prefix, a middle of aligned SIMD types,
4174 /// and a mutable suffix.
4175 ///
4176 /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4177 /// guarantees as that method.
4178 ///
4179 /// This is the mutable version of [`slice::as_simd`]; see that for examples.
4180 ///
4181 /// # Panics
4182 ///
4183 /// This will panic if the size of the SIMD type is different from
4184 /// `LANES` times that of the scalar.
4185 ///
4186 /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
4187 /// that from ever happening, as only power-of-two numbers of lanes are
4188 /// supported. It's possible that, in the future, those restrictions might
4189 /// be lifted in a way that would make it possible to see panics from this
4190 /// method for something like `LANES == 3`.
4191 #[unstable(feature = "portable_simd", issue = "86656")]
4192 #[must_use]
4193 pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
4194 where
4195 Simd<T, LANES>: AsMut<[T; LANES]>,
4196 T: simd::SimdElement,
4197 simd::LaneCount<LANES>: simd::SupportedLaneCount,
4198 {
4199 // These are expected to always match, as vector types are laid out like
4200 // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4201 // might as well double-check since it'll optimize away anyhow.
4202 assert_eq!(size_of::<Simd<T, LANES>>(), size_of::<[T; LANES]>());
4203
4204 // SAFETY: The simd types have the same layout as arrays, just with
4205 // potentially-higher alignment, so the de-facto transmutes are sound.
4206 unsafe { self.align_to_mut() }
4207 }
4208
4209 /// Checks if the elements of this slice are sorted.
4210 ///
4211 /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4212 /// slice yields exactly zero or one element, `true` is returned.
4213 ///
4214 /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4215 /// implies that this function returns `false` if any two consecutive items are not
4216 /// comparable.
4217 ///
4218 /// # Examples
4219 ///
4220 /// ```
4221 /// let empty: [i32; 0] = [];
4222 ///
4223 /// assert!([1, 2, 2, 9].is_sorted());
4224 /// assert!(![1, 3, 2, 4].is_sorted());
4225 /// assert!([0].is_sorted());
4226 /// assert!(empty.is_sorted());
4227 /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4228 /// ```
4229 #[inline]
4230 #[stable(feature = "is_sorted", since = "1.82.0")]
4231 #[must_use]
4232 pub fn is_sorted(&self) -> bool
4233 where
4234 T: PartialOrd,
4235 {
4236 // This odd number works the best. 32 + 1 extra due to overlapping chunk boundaries.
4237 const CHUNK_SIZE: usize = 33;
4238 if self.len() < CHUNK_SIZE {
4239 return self.windows(2).all(|w| w[0] <= w[1]);
4240 }
4241 let mut i = 0;
4242 // Check in chunks for autovectorization.
4243 while i < self.len() - CHUNK_SIZE {
4244 let chunk = &self[i..i + CHUNK_SIZE];
4245 if !chunk.windows(2).fold(true, |acc, w| acc & (w[0] <= w[1])) {
4246 return false;
4247 }
4248 // We need to ensure that chunk boundaries are also sorted.
4249 // Overlap the next chunk with the last element of our last chunk.
4250 i += CHUNK_SIZE - 1;
4251 }
4252 self[i..].windows(2).all(|w| w[0] <= w[1])
4253 }
4254
4255 /// Checks if the elements of this slice are sorted using the given comparator function.
4256 ///
4257 /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4258 /// function to determine whether two elements are to be considered in sorted order.
4259 ///
4260 /// # Examples
4261 ///
4262 /// ```
4263 /// assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
4264 /// assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
4265 ///
4266 /// assert!([0].is_sorted_by(|a, b| true));
4267 /// assert!([0].is_sorted_by(|a, b| false));
4268 ///
4269 /// let empty: [i32; 0] = [];
4270 /// assert!(empty.is_sorted_by(|a, b| false));
4271 /// assert!(empty.is_sorted_by(|a, b| true));
4272 /// ```
4273 #[stable(feature = "is_sorted", since = "1.82.0")]
4274 #[must_use]
4275 pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4276 where
4277 F: FnMut(&'a T, &'a T) -> bool,
4278 {
4279 self.array_windows().all(|[a, b]| compare(a, b))
4280 }
4281
4282 /// Checks if the elements of this slice are sorted using the given key extraction function.
4283 ///
4284 /// Instead of comparing the slice's elements directly, this function compares the keys of the
4285 /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4286 /// documentation for more information.
4287 ///
4288 /// [`is_sorted`]: slice::is_sorted
4289 ///
4290 /// # Examples
4291 ///
4292 /// ```
4293 /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4294 /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4295 /// ```
4296 #[inline]
4297 #[stable(feature = "is_sorted", since = "1.82.0")]
4298 #[must_use]
4299 pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4300 where
4301 F: FnMut(&'a T) -> K,
4302 K: PartialOrd,
4303 {
4304 self.iter().is_sorted_by_key(f)
4305 }
4306
4307 /// Returns the index of the partition point according to the given predicate
4308 /// (the index of the first element of the second partition).
4309 ///
4310 /// The slice is assumed to be partitioned according to the given predicate.
