core/
result.rs

1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//!    Ok(T),
12//!    Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//!     match header.get(0) {
29//!         None => Err("invalid header length"),
30//!         Some(&1) => Ok(Version::Version1),
31//!         Some(&2) => Ok(Version::Version2),
32//!         Some(_) => Err("invalid version"),
33//!     }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//!     Ok(v) => println!("working with version: {v:?}"),
39//!     Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//!     fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//!     let mut file = File::create("valuable_data.txt")?;
145//!     file.write_all(b"important message")?;
146//!     Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//!     name: String,
167//!     age: i32,
168//!     rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//!     // Early return on error
173//!     let mut file = match File::create("my_best_friends.txt") {
174//!            Err(e) => return Err(e),
175//!            Ok(f) => f,
176//!     };
177//!     if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//!         return Err(e)
179//!     }
180//!     if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//!         return Err(e)
182//!     }
183//!     if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//!         return Err(e)
185//!     }
186//!     Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//!     name: String,
200//!     age: i32,
201//!     rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//!     let mut file = File::create("my_best_friends.txt")?;
206//!     // Early return on error
207//!     file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//!     file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//!     file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//!     Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//!   `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//!   (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//!   function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//!   mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//!   mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//!   [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//!   the provided function to the contained value of [`Ok`] and leaving
349//!   [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//!   provided function to the contained value by reference,
352//!   and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//!   applying the provided function to the contained value of [`Err`] and
361//!   leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//!   provided function to the contained value of [`Err`] by reference,
364//!   and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//!   [`Ok`], or returns the provided default value if the [`Result`] is
374//!   [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//!   of [`Ok`], or applies the provided default fallback function to the
377//!   contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method  | self     | input     | output   |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)`  | `Err(d)`  | `Err(d)` |
399//! | [`and`] | `Ok(x)`  | `Ok(y)`   | `Ok(y)`  |
400//! | [`or`]  | `Err(e)` | `Err(d)`  | `Err(d)` |
401//! | [`or`]  | `Err(e)` | `Ok(y)`   | `Ok(y)`  |
402//! | [`or`]  | `Ok(x)`  | (ignored) | `Ok(x)`  |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method       | self     | function input | function result | output   |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)`  | `x`            | `Err(d)`        | `Err(d)` |
418//! | [`and_then`] | `Ok(x)`  | `x`            | `Ok(y)`         | `Ok(y)`  |
419//! | [`or_else`]  | `Err(e)` | `e`            | `Err(d)`        | `Err(d)` |
420//! | [`or_else`]  | `Err(e)` | `e`            | `Ok(y)`         | `Ok(y)`  |
421//! | [`or_else`]  | `Ok(x)`  | (not provided) | (not evaluated) | `Ok(x)`  |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation.  With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively.  If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//!   value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//!   contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//!   contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//!    .into_iter()
485//!    .map(u8::from_str)
486//!    // Save clones of the raw `Result` values to inspect
487//!    .inspect(|x| results.push(x.clone()))
488//!    // Challenge: explain how this captures only the `Err` values
489//!    .inspect(|x| errs.extend(x.clone().err()))
490//!    .flatten()
491//!    .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536use crate::iter::{self, FusedIterator, TrustedLen};
537use crate::ops::{self, ControlFlow, Deref, DerefMut};
538use crate::{convert, fmt, hint};
539
540/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
541///
542/// See the [module documentation](self) for details.
543#[doc(search_unbox)]
544#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
545#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
546#[rustc_diagnostic_item = "Result"]
547#[stable(feature = "rust1", since = "1.0.0")]
548pub enum Result<T, E> {
549    /// Contains the success value
550    #[lang = "Ok"]
551    #[stable(feature = "rust1", since = "1.0.0")]
552    Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
553
554    /// Contains the error value
555    #[lang = "Err"]
556    #[stable(feature = "rust1", since = "1.0.0")]
557    Err(#[stable(feature = "rust1", since = "1.0.0")] E),
558}
559
560/////////////////////////////////////////////////////////////////////////////
561// Type implementation
562/////////////////////////////////////////////////////////////////////////////
563
564impl<T, E> Result<T, E> {
565    /////////////////////////////////////////////////////////////////////////
566    // Querying the contained values
567    /////////////////////////////////////////////////////////////////////////
568
569    /// Returns `true` if the result is [`Ok`].
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// let x: Result<i32, &str> = Ok(-3);
575    /// assert_eq!(x.is_ok(), true);
576    ///
577    /// let x: Result<i32, &str> = Err("Some error message");
578    /// assert_eq!(x.is_ok(), false);
579    /// ```
580    #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
581    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
582    #[inline]
583    #[stable(feature = "rust1", since = "1.0.0")]
584    pub const fn is_ok(&self) -> bool {
585        matches!(*self, Ok(_))
586    }
587
588    /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
589    ///
590    /// # Examples
591    ///
592    /// ```
593    /// let x: Result<u32, &str> = Ok(2);
594    /// assert_eq!(x.is_ok_and(|x| x > 1), true);
595    ///
596    /// let x: Result<u32, &str> = Ok(0);
597    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
598    ///
599    /// let x: Result<u32, &str> = Err("hey");
600    /// assert_eq!(x.is_ok_and(|x| x > 1), false);
601    ///
602    /// let x: Result<String, &str> = Ok("ownership".to_string());
603    /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
604    /// println!("still alive {:?}", x);
605    /// ```
606    #[must_use]
607    #[inline]
608    #[stable(feature = "is_some_and", since = "1.70.0")]
609    pub fn is_ok_and(self, f: impl FnOnce(T) -> bool) -> bool {
610        match self {
611            Err(_) => false,
612            Ok(x) => f(x),
613        }
614    }
615
616    /// Returns `true` if the result is [`Err`].