4311 /// This means that all elements for which the predicate returns true are at the start of the slice
4312 /// and all elements for which the predicate returns false are at the end.
4313 /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4314 /// (all odd numbers are at the start, all even at the end).
4315 ///
4316 /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4317 /// as this method performs a kind of binary search.
4318 ///
4319 /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4320 ///
4321 /// [`binary_search`]: slice::binary_search
4322 /// [`binary_search_by`]: slice::binary_search_by
4323 /// [`binary_search_by_key`]: slice::binary_search_by_key
4324 ///
4325 /// # Examples
4326 ///
4327 /// ```
4328 /// let v = [1, 2, 3, 3, 5, 6, 7];
4329 /// let i = v.partition_point(|&x| x < 5);
4330 ///
4331 /// assert_eq!(i, 4);
4332 /// assert!(v[..i].iter().all(|&x| x < 5));
4333 /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4334 /// ```
4335 ///
4336 /// If all elements of the slice match the predicate, including if the slice
4337 /// is empty, then the length of the slice will be returned:
4338 ///
4339 /// ```
4340 /// let a = [2, 4, 8];
4341 /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4342 /// let a: [i32; 0] = [];
4343 /// assert_eq!(a.partition_point(|x| x < &100), 0);
4344 /// ```
4345 ///
4346 /// If you want to insert an item to a sorted vector, while maintaining
4347 /// sort order:
4348 ///
4349 /// ```
4350 /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4351 /// let num = 42;
4352 /// let idx = s.partition_point(|&x| x <= num);
4353 /// s.insert(idx, num);
4354 /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4355 /// ```
4356 #[stable(feature = "partition_point", since = "1.52.0")]
4357 #[must_use]
4358 pub fn partition_point<P>(&self, mut pred: P) -> usize
4359 where
4360 P: FnMut(&T) -> bool,
4361 {
4362 self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4363 }
4364
4365 /// Removes the subslice corresponding to the given range
4366 /// and returns a reference to it.
4367 ///
4368 /// Returns `None` and does not modify the slice if the given
4369 /// range is out of bounds.
4370 ///
4371 /// Note that this method only accepts one-sided ranges such as
4372 /// `2..` or `..6`, but not `2..6`.
4373 ///
4374 /// # Examples
4375 ///
4376 /// Splitting off the first three elements of a slice:
4377 ///
4378 /// ```
4379 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4380 /// let mut first_three = slice.split_off(..3).unwrap();
4381 ///
4382 /// assert_eq!(slice, &['d']);
4383 /// assert_eq!(first_three, &['a', 'b', 'c']);
4384 /// ```
4385 ///
4386 /// Splitting off the last two elements of a slice:
4387 ///
4388 /// ```
4389 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4390 /// let mut tail = slice.split_off(2..).unwrap();
4391 ///
4392 /// assert_eq!(slice, &['a', 'b']);
4393 /// assert_eq!(tail, &['c', 'd']);
4394 /// ```
4395 ///
4396 /// Getting `None` when `range` is out of bounds:
4397 ///
4398 /// ```
4399 /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4400 ///
4401 /// assert_eq!(None, slice.split_off(5..));
4402 /// assert_eq!(None, slice.split_off(..5));
4403 /// assert_eq!(None, slice.split_off(..=4));
4404 /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4405 /// assert_eq!(Some(expected), slice.split_off(..4));
4406 /// ```
4407 #[inline]
4408 #[must_use = "method does not modify the slice if the range is out of bounds"]
4409 #[stable(feature = "slice_take", since = "1.87.0")]
4410 pub fn split_off<'a, R: OneSidedRange<usize>>(
4411 self: &mut &'a Self,
4412 range: R,
4413 ) -> Option<&'a Self> {
4414 let (direction, split_index) = split_point_of(range)?;
4415 if split_index > self.len() {
4416 return None;
4417 }
4418 let (front, back) = self.split_at(split_index);
4419 match direction {
4420 Direction::Front => {
4421 *self = back;
4422 Some(front)
4423 }
4424 Direction::Back => {
4425 *self = front;
4426 Some(back)
4427 }
4428 }
4429 }
4430
4431 /// Removes the subslice corresponding to the given range
4432 /// and returns a mutable reference to it.
4433 ///
4434 /// Returns `None` and does not modify the slice if the given
4435 /// range is out of bounds.
4436 ///
4437 /// Note that this method only accepts one-sided ranges such as
4438 /// `2..` or `..6`, but not `2..6`.
4439 ///
4440 /// # Examples
4441 ///
4442 /// Splitting off the first three elements of a slice:
4443 ///
4444 /// ```
4445 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4446 /// let mut first_three = slice.split_off_mut(..3).unwrap();
4447 ///
4448 /// assert_eq!(slice, &mut ['d']);
4449 /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4450 /// ```
4451 ///
4452 /// Taking the last two elements of a slice:
4453 ///
4454 /// ```
4455 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4456 /// let mut tail = slice.split_off_mut(2..).unwrap();
4457 ///
4458 /// assert_eq!(slice, &mut ['a', 'b']);
4459 /// assert_eq!(tail, &mut ['c', 'd']);
4460 /// ```
4461 ///
4462 /// Getting `None` when `range` is out of bounds:
4463 ///
4464 /// ```
4465 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4466 ///
4467 /// assert_eq!(None, slice.split_off_mut(5..));
4468 /// assert_eq!(None, slice.split_off_mut(..5));
4469 /// assert_eq!(None, slice.split_off_mut(..=4));
4470 /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4471 /// assert_eq!(Some(expected), slice.split_off_mut(..4));
4472 /// ```
4473 #[inline]
4474 #[must_use = "method does not modify the slice if the range is out of bounds"]
4475 #[stable(feature = "slice_take", since = "1.87.0")]
4476 pub fn split_off_mut<'a, R: OneSidedRange<usize>>(
4477 self: &mut &'a mut Self,
4478 range: R,
4479 ) -> Option<&'a mut Self> {
4480 let (direction, split_index) = split_point_of(range)?;
4481 if split_index > self.len() {
4482 return None;
4483 }
4484 let (front, back) = mem::take(self).split_at_mut(split_index);
4485 match direction {
4486 Direction::Front => {
4487 *self = back;
4488 Some(front)
4489 }
4490 Direction::Back => {
4491 *self = front;
4492 Some(back)
4493 }
4494 }
4495 }
4496
4497 /// Removes the first element of the slice and returns a reference
4498 /// to it.
4499 ///
4500 /// Returns `None` if the slice is empty.
4501 ///
4502 /// # Examples
4503 ///
4504 /// ```
4505 /// let mut slice: &[_] = &['a', 'b', 'c'];
4506 /// let first = slice.split_off_first().unwrap();
4507 ///
4508 /// assert_eq!(slice, &['b', 'c']);
4509 /// assert_eq!(first, &'a');
4510 /// ```
4511 #[inline]
4512 #[stable(feature = "slice_take", since = "1.87.0")]
4513 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4514 pub const fn split_off_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4515 // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4516 let Some((first, rem)) = self.split_first() else { return None };
4517 *self = rem;
4518 Some(first)
4519 }
4520
4521 /// Removes the first element of the slice and returns a mutable
4522 /// reference to it.
4523 ///
4524 /// Returns `None` if the slice is empty.
4525 ///
4526 /// # Examples
4527 ///
4528 /// ```
4529 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4530 /// let first = slice.split_off_first_mut().unwrap();
4531 /// *first = 'd';
4532 ///
4533 /// assert_eq!(slice, &['b', 'c']);
4534 /// assert_eq!(first, &'d');
4535 /// ```
4536 #[inline]
4537 #[stable(feature = "slice_take", since = "1.87.0")]
4538 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4539 pub const fn split_off_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4540 // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4541 // Original: `mem::take(self).split_first_mut()?`
4542 let Some((first, rem)) = mem::replace(self, &mut []).split_first_mut() else { return None };
4543 *self = rem;
4544 Some(first)
4545 }
4546
4547 /// Removes the last element of the slice and returns a reference
4548 /// to it.
4549 ///
4550 /// Returns `None` if the slice is empty.
4551 ///
4552 /// # Examples
4553 ///
4554 /// ```
4555 /// let mut slice: &[_] = &['a', 'b', 'c'];
4556 /// let last = slice.split_off_last().unwrap();
4557 ///
4558 /// assert_eq!(slice, &['a', 'b']);
4559 /// assert_eq!(last, &'c');
4560 /// ```
4561 #[inline]
4562 #[stable(feature = "slice_take", since = "1.87.0")]
4563 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4564 pub const fn split_off_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4565 // FIXME(const-hack): Use `?` when available in const instead of `let-else`.
4566 let Some((last, rem)) = self.split_last() else { return None };
4567 *self = rem;
4568 Some(last)
4569 }
4570
4571 /// Removes the last element of the slice and returns a mutable
4572 /// reference to it.
4573 ///
4574 /// Returns `None` if the slice is empty.
4575 ///
4576 /// # Examples
4577 ///
4578 /// ```
4579 /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4580 /// let last = slice.split_off_last_mut().unwrap();
4581 /// *last = 'd';
4582 ///
4583 /// assert_eq!(slice, &['a', 'b']);
4584 /// assert_eq!(last, &'d');
4585 /// ```
4586 #[inline]
4587 #[stable(feature = "slice_take", since = "1.87.0")]
4588 #[rustc_const_unstable(feature = "const_split_off_first_last", issue = "138539")]
4589 pub const fn split_off_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4590 // FIXME(const-hack): Use `mem::take` and `?` when available in const.
4591 // Original: `mem::take(self).split_last_mut()?`
4592 let Some((last, rem)) = mem::replace(self, &mut []).split_last_mut() else { return None };
4593 *self = rem;
4594 Some(last)
4595 }
4596
4597 /// Returns mutable references to many indices at once, without doing any checks.
4598 ///
4599 /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4600 /// that this method takes an array, so all indices must be of the same type.
4601 /// If passed an array of `usize`s this method gives back an array of mutable references
4602 /// to single elements, while if passed an array of ranges it gives back an array of
4603 /// mutable references to slices.