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// let x: Result<i32, &str> = Ok(-3);
622    /// assert_eq!(x.is_err(), false);
623    ///
624    /// let x: Result<i32, &str> = Err("Some error message");
625    /// assert_eq!(x.is_err(), true);
626    /// ```
627    #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
628    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
629    #[inline]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub const fn is_err(&self) -> bool {
632        !self.is_ok()
633    }
634
635    /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
636    ///
637    /// # Examples
638    ///
639    /// ```
640    /// use std::io::{Error, ErrorKind};
641    ///
642    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
643    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
644    ///
645    /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
646    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
647    ///
648    /// let x: Result<u32, Error> = Ok(123);
649    /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
650    ///
651    /// let x: Result<u32, String> = Err("ownership".to_string());
652    /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
653    /// println!("still alive {:?}", x);
654    /// ```
655    #[must_use]
656    #[inline]
657    #[stable(feature = "is_some_and", since = "1.70.0")]
658    pub fn is_err_and(self, f: impl FnOnce(E) -> bool) -> bool {
659        match self {
660            Ok(_) => false,
661            Err(e) => f(e),
662        }
663    }
664
665    /////////////////////////////////////////////////////////////////////////
666    // Adapter for each variant
667    /////////////////////////////////////////////////////////////////////////
668
669    /// Converts from `Result<T, E>` to [`Option<T>`].
670    ///
671    /// Converts `self` into an [`Option<T>`], consuming `self`,
672    /// and discarding the error, if any.
673    ///
674    /// # Examples
675    ///
676    /// ```
677    /// let x: Result<u32, &str> = Ok(2);
678    /// assert_eq!(x.ok(), Some(2));
679    ///
680    /// let x: Result<u32, &str> = Err("Nothing here");
681    /// assert_eq!(x.ok(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    #[rustc_diagnostic_item = "result_ok_method"]
686    pub fn ok(self) -> Option<T> {
687        match self {
688            Ok(x) => Some(x),
689            Err(_) => None,
690        }
691    }
692
693    /// Converts from `Result<T, E>` to [`Option<E>`].
694    ///
695    /// Converts `self` into an [`Option<E>`], consuming `self`,
696    /// and discarding the success value, if any.
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// let x: Result<u32, &str> = Ok(2);
702    /// assert_eq!(x.err(), None);
703    ///
704    /// let x: Result<u32, &str> = Err("Nothing here");
705    /// assert_eq!(x.err(), Some("Nothing here"));
706    /// ```
707    #[inline]
708    #[stable(feature = "rust1", since = "1.0.0")]
709    pub fn err(self) -> Option<E> {
710        match self {
711            Ok(_) => None,
712            Err(x) => Some(x),
713        }
714    }
715
716    /////////////////////////////////////////////////////////////////////////
717    // Adapter for working with references
718    /////////////////////////////////////////////////////////////////////////
719
720    /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
721    ///
722    /// Produces a new `Result`, containing a reference
723    /// into the original, leaving the original in place.
724    ///
725    /// # Examples
726    ///
727    /// ```
728    /// let x: Result<u32, &str> = Ok(2);
729    /// assert_eq!(x.as_ref(), Ok(&2));
730    ///
731    /// let x: Result<u32, &str> = Err("Error");
732    /// assert_eq!(x.as_ref(), Err(&"Error"));
733    /// ```
734    #[inline]
735    #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
736    #[stable(feature = "rust1", since = "1.0.0")]
737    pub const fn as_ref(&self) -> Result<&T, &E> {
738        match *self {
739            Ok(ref x) => Ok(x),
740            Err(ref x) => Err(x),
741        }
742    }
743
744    /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// fn mutate(r: &mut Result<i32, i32>) {
750    ///     match r.as_mut() {
751    ///         Ok(v) => *v = 42,
752    ///         Err(e) => *e = 0,
753    ///     }
754    /// }
755    ///
756    /// let mut x: Result<i32, i32> = Ok(2);
757    /// mutate(&mut x);
758    /// assert_eq!(x.unwrap(), 42);
759    ///
760    /// let mut x: Result<i32, i32> = Err(13);
761    /// mutate(&mut x);
762    /// assert_eq!(x.unwrap_err(), 0);
763    /// ```
764    #[inline]
765    #[stable(feature = "rust1", since = "1.0.0")]
766    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
767    pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
768        match *self {
769            Ok(ref mut x) => Ok(x),
770            Err(ref mut x) => Err(x),
771        }
772    }
773
774    /////////////////////////////////////////////////////////////////////////
775    // Transforming contained values
776    /////////////////////////////////////////////////////////////////////////
777
778    /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
779    /// contained [`Ok`] value, leaving an [`Err`] value untouched.