4604 ///
4605 /// For a safe alternative see [`get_disjoint_mut`].
4606 ///
4607 /// # Safety
4608 ///
4609 /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4610 /// even if the resulting references are not used.
4611 ///
4612 /// # Examples
4613 ///
4614 /// ```
4615 /// let x = &mut [1, 2, 4];
4616 ///
4617 /// unsafe {
4618 /// let [a, b] = x.get_disjoint_unchecked_mut([0, 2]);
4619 /// *a *= 10;
4620 /// *b *= 100;
4621 /// }
4622 /// assert_eq!(x, &[10, 2, 400]);
4623 ///
4624 /// unsafe {
4625 /// let [a, b] = x.get_disjoint_unchecked_mut([0..1, 1..3]);
4626 /// a[0] = 8;
4627 /// b[0] = 88;
4628 /// b[1] = 888;
4629 /// }
4630 /// assert_eq!(x, &[8, 88, 888]);
4631 ///
4632 /// unsafe {
4633 /// let [a, b] = x.get_disjoint_unchecked_mut([1..=2, 0..=0]);
4634 /// a[0] = 11;
4635 /// a[1] = 111;
4636 /// b[0] = 1;
4637 /// }
4638 /// assert_eq!(x, &[1, 11, 111]);
4639 /// ```
4640 ///
4641 /// [`get_disjoint_mut`]: slice::get_disjoint_mut
4642 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4643 #[stable(feature = "get_many_mut", since = "1.86.0")]
4644 #[inline]
4645 pub unsafe fn get_disjoint_unchecked_mut<I, const N: usize>(
4646 &mut self,
4647 indices: [I; N],
4648 ) -> [&mut I::Output; N]
4649 where
4650 I: GetDisjointMutIndex + SliceIndex<Self>,
4651 {
4652 // NB: This implementation is written as it is because any variation of
4653 // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4654 // or generate worse code otherwise. This is also why we need to go
4655 // through a raw pointer here.
4656 let slice: *mut [T] = self;
4657 let mut arr: MaybeUninit<[&mut I::Output; N]> = MaybeUninit::uninit();
4658 let arr_ptr = arr.as_mut_ptr();
4659
4660 // SAFETY: We expect `indices` to contain disjunct values that are
4661 // in bounds of `self`.
4662 unsafe {
4663 for i in 0..N {
4664 let idx = indices.get_unchecked(i).clone();
4665 arr_ptr.cast::<&mut I::Output>().add(i).write(&mut *slice.get_unchecked_mut(idx));
4666 }
4667 arr.assume_init()
4668 }
4669 }
4670
4671 /// Returns mutable references to many indices at once.
4672 ///
4673 /// An index can be either a `usize`, a [`Range`] or a [`RangeInclusive`]. Note
4674 /// that this method takes an array, so all indices must be of the same type.
4675 /// If passed an array of `usize`s this method gives back an array of mutable references
4676 /// to single elements, while if passed an array of ranges it gives back an array of
4677 /// mutable references to slices.
4678 ///
4679 /// Returns an error if any index is out-of-bounds, or if there are overlapping indices.
4680 /// An empty range is not considered to overlap if it is located at the beginning or at
4681 /// the end of another range, but is considered to overlap if it is located in the middle.
4682 ///
4683 /// This method does a O(n^2) check to check that there are no overlapping indices, so be careful
4684 /// when passing many indices.
4685 ///
4686 /// # Examples
4687 ///
4688 /// ```
4689 /// let v = &mut [1, 2, 3];
4690 /// if let Ok([a, b]) = v.get_disjoint_mut([0, 2]) {
4691 /// *a = 413;
4692 /// *b = 612;
4693 /// }
4694 /// assert_eq!(v, &[413, 2, 612]);
4695 ///
4696 /// if let Ok([a, b]) = v.get_disjoint_mut([0..1, 1..3]) {
4697 /// a[0] = 8;
4698 /// b[0] = 88;
4699 /// b[1] = 888;
4700 /// }
4701 /// assert_eq!(v, &[8, 88, 888]);
4702 ///
4703 /// if let Ok([a, b]) = v.get_disjoint_mut([1..=2, 0..=0]) {
4704 /// a[0] = 11;
4705 /// a[1] = 111;
4706 /// b[0] = 1;
4707 /// }
4708 /// assert_eq!(v, &[1, 11, 111]);
4709 /// ```
4710 #[stable(feature = "get_many_mut", since = "1.86.0")]
4711 #[inline]
4712 pub fn get_disjoint_mut<I, const N: usize>(
4713 &mut self,
4714 indices: [I; N],
4715 ) -> Result<[&mut I::Output; N], GetDisjointMutError>
4716 where
4717 I: GetDisjointMutIndex + SliceIndex<Self>,
4718 {
4719 get_disjoint_check_valid(&indices, self.len())?;
4720 // SAFETY: The `get_disjoint_check_valid()` call checked that all indices
4721 // are disjunct and in bounds.
4722 unsafe { Ok(self.get_disjoint_unchecked_mut(indices)) }
4723 }
4724
4725 /// Returns the index that an element reference points to.
4726 ///
4727 /// Returns `None` if `element` does not point to the start of an element within the slice.
4728 ///
4729 /// This method is useful for extending slice iterators like [`slice::split`].
4730 ///
4731 /// Note that this uses pointer arithmetic and **does not compare elements**.
4732 /// To find the index of an element via comparison, use
4733 /// [`.iter().position()`](crate::iter::Iterator::position) instead.
4734 ///
4735 /// # Panics
4736 /// Panics if `T` is zero-sized.
4737 ///
4738 /// # Examples
4739 /// Basic usage:
4740 /// ```
4741 /// #![feature(substr_range)]
4742 ///
4743 /// let nums: &[u32] = &[1, 7, 1, 1];
4744 /// let num = &nums[2];
4745 ///
4746 /// assert_eq!(num, &1);
4747 /// assert_eq!(nums.element_offset(num), Some(2));
4748 /// ```
4749 /// Returning `None` with an unaligned element:
4750 /// ```
4751 /// #![feature(substr_range)]
4752 ///
4753 /// let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
4754 /// let flat_arr: &[u32] = arr.as_flattened();
4755 ///
4756 /// let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
4757 /// let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
4758 ///
4759 /// assert_eq!(ok_elm, &[0, 1]);
4760 /// assert_eq!(weird_elm, &[1, 2]);
4761 ///
4762 /// assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
4763 /// assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1
4764 /// ```
4765 #[must_use]
4766 #[unstable(feature = "substr_range", issue = "126769")]
4767 pub fn element_offset(&self, element: &T) -> Option<usize> {
4768 if T::IS_ZST {
4769 panic!("elements are zero-sized");
4770 }
4771
4772 let self_start = self.as_ptr().addr();
4773 let elem_start = ptr::from_ref(element).addr();
4774
4775 let byte_offset = elem_start.wrapping_sub(self_start);
4776
4777 if byte_offset % size_of::<T>() != 0 {
4778 return None;
4779 }
4780
4781 let offset = byte_offset / size_of::<T>();
4782
4783 if offset < self.len() { Some(offset) } else { None }
4784 }
4785
4786 /// Returns the range of indices that a subslice points to.
4787 ///
4788 /// Returns `None` if `subslice` does not point within the slice or if it is not aligned with the
4789 /// elements in the slice.
4790 ///
4791 /// This method **does not compare elements**. Instead, this method finds the location in the slice that
4792 /// `subslice` was obtained from. To find the index of a subslice via comparison, instead use
4793 /// [`.windows()`](slice::windows)[`.position()`](crate::iter::Iterator::position).
4794 ///
4795 /// This method is useful for extending slice iterators like [`slice::split`].
4796 ///
4797 /// Note that this may return a false positive (either `Some(0..0)` or `Some(self.len()..self.len())`)
4798 /// if `subslice` has a length of zero and points to the beginning or end of another, separate, slice.
4799 ///
4800 /// # Panics
4801 /// Panics if `T` is zero-sized.
4802 ///
4803 /// # Examples
4804 /// Basic usage:
4805 /// ```
4806 /// #![feature(substr_range)]
4807 ///
4808 /// let nums = &[0, 5, 10, 0, 0, 5];
4809 ///
4810 /// let mut iter = nums
4811 /// .split(|t| *t == 0)
4812 /// .map(|n| nums.subslice_range(n).unwrap());
4813 ///
4814 /// assert_eq!(iter.next(), Some(0..0));
4815 /// assert_eq!(iter.next(), Some(1..3));
4816 /// assert_eq!(iter.next(), Some(4..4));
4817 /// assert_eq!(iter.next(), Some(5..6));
4818 /// ```
4819 #[must_use]
4820 #[unstable(feature = "substr_range", issue = "126769")]
4821 pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>> {
4822 if T::IS_ZST {
4823 panic!("elements are zero-sized");
4824 }
4825
4826 let self_start = self.as_ptr().addr();
4827 let subslice_start = subslice.as_ptr().addr();
4828
4829 let byte_start = subslice_start.wrapping_sub(self_start);
4830
4831 if byte_start % size_of::<T>() != 0 {
4832 return None;
4833 }
4834
4835 let start = byte_start / size_of::<T>();
4836 let end = start.wrapping_add(subslice.len());
4837
4838 if start <= self.len() && end <= self.len() { Some(start..end) } else { None }
4839 }
4840}
4841
4842impl<T> [MaybeUninit<T>] {
4843 /// Transmutes the mutable uninitialized slice to a mutable uninitialized slice of
4844 /// another type, ensuring alignment of the types is maintained.
4845 ///
4846 /// This is a safe wrapper around [`slice::align_to_mut`], so inherits the same
4847 /// guarantees as that method.