780    ///
781    /// This function can be used to compose the results of two functions.
782    ///
783    /// # Examples
784    ///
785    /// Print the numbers on each line of a string multiplied by two.
786    ///
787    /// ```
788    /// let line = "1\n2\n3\n4\n";
789    ///
790    /// for num in line.lines() {
791    ///     match num.parse::<i32>().map(|i| i * 2) {
792    ///         Ok(n) => println!("{n}"),
793    ///         Err(..) => {}
794    ///     }
795    /// }
796    /// ```
797    #[inline]
798    #[stable(feature = "rust1", since = "1.0.0")]
799    pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U, E> {
800        match self {
801            Ok(t) => Ok(op(t)),
802            Err(e) => Err(e),
803        }
804    }
805
806    /// Returns the provided default (if [`Err`]), or
807    /// applies a function to the contained value (if [`Ok`]).
808    ///
809    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
810    /// the result of a function call, it is recommended to use [`map_or_else`],
811    /// which is lazily evaluated.
812    ///
813    /// [`map_or_else`]: Result::map_or_else
814    ///
815    /// # Examples
816    ///
817    /// ```
818    /// let x: Result<_, &str> = Ok("foo");
819    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
820    ///
821    /// let x: Result<&str, _> = Err("bar");
822    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
823    /// ```
824    #[inline]
825    #[stable(feature = "result_map_or", since = "1.41.0")]
826    #[must_use = "if you don't need the returned value, use `if let` instead"]
827    pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
828        match self {
829            Ok(t) => f(t),
830            Err(_) => default,
831        }
832    }
833
834    /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
835    /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
836    ///
837    /// This function can be used to unpack a successful result
838    /// while handling an error.
839    ///
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// let k = 21;
845    ///
846    /// let x : Result<_, &str> = Ok("foo");
847    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
848    ///
849    /// let x : Result<&str, _> = Err("bar");
850    /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
851    /// ```
852    #[inline]
853    #[stable(feature = "result_map_or_else", since = "1.41.0")]
854    pub fn map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
855        match self {
856            Ok(t) => f(t),
857            Err(e) => default(e),
858        }
859    }
860
861    /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
862    /// contained [`Err`] value, leaving an [`Ok`] value untouched.
863    ///
864    /// This function can be used to pass through a successful result while handling
865    /// an error.
866    ///
867    ///
868    /// # Examples
869    ///
870    /// ```
871    /// fn stringify(x: u32) -> String { format!("error code: {x}") }
872    ///
873    /// let x: Result<u32, u32> = Ok(2);
874    /// assert_eq!(x.map_err(stringify), Ok(2));
875    ///
876    /// let x: Result<u32, u32> = Err(13);
877    /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
878    /// ```
879    #[inline]
880    #[stable(feature = "rust1", since = "1.0.0")]
881    pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T, F> {
882        match self {
883            Ok(t) => Ok(t),
884            Err(e) => Err(op(e)),
885        }
886    }
887
888    /// Calls a function with a reference to the contained value if [`Ok`].
889    ///
890    /// Returns the original result.
891    ///
892    /// # Examples
893    ///
894    /// ```
895    /// let x: u8 = "4"
896    ///     .parse::<u8>()
897    ///     .inspect(|x| println!("original: {x}"))
898    ///     .map(|x| x.pow(3))
899    ///     .expect("failed to parse number");
900    /// ```
901    #[inline]
902    #[stable(feature = "result_option_inspect", since = "1.76.0")]
903    pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
904        if let Ok(ref t) = self {
905            f(t);
906        }
907
908        self
909    }
910
911    /// Calls a function with a reference to the contained value if [`Err`].
912    ///
913    /// Returns the original result.
914    ///
915    /// # Examples
916    ///
917    /// ```
918    /// use std::{fs, io};
919    ///
920    /// fn read() -> io::Result<String> {
921    ///     fs::read_to_string("address.txt")
922    ///         .inspect_err(|e| eprintln!("failed to read file: {e}"))
923    /// }
924    /// ```
925    #[inline]
926    #[stable(feature = "result_option_inspect", since = "1.76.0")]
927    pub fn inspect_err<F: FnOnce(&E)>(self, f: F) -> Self {
928        if let Err(ref e) = self {
929            f(e);
930        }
931
932        self
933    }
934
935    /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
936    ///
937    /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
938    /// and returns the new [`Result`].
939    ///
940    /// # Examples
941    ///
942    /// ```
943    /// let x: Result<String, u32> = Ok("hello".to_string());
944    /// let y: Result<&str, &u32> = Ok("hello");
945    /// assert_eq!(x.as_deref(), y);
946    ///
947    /// let x: Result<String, u32> = Err(42);
948    /// let y: Result<&str, &u32> = Err(&42);
949    /// assert_eq!(x.as_deref(), y);
950    /// ```
951    #[inline]
952    #[stable(feature = "inner_deref", since = "1.47.0")]
953    pub fn as_deref(&self) -> Result<&T::Target, &E>
954    where
955        T: Deref,
956    {
957        self.as_ref().map(|t| t.deref())
958    }
959
960    /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
961    ///
962    /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
963    /// and returns the new [`Result`].