4848 ///
4849 /// # Examples
4850 ///
4851 /// ```
4852 /// #![feature(align_to_uninit_mut)]
4853 /// use std::mem::MaybeUninit;
4854 ///
4855 /// pub struct BumpAllocator<'scope> {
4856 /// memory: &'scope mut [MaybeUninit<u8>],
4857 /// }
4858 ///
4859 /// impl<'scope> BumpAllocator<'scope> {
4860 /// pub fn new(memory: &'scope mut [MaybeUninit<u8>]) -> Self {
4861 /// Self { memory }
4862 /// }
4863 /// pub fn try_alloc_uninit<T>(&mut self) -> Option<&'scope mut MaybeUninit<T>> {
4864 /// let first_end = self.memory.as_ptr().align_offset(align_of::<T>()) + size_of::<T>();
4865 /// let prefix = self.memory.split_off_mut(..first_end)?;
4866 /// Some(&mut prefix.align_to_uninit_mut::<T>().1[0])
4867 /// }
4868 /// pub fn try_alloc_u32(&mut self, value: u32) -> Option<&'scope mut u32> {
4869 /// let uninit = self.try_alloc_uninit()?;
4870 /// Some(uninit.write(value))
4871 /// }
4872 /// }
4873 ///
4874 /// let mut memory = [MaybeUninit::<u8>::uninit(); 10];
4875 /// let mut allocator = BumpAllocator::new(&mut memory);
4876 /// let v = allocator.try_alloc_u32(42);
4877 /// assert_eq!(v, Some(&mut 42));
4878 /// ```
4879 #[unstable(feature = "align_to_uninit_mut", issue = "139062")]
4880 #[inline]
4881 #[must_use]
4882 pub fn align_to_uninit_mut<U>(&mut self) -> (&mut Self, &mut [MaybeUninit<U>], &mut Self) {
4883 // SAFETY: `MaybeUninit` is transparent. Correct size and alignment are guaranteed by
4884 // `align_to_mut` itself. Therefore the only thing that we have to ensure for a safe
4885 // `transmute` is that the values are valid for the types involved. But for `MaybeUninit`
4886 // any values are valid, so this operation is safe.
4887 unsafe { self.align_to_mut() }
4888 }
4889}
4890
4891impl<T, const N: usize> [[T; N]] {
4892 /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
4893 ///
4894 /// For the opposite operation, see [`as_chunks`] and [`as_rchunks`].
4895 ///
4896 /// [`as_chunks`]: slice::as_chunks
4897 /// [`as_rchunks`]: slice::as_rchunks
4898 ///
4899 /// # Panics
4900 ///
4901 /// This panics if the length of the resulting slice would overflow a `usize`.
4902 ///
4903 /// This is only possible when flattening a slice of arrays of zero-sized
4904 /// types, and thus tends to be irrelevant in practice. If
4905 /// `size_of::<T>() > 0`, this will never panic.
4906 ///
4907 /// # Examples
4908 ///
4909 /// ```
4910 /// assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
4911 ///
4912 /// assert_eq!(
4913 /// [[1, 2, 3], [4, 5, 6]].as_flattened(),
4914 /// [[1, 2], [3, 4], [5, 6]].as_flattened(),
4915 /// );
4916 ///
4917 /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
4918 /// assert!(slice_of_empty_arrays.as_flattened().is_empty());
4919 ///
4920 /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
4921 /// assert!(empty_slice_of_arrays.as_flattened().is_empty());
4922 /// ```
4923 #[stable(feature = "slice_flatten", since = "1.80.0")]
4924 #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
4925 pub const fn as_flattened(&self) -> &[T] {
4926 let len = if T::IS_ZST {
4927 self.len().checked_mul(N).expect("slice len overflow")
4928 } else {
4929 // SAFETY: `self.len() * N` cannot overflow because `self` is
4930 // already in the address space.
4931 unsafe { self.len().unchecked_mul(N) }
4932 };
4933 // SAFETY: `[T]` is layout-identical to `[T; N]`
4934 unsafe { from_raw_parts(self.as_ptr().cast(), len) }
4935 }
4936
4937 /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
4938 ///
4939 /// For the opposite operation, see [`as_chunks_mut`] and [`as_rchunks_mut`].
4940 ///
4941 /// [`as_chunks_mut`]: slice::as_chunks_mut
4942 /// [`as_rchunks_mut`]: slice::as_rchunks_mut
4943 ///
4944 /// # Panics
4945 ///
4946 /// This panics if the length of the resulting slice would overflow a `usize`.
4947 ///
4948 /// This is only possible when flattening a slice of arrays of zero-sized
4949 /// types, and thus tends to be irrelevant in practice. If
4950 /// `size_of::<T>() > 0`, this will never panic.
4951 ///
4952 /// # Examples
4953 ///
4954 /// ```
4955 /// fn add_5_to_all(slice: &mut [i32]) {
4956 /// for i in slice {
4957 /// *i += 5;
4958 /// }
4959 /// }
4960 ///
4961 /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
4962 /// add_5_to_all(array.as_flattened_mut());
4963 /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
4964 /// ```
4965 #[stable(feature = "slice_flatten", since = "1.80.0")]
4966 #[rustc_const_stable(feature = "const_slice_flatten", since = "1.87.0")]
4967 pub const fn as_flattened_mut(&mut self) -> &mut [T] {
4968 let len = if T::IS_ZST {
4969 self.len().checked_mul(N).expect("slice len overflow")
4970 } else {
4971 // SAFETY: `self.len() * N` cannot overflow because `self` is
4972 // already in the address space.