964    ///
965    /// # Examples
966    ///
967    /// ```
968    /// let mut s = "HELLO".to_string();
969    /// let mut x: Result<String, u32> = Ok("hello".to_string());
970    /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
971    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
972    ///
973    /// let mut i = 42;
974    /// let mut x: Result<String, u32> = Err(42);
975    /// let y: Result<&mut str, &mut u32> = Err(&mut i);
976    /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
977    /// ```
978    #[inline]
979    #[stable(feature = "inner_deref", since = "1.47.0")]
980    pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
981    where
982        T: DerefMut,
983    {
984        self.as_mut().map(|t| t.deref_mut())
985    }
986
987    /////////////////////////////////////////////////////////////////////////
988    // Iterator constructors
989    /////////////////////////////////////////////////////////////////////////
990
991    /// Returns an iterator over the possibly contained value.
992    ///
993    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
994    ///
995    /// # Examples
996    ///
997    /// ```
998    /// let x: Result<u32, &str> = Ok(7);
999    /// assert_eq!(x.iter().next(), Some(&7));
1000    ///
1001    /// let x: Result<u32, &str> = Err("nothing!");
1002    /// assert_eq!(x.iter().next(), None);
1003    /// ```
1004    #[inline]
1005    #[stable(feature = "rust1", since = "1.0.0")]
1006    pub fn iter(&self) -> Iter<'_, T> {
1007        Iter { inner: self.as_ref().ok() }
1008    }
1009
1010    /// Returns a mutable iterator over the possibly contained value.
1011    ///
1012    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1013    ///
1014    /// # Examples
1015    ///
1016    /// ```
1017    /// let mut x: Result<u32, &str> = Ok(7);
1018    /// match x.iter_mut().next() {
1019    ///     Some(v) => *v = 40,
1020    ///     None => {},
1021    /// }
1022    /// assert_eq!(x, Ok(40));
1023    ///
1024    /// let mut x: Result<u32, &str> = Err("nothing!");
1025    /// assert_eq!(x.iter_mut().next(), None);
1026    /// ```
1027    #[inline]
1028    #[stable(feature = "rust1", since = "1.0.0")]
1029    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1030        IterMut { inner: self.as_mut().ok() }
1031    }
1032
1033    /////////////////////////////////////////////////////////////////////////
1034    // Extract a value
1035    /////////////////////////////////////////////////////////////////////////
1036
1037    /// Returns the contained [`Ok`] value, consuming the `self` value.
1038    ///
1039    /// Because this function may panic, its use is generally discouraged.
1040    /// Instead, prefer to use pattern matching and handle the [`Err`]
1041    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1042    /// [`unwrap_or_default`].
1043    ///
1044    /// [`unwrap_or`]: Result::unwrap_or
1045    /// [`unwrap_or_else`]: Result::unwrap_or_else
1046    /// [`unwrap_or_default`]: Result::unwrap_or_default
1047    ///
1048    /// # Panics
1049    ///
1050    /// Panics if the value is an [`Err`], with a panic message including the
1051    /// passed message, and the content of the [`Err`].
1052    ///
1053    ///
1054    /// # Examples
1055    ///
1056    /// ```should_panic
1057    /// let x: Result<u32, &str> = Err("emergency failure");
1058    /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1059    /// ```
1060    ///
1061    /// # Recommended Message Style
1062    ///
1063    /// We recommend that `expect` messages are used to describe the reason you
1064    /// _expect_ the `Result` should be `Ok`.
1065    ///
1066    /// ```should_panic
1067    /// let path = std::env::var("IMPORTANT_PATH")
1068    ///     .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1069    /// ```
1070    ///
1071    /// **Hint**: If you're having trouble remembering how to phrase expect
1072    /// error messages remember to focus on the word "should" as in "env
1073    /// variable should be set by blah" or "the given binary should be available
1074    /// and executable by the current user".
1075    ///
1076    /// For more detail on expect message styles and the reasoning behind our recommendation please
1077    /// refer to the section on ["Common Message
1078    /// Styles"](../../std/error/index.html#common-message-styles) in the
1079    /// [`std::error`](../../std/error/index.html) module docs.
1080    #[inline]
1081    #[track_caller]
1082    #[stable(feature = "result_expect", since = "1.4.0")]
1083    pub fn expect(self, msg: &str) -> T
1084    where
1085        E: fmt::Debug,
1086    {
1087        match self {
1088            Ok(t) => t,
1089            Err(e) => unwrap_failed(msg, &e),
1090        }
1091    }
1092
1093    /// Returns the contained [`Ok`] value, consuming the `self` value.
1094    ///
1095    /// Because this function may panic, its use is generally discouraged.
1096    /// Panics are meant for unrecoverable errors, and
1097    /// [may abort the entire program][panic-abort].
1098    ///
1099    /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1100    /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1101    /// [`unwrap_or_else`], or [`unwrap_or_default`].
1102    ///
1103    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1104    /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1105    /// [`unwrap_or`]: Result::unwrap_or
1106    /// [`unwrap_or_else`]: Result::unwrap_or_else
1107    /// [`unwrap_or_default`]: Result::unwrap_or_default
1108    ///
1109    /// # Panics
1110    ///
1111    /// Panics if the value is an [`Err`], with a panic message provided by the
1112    /// [`Err`]'s value.
1113    ///
1114    ///
1115    /// # Examples
1116    ///
1117    /// Basic usage:
1118    ///
1119    /// ```
1120    /// let x: Result<u32, &str> = Ok(2);
1121    /// assert_eq!(x.unwrap(), 2);
1122    /// ```
1123    ///
1124    /// ```should_panic
1125    /// let x: Result<u32, &str> = Err("emergency failure");
1126    /// x.unwrap(); // panics with `emergency failure`
1127    /// ```
1128    #[inline(always)]
1129    #[track_caller]
1130    #[stable(feature = "rust1", since = "1.0.0")]
1131    pub fn unwrap(self) -> T
1132    where
1133        E: fmt::Debug,
1134    {
1135        match self {
1136            Ok(t) => t,
1137            Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1138        }
1139    }
1140
1141    /// Returns the contained [`Ok`] value or a default
1142    ///
1143    /// Consumes the `self` argument then, if [`Ok`], returns the contained
1144    /// value, otherwise if [`Err`], returns the default value for that
1145    /// type.
1146    ///
1147    /// # Examples
1148    ///
1149    /// Converts a string to an integer, turning poorly-formed strings
1150    /// into 0 (the default value for integers). [`parse`] converts
1151    /// a string to any other type that implements [`FromStr`], returning an
1152    /// [`Err`] on error.
1153    ///
1154    /// ```
1155    /// let good_year_from_input = "1909";
1156    /// let bad_year_from_input = "190blarg";
1157    /// let good_year = good_year_from_input.parse().unwrap_or_default();
1158    /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1159    ///
1160    /// assert_eq!(1909, good_year);
1161    /// assert_eq!(0, bad_year);
1162    /// ```
1163    ///
1164    /// [`parse`]: str::parse
1165    /// [`FromStr`]: crate::str::FromStr
1166    #[inline]
1167    #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1168    pub fn unwrap_or_default(self) -> T
1169    where
1170        T: Default,
1171    {
1172        match self {
1173            Ok(x) => x,
1174            Err(_) => Default::default(),
1175        }
1176    }
1177
1178    /// Returns the contained [`Err`] value, consuming the `self` value.
1179    ///
1180    /// # Panics
1181    ///
1182    /// Panics if the value is an [`Ok`], with a panic message including the
1183    /// passed message, and the content of the [`Ok`].
1184    ///
1185    ///
1186    /// # Examples
1187    ///
1188    /// ```should_panic
1189    /// let x: Result<u32, &str> = Ok(10);
1190    /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1191    /// ```
1192    #[inline]
1193    #[track_caller]
1194    #[stable(feature = "result_expect_err", since = "1.17.0")]
1195    pub fn expect_err(self, msg: &str) -> E
1196    where
1197        T: fmt::Debug,
1198    {
1199        match self {
1200            Ok(t) => unwrap_failed(msg, &t),
1201            Err(e) => e,
1202        }
1203    }
1204
1205    /// Returns the contained [`Err`] value, consuming the `self` value.
1206    ///
1207    /// # Panics
1208    ///
1209    /// Panics if the value is an [`Ok`], with a custom panic message provided
1210    /// by the [`Ok`]'s value.
1211    ///
1212    /// # Examples
1213    ///
1214    /// ```should_panic
1215    /// let x: Result<u32, &str> = Ok(2);
1216    /// x.unwrap_err(); // panics with `2`
1217    /// ```
1218    ///
1219    /// ```
1220    /// let x: Result<u32, &str> = Err("emergency failure");
1221    /// assert_eq!(x.unwrap_err(), "emergency failure");
1222    /// ```
1223    #[inline]
1224    #[track_caller]
1225    #[stable(feature = "rust1", since = "1.0.0")]
1226    pub fn unwrap_err(self) -> E
1227    where
1228        T: fmt::Debug,
1229    {
1230        match self {
1231            Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1232            Err(e) => e,
1233        }
1234    }
1235
1236    /// Returns the contained [`Ok`] value, but never panics.
1237    ///
1238    /// Unlike [`unwrap`], this method is known to never panic on the
1239    /// result types it is implemented for. Therefore, it can be used
1240    /// instead of `unwrap` as a maintainability safeguard that will fail
1241    /// to compile if the error type of the `Result` is later changed
1242    /// to an error that can actually occur.
1243    ///
1244    /// [`unwrap`]: Result::unwrap
1245    ///
1246    /// # Examples
1247    ///
1248    /// ```
1249    /// # #![feature(never_type)]
1250    /// # #![feature(unwrap_infallible)]
1251    ///
1252    /// fn only_good_news() -> Result<String, !> {
1253    ///     Ok("this is fine".into())
1254    /// }
1255    ///
1256    /// let s: String = only_good_news().into_ok();
1257    /// println!("{s}");
1258    /// ```
1259    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1260    #[inline]
1261    pub fn into_ok(self) -> T
1262    where
1263        E: Into<!>,
1264    {
1265        match self {
1266            Ok(x) => x,
1267            Err(e) => e.into(),
1268        }
1269    }
1270
1271    /// Returns the contained [`Err`] value, but never panics.