4973 unsafe { self.len().unchecked_mul(N) }
4974 };
4975 // SAFETY: `[T]` is layout-identical to `[T; N]`
4976 unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
4977 }
4978}
4979
4980impl [f32] {
4981 /// Sorts the slice of floats.
4982 ///
4983 /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
4984 /// the ordering defined by [`f32::total_cmp`].
4985 ///
4986 /// # Current implementation
4987 ///
4988 /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
4989 ///
4990 /// # Examples
4991 ///
4992 /// ```
4993 /// #![feature(sort_floats)]
4994 /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
4995 ///
4996 /// v.sort_floats();
4997 /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
4998 /// assert_eq!(&v[..8], &sorted[..8]);
4999 /// assert!(v[8].is_nan());
5000 /// ```
5001 #[unstable(feature = "sort_floats", issue = "93396")]
5002 #[inline]
5003 pub fn sort_floats(&mut self) {
5004 self.sort_unstable_by(f32::total_cmp);
5005 }
5006}
5007
5008impl [f64] {
5009 /// Sorts the slice of floats.
5010 ///
5011 /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
5012 /// the ordering defined by [`f64::total_cmp`].
5013 ///
5014 /// # Current implementation
5015 ///
5016 /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
5017 ///
5018 /// # Examples
5019 ///
5020 /// ```
5021 /// #![feature(sort_floats)]
5022 /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
5023 ///
5024 /// v.sort_floats();
5025 /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
5026 /// assert_eq!(&v[..8], &sorted[..8]);
5027 /// assert!(v[8].is_nan());
5028 /// ```
5029 #[unstable(feature = "sort_floats", issue = "93396")]
5030 #[inline]
5031 pub fn sort_floats(&mut self) {
5032 self.sort_unstable_by(f64::total_cmp);
5033 }
5034}
5035
5036trait CloneFromSpec<T> {
5037 fn spec_clone_from(&mut self, src: &[T]);
5038}
5039
5040impl<T> CloneFromSpec<T> for [T]
5041where
5042 T: Clone,
5043{
5044 #[track_caller]
5045 default fn spec_clone_from(&mut self, src: &[T]) {
5046 assert!(self.len() == src.len(), "destination and source slices have different lengths");
5047 // NOTE: We need to explicitly slice them to the same length
5048 // to make it easier for the optimizer to elide bounds checking.
5049 // But since it can't be relied on we also have an explicit specialization for T: Copy.
5050 let len = self.len();
5051 let src = &src[..len];
5052 for i in 0..len {
5053 self[i].clone_from(&src[i]);
5054 }
5055 }
5056}
5057
5058impl<T> CloneFromSpec<T> for [T]
5059where
5060 T: Copy,
5061{
5062 #[track_caller]
5063 fn spec_clone_from(&mut self, src: &[T]) {
5064 self.copy_from_slice(src);
5065 }
5066}
5067
5068#[stable(feature = "rust1", since = "1.0.0")]
5069impl<T> Default for &[T] {
5070 /// Creates an empty slice.
5071 fn default() -> Self {
5072 &[]
5073 }
5074}
5075
5076#[stable(feature = "mut_slice_default", since = "1.5.0")]
5077impl<T> Default for &mut [T] {
5078 /// Creates a mutable empty slice.
5079 fn default() -> Self {
5080 &mut []
5081 }
5082}
5083
5084#[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
5085/// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`. At a future
5086/// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
5087/// `str`) to slices, and then this trait will be replaced or abolished.
5088pub trait SlicePattern {
5089 /// The element type of the slice being matched on.
5090 type Item;
5091
5092 /// Currently, the consumers of `SlicePattern` need a slice.
5093 fn as_slice(&self) -> &[Self::Item];
5094}
5095
5096#[stable(feature = "slice_strip", since = "1.51.0")]
5097impl<T> SlicePattern for [T] {
5098 type Item = T;
5099
5100 #[inline]
5101 fn as_slice(&self) -> &[Self::Item] {
5102 self
5103 }
5104}
5105
5106#[stable(feature = "slice_strip", since = "1.51.0")]
5107impl<T, const N: usize> SlicePattern for [T; N] {
5108 type Item = T;
5109
5110 #[inline]
5111 fn as_slice(&self) -> &[Self::Item] {
5112 self
5113 }
5114}
5115
5116/// This checks every index against each other, and against `len`.
5117///
5118/// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
5119/// comparison operations.
5120#[inline]
5121fn get_disjoint_check_valid<I: GetDisjointMutIndex, const N: usize>(
5122 indices: &[I; N],
5123 len: usize,
5124) -> Result<(), GetDisjointMutError> {
5125 // NB: The optimizer should inline the loops into a sequence
5126 // of instructions without additional branching.
5127 for (i, idx) in indices.iter().enumerate() {
5128 if !idx.is_in_bounds(len) {
5129 return Err(GetDisjointMutError::IndexOutOfBounds);
5130 }
5131 for idx2 in &indices[..i] {
5132 if idx.is_overlapping(idx2) {
5133 return Err(GetDisjointMutError::OverlappingIndices);
5134 }
5135 }
5136 }
5137 Ok(())
5138}
5139
5140/// The error type returned by [`get_disjoint_mut`][`slice::get_disjoint_mut`].