1272    ///
1273    /// Unlike [`unwrap_err`], this method is known to never panic on the
1274    /// result types it is implemented for. Therefore, it can be used
1275    /// instead of `unwrap_err` as a maintainability safeguard that will fail
1276    /// to compile if the ok type of the `Result` is later changed
1277    /// to a type that can actually occur.
1278    ///
1279    /// [`unwrap_err`]: Result::unwrap_err
1280    ///
1281    /// # Examples
1282    ///
1283    /// ```
1284    /// # #![feature(never_type)]
1285    /// # #![feature(unwrap_infallible)]
1286    ///
1287    /// fn only_bad_news() -> Result<!, String> {
1288    ///     Err("Oops, it failed".into())
1289    /// }
1290    ///
1291    /// let error: String = only_bad_news().into_err();
1292    /// println!("{error}");
1293    /// ```
1294    #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1295    #[inline]
1296    pub fn into_err(self) -> E
1297    where
1298        T: Into<!>,
1299    {
1300        match self {
1301            Ok(x) => x.into(),
1302            Err(e) => e,
1303        }
1304    }
1305
1306    ////////////////////////////////////////////////////////////////////////
1307    // Boolean operations on the values, eager and lazy
1308    /////////////////////////////////////////////////////////////////////////
1309
1310    /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1311    ///
1312    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1313    /// result of a function call, it is recommended to use [`and_then`], which is
1314    /// lazily evaluated.
1315    ///
1316    /// [`and_then`]: Result::and_then
1317    ///
1318    /// # Examples
1319    ///
1320    /// ```
1321    /// let x: Result<u32, &str> = Ok(2);
1322    /// let y: Result<&str, &str> = Err("late error");
1323    /// assert_eq!(x.and(y), Err("late error"));
1324    ///
1325    /// let x: Result<u32, &str> = Err("early error");
1326    /// let y: Result<&str, &str> = Ok("foo");
1327    /// assert_eq!(x.and(y), Err("early error"));
1328    ///
1329    /// let x: Result<u32, &str> = Err("not a 2");
1330    /// let y: Result<&str, &str> = Err("late error");
1331    /// assert_eq!(x.and(y), Err("not a 2"));
1332    ///
1333    /// let x: Result<u32, &str> = Ok(2);
1334    /// let y: Result<&str, &str> = Ok("different result type");
1335    /// assert_eq!(x.and(y), Ok("different result type"));
1336    /// ```
1337    #[inline]
1338    #[stable(feature = "rust1", since = "1.0.0")]
1339    pub fn and<U>(self, res: Result<U, E>) -> Result<U, E> {
1340        match self {
1341            Ok(_) => res,
1342            Err(e) => Err(e),
1343        }
1344    }
1345
1346    /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1347    ///
1348    ///
1349    /// This function can be used for control flow based on `Result` values.
1350    ///
1351    /// # Examples
1352    ///
1353    /// ```
1354    /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1355    ///     x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1356    /// }
1357    ///
1358    /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1359    /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1360    /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1361    /// ```
1362    ///
1363    /// Often used to chain fallible operations that may return [`Err`].
1364    ///
1365    /// ```
1366    /// use std::{io::ErrorKind, path::Path};
1367    ///
1368    /// // Note: on Windows "/" maps to "C:\"
1369    /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1370    /// assert!(root_modified_time.is_ok());
1371    ///
1372    /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1373    /// assert!(should_fail.is_err());
1374    /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1375    /// ```
1376    #[inline]
1377    #[stable(feature = "rust1", since = "1.0.0")]
1378    #[rustc_confusables("flat_map", "flatmap")]
1379    pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
1380        match self {
1381            Ok(t) => op(t),
1382            Err(e) => Err(e),
1383        }
1384    }
1385
1386    /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1387    ///
1388    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1389    /// result of a function call, it is recommended to use [`or_else`], which is
1390    /// lazily evaluated.
1391    ///
1392    /// [`or_else`]: Result::or_else
1393    ///
1394    /// # Examples
1395    ///
1396    /// ```
1397    /// let x: Result<u32, &str> = Ok(2);
1398    /// let y: Result<u32, &str> = Err("late error");
1399    /// assert_eq!(x.or(y), Ok(2));
1400    ///
1401    /// let x: Result<u32, &str> = Err("early error");
1402    /// let y: Result<u32, &str> = Ok(2);
1403    /// assert_eq!(x.or(y), Ok(2));
1404    ///
1405    /// let x: Result<u32, &str> = Err("not a 2");
1406    /// let y: Result<u32, &str> = Err("late error");
1407    /// assert_eq!(x.or(y), Err("late error"));
1408    ///
1409    /// let x: Result<u32, &str> = Ok(2);
1410    /// let y: Result<u32, &str> = Ok(100);
1411    /// assert_eq!(x.or(y), Ok(2));
1412    /// ```
1413    #[inline]
1414    #[stable(feature = "rust1", since = "1.0.0")]
1415    pub fn or<F>(self, res: Result<T, F>) -> Result<T, F> {
1416        match self {
1417            Ok(v) => Ok(v),
1418            Err(_) => res,
1419        }
1420    }
1421
1422    /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1423    ///
1424    /// This function can be used for control flow based on result values.