5141///
5142/// It indicates one of two possible errors:
5143/// - An index is out-of-bounds.
5144/// - The same index appeared multiple times in the array
5145/// (or different but overlapping indices when ranges are provided).
5146///
5147/// # Examples
5148///
5149/// ```
5150/// use std::slice::GetDisjointMutError;
5151///
5152/// let v = &mut [1, 2, 3];
5153/// assert_eq!(v.get_disjoint_mut([0, 999]), Err(GetDisjointMutError::IndexOutOfBounds));
5154/// assert_eq!(v.get_disjoint_mut([1, 1]), Err(GetDisjointMutError::OverlappingIndices));
5155/// ```
5156#[stable(feature = "get_many_mut", since = "1.86.0")]
5157#[derive(Debug, Clone, PartialEq, Eq)]
5158pub enum GetDisjointMutError {
5159 /// An index provided was out-of-bounds for the slice.
5160 IndexOutOfBounds,
5161 /// Two indices provided were overlapping.
5162 OverlappingIndices,
5163}
5164
5165#[stable(feature = "get_many_mut", since = "1.86.0")]
5166impl fmt::Display for GetDisjointMutError {
5167 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
5168 let msg = match self {
5169 GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
5170 GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
5171 };
5172 fmt::Display::fmt(msg, f)
5173 }
5174}
5175
5176mod private_get_disjoint_mut_index {
5177 use super::{Range, RangeInclusive, range};
5178
5179 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5180 pub trait Sealed {}
5181
5182 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5183 impl Sealed for usize {}
5184 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5185 impl Sealed for Range<usize> {}
5186 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5187 impl Sealed for RangeInclusive<usize> {}
5188 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5189 impl Sealed for range::Range<usize> {}
5190 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5191 impl Sealed for range::RangeInclusive<usize> {}
5192}
5193
5194/// A helper trait for `<[T]>::get_disjoint_mut()`.
5195///
5196/// # Safety
5197///
5198/// If `is_in_bounds()` returns `true` and `is_overlapping()` returns `false`,
5199/// it must be safe to index the slice with the indices.
5200#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5201pub unsafe trait GetDisjointMutIndex:
5202 Clone + private_get_disjoint_mut_index::Sealed
5203{
5204 /// Returns `true` if `self` is in bounds for `len` slice elements.
5205 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5206 fn is_in_bounds(&self, len: usize) -> bool;
5207
5208 /// Returns `true` if `self` overlaps with `other`.
5209 ///
5210 /// Note that we don't consider zero-length ranges to overlap at the beginning or the end,
5211 /// but do consider them to overlap in the middle.
5212 #[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5213 fn is_overlapping(&self, other: &Self) -> bool;
5214}
5215
5216#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5217// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5218unsafe impl GetDisjointMutIndex for usize {
5219 #[inline]
5220 fn is_in_bounds(&self, len: usize) -> bool {
5221 *self < len
5222 }
5223
5224 #[inline]
5225 fn is_overlapping(&self, other: &Self) -> bool {
5226 *self == *other
5227 }
5228}
5229
5230#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5231// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5232unsafe impl GetDisjointMutIndex for Range<usize> {
5233 #[inline]
5234 fn is_in_bounds(&self, len: usize) -> bool {
5235 (self.start <= self.end) & (self.end <= len)
5236 }
5237
5238 #[inline]
5239 fn is_overlapping(&self, other: &Self) -> bool {
5240 (self.start < other.end) & (other.start < self.end)
5241 }
5242}
5243
5244#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5245// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5246unsafe impl GetDisjointMutIndex for RangeInclusive<usize> {
5247 #[inline]
5248 fn is_in_bounds(&self, len: usize) -> bool {
5249 (self.start <= self.end) & (self.end < len)
5250 }
5251
5252 #[inline]
5253 fn is_overlapping(&self, other: &Self) -> bool {
5254 (self.start <= other.end) & (other.start <= self.end)
5255 }
5256}
5257
5258#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5259// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5260unsafe impl GetDisjointMutIndex for range::Range<usize> {
5261 #[inline]
5262 fn is_in_bounds(&self, len: usize) -> bool {
5263 Range::from(*self).is_in_bounds(len)
5264 }
5265
5266 #[inline]
5267 fn is_overlapping(&self, other: &Self) -> bool {
5268 Range::from(*self).is_overlapping(&Range::from(*other))
5269 }
5270}
5271
5272#[unstable(feature = "get_disjoint_mut_helpers", issue = "none")]
5273// SAFETY: We implement `is_in_bounds()` and `is_overlapping()` correctly.
5274unsafe impl GetDisjointMutIndex for range::RangeInclusive<usize> {
5275 #[inline]
5276 fn is_in_bounds(&self, len: usize) -> bool {
5277 RangeInclusive::from(*self).is_in_bounds(len)
5278 }
5279
5280 #[inline]
5281 fn is_overlapping(&self, other: &Self) -> bool {
5282 RangeInclusive::from(*self).is_overlapping(&RangeInclusive::from(*other))
5283 }
5284}