1425    ///
1426    ///
1427    /// # Examples
1428    ///
1429    /// ```
1430    /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1431    /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1432    ///
1433    /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1434    /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1435    /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1436    /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1437    /// ```
1438    #[inline]
1439    #[stable(feature = "rust1", since = "1.0.0")]
1440    pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
1441        match self {
1442            Ok(t) => Ok(t),
1443            Err(e) => op(e),
1444        }
1445    }
1446
1447    /// Returns the contained [`Ok`] value or a provided default.
1448    ///
1449    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1450    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1451    /// which is lazily evaluated.
1452    ///
1453    /// [`unwrap_or_else`]: Result::unwrap_or_else
1454    ///
1455    /// # Examples
1456    ///
1457    /// ```
1458    /// let default = 2;
1459    /// let x: Result<u32, &str> = Ok(9);
1460    /// assert_eq!(x.unwrap_or(default), 9);
1461    ///
1462    /// let x: Result<u32, &str> = Err("error");
1463    /// assert_eq!(x.unwrap_or(default), default);
1464    /// ```
1465    #[inline]
1466    #[stable(feature = "rust1", since = "1.0.0")]
1467    pub fn unwrap_or(self, default: T) -> T {
1468        match self {
1469            Ok(t) => t,
1470            Err(_) => default,
1471        }
1472    }
1473
1474    /// Returns the contained [`Ok`] value or computes it from a closure.
1475    ///
1476    ///
1477    /// # Examples
1478    ///
1479    /// ```
1480    /// fn count(x: &str) -> usize { x.len() }
1481    ///
1482    /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1483    /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1484    /// ```
1485    #[inline]
1486    #[track_caller]
1487    #[stable(feature = "rust1", since = "1.0.0")]
1488    pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
1489        match self {
1490            Ok(t) => t,
1491            Err(e) => op(e),
1492        }
1493    }
1494
1495    /// Returns the contained [`Ok`] value, consuming the `self` value,
1496    /// without checking that the value is not an [`Err`].
1497    ///
1498    /// # Safety
1499    ///
1500    /// Calling this method on an [`Err`] is *[undefined behavior]*.
1501    ///
1502    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1503    ///
1504    /// # Examples
1505    ///
1506    /// ```
1507    /// let x: Result<u32, &str> = Ok(2);
1508    /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1509    /// ```
1510    ///
1511    /// ```no_run
1512    /// let x: Result<u32, &str> = Err("emergency failure");
1513    /// unsafe { x.unwrap_unchecked(); } // Undefined behavior!
1514    /// ```
1515    #[inline]
1516    #[track_caller]
1517    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1518    pub unsafe fn unwrap_unchecked(self) -> T {
1519        match self {
1520            Ok(t) => t,
1521            // SAFETY: the safety contract must be upheld by the caller.
1522            Err(_) => unsafe { hint::unreachable_unchecked() },
1523        }
1524    }
1525
1526    /// Returns the contained [`Err`] value, consuming the `self` value,
1527    /// without checking that the value is not an [`Ok`].
1528    ///
1529    /// # Safety
1530    ///
1531    /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1532    ///
1533    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1534    ///
1535    /// # Examples
1536    ///
1537    /// ```no_run
1538    /// let x: Result<u32, &str> = Ok(2);
1539    /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1540    /// ```
1541    ///
1542    /// ```
1543    /// let x: Result<u32, &str> = Err("emergency failure");
1544    /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1545    /// ```
1546    #[inline]
1547    #[track_caller]
1548    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1549    pub unsafe fn unwrap_err_unchecked(self) -> E {
1550        match self {
1551            // SAFETY: the safety contract must be upheld by the caller.
1552            Ok(_) => unsafe { hint::unreachable_unchecked() },
1553            Err(e) => e,
1554        }
1555    }
1556}
1557
1558impl<T, E> Result<&T, E> {
1559    /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1560    /// `Ok` part.
1561    ///
1562    /// # Examples
1563    ///
1564    /// ```
1565    /// let val = 12;
1566    /// let x: Result<&i32, i32> = Ok(&val);
1567    /// assert_eq!(x, Ok(&12));
1568    /// let copied = x.copied();
1569    /// assert_eq!(copied, Ok(12));
1570    /// ```
1571    #[inline]
1572    #[stable(feature = "result_copied", since = "1.59.0")]
1573    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1574    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1575    pub const fn copied(self) -> Result<T, E>
1576    where
1577        T: Copy,
1578    {
1579        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1580        // ready yet, should be reverted when possible to avoid code repetition
1581        match self {
1582            Ok(&v) => Ok(v),
1583            Err(e) => Err(e),
1584        }
1585    }
1586
1587    /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1588    /// `Ok` part.
1589    ///
1590    /// # Examples
1591    ///
1592    /// ```
1593    /// let val = 12;
1594    /// let x: Result<&i32, i32> = Ok(&val);
1595    /// assert_eq!(x, Ok(&12));
1596    /// let cloned = x.cloned();
1597    /// assert_eq!(cloned, Ok(12));
1598    /// ```
1599    #[inline]
1600    #[stable(feature = "result_cloned", since = "1.59.0")]
1601    pub fn cloned(self) -> Result<T, E>
1602    where
1603        T: Clone,
1604    {
1605        self.map(|t| t.clone())
1606    }
1607}
1608
1609impl<T, E> Result<&mut T, E> {
1610    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1611    /// `Ok` part.
1612    ///
1613    /// # Examples
1614    ///
1615    /// ```
1616    /// let mut val = 12;
1617    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1618    /// assert_eq!(x, Ok(&mut 12));
1619    /// let copied = x.copied();
1620    /// assert_eq!(copied, Ok(12));
1621    /// ```
1622    #[inline]
1623    #[stable(feature = "result_copied", since = "1.59.0")]
1624    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1625    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1626    pub const fn copied(self) -> Result<T, E>
1627    where
1628        T: Copy,
1629    {
1630        // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1631        // ready yet, should be reverted when possible to avoid code repetition
1632        match self {
1633            Ok(&mut v) => Ok(v),
1634            Err(e) => Err(e),
1635        }
1636    }
1637
1638    /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1639    /// `Ok` part.
1640    ///
1641    /// # Examples
1642    ///
1643    /// ```
1644    /// let mut val = 12;
1645    /// let x: Result<&mut i32, i32> = Ok(&mut val);
1646    /// assert_eq!(x, Ok(&mut 12));
1647    /// let cloned = x.cloned();
1648    /// assert_eq!(cloned, Ok(12));
1649    /// ```
1650    #[inline]
1651    #[stable(feature = "result_cloned", since = "1.59.0")]
1652    pub fn cloned(self) -> Result<T, E>
1653    where
1654        T: Clone,
1655    {
1656        self.map(|t| t.clone())
1657    }
1658}
1659
1660impl<T, E> Result<Option<T>, E> {
1661    /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1662    ///
1663    /// `Ok(None)` will be mapped to `None`.
1664    /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1665    ///
1666    /// # Examples
1667    ///
1668    /// ```
1669    /// #[derive(Debug, Eq, PartialEq)]
1670    /// struct SomeErr;
1671    ///
1672    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1673    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1674    /// assert_eq!(x.transpose(), y);
1675    /// ```
1676    #[inline]
1677    #[stable(feature = "transpose_result", since = "1.33.0")]
1678    #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1679    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1680    pub const fn transpose(self) -> Option<Result<T, E>> {
1681        match self {
1682            Ok(Some(x)) => Some(Ok(x)),
1683            Ok(None) => None,
1684            Err(e) => Some(Err(e)),
1685        }
1686    }
1687}
1688
1689impl<T, E> Result<Result<T, E>, E> {
1690    /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1691    ///
1692    /// # Examples
1693    ///
1694    /// ```
1695    /// #![feature(result_flattening)]
1696    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1697    /// assert_eq!(Ok("hello"), x.flatten());
1698    ///
1699    /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1700    /// assert_eq!(Err(6), x.flatten());
1701    ///
1702    /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1703    /// assert_eq!(Err(6), x.flatten());
1704    /// ```
1705    ///
1706    /// Flattening only removes one level of nesting at a time:
1707    ///
1708    /// ```
1709    /// #![feature(result_flattening)]
1710    /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1711    /// assert_eq!(Ok(Ok("hello")), x.flatten());
1712    /// assert_eq!(Ok("hello"), x.flatten().flatten());
1713    /// ```
1714    #[inline]
1715    #[unstable(feature = "result_flattening", issue = "70142")]
1716    #[rustc_const_unstable(feature = "result_flattening", issue = "70142")]
1717    pub const fn flatten(self) -> Result<T, E> {
1718        // FIXME(const-hack): could be written with `and_then`
1719        match self {
1720            Ok(inner) => inner,
1721            Err(e) => Err(e),
1722        }
1723    }
1724}
1725
1726// This is a separate function to reduce the code size of the methods
1727#[cfg(not(feature = "panic_immediate_abort"))]
1728#[inline(never)]
1729#[cold]
1730#[track_caller]
1731fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1732    panic!("{msg}: {error:?}")
1733}
1734
1735// This is a separate function to avoid constructing a `dyn Debug`
1736// that gets immediately thrown away, since vtables don't get cleaned up
1737// by dead code elimination if a trait object is constructed even if it goes
1738// unused
1739#[cfg(feature = "panic_immediate_abort")]
1740#[inline]
1741#[cold]
1742#[track_caller]
1743fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1744    panic!()
1745}
1746
1747/////////////////////////////////////////////////////////////////////////////
1748// Trait implementations
1749/////////////////////////////////////////////////////////////////////////////
1750
1751#[stable(feature = "rust1", since = "1.0.0")]
1752impl<T, E> Clone for Result<T, E>
1753where
1754    T: Clone,
1755    E: Clone,
1756{
1757    #[inline]
1758    fn clone(&self) -> Self {
1759        match self {
1760            Ok(x) => Ok(x.clone()),
1761            Err(x) => Err(x.clone()),
1762        }
1763    }
1764
1765    #[inline]
1766    fn clone_from(&mut self, source: &Self) {
1767        match (self, source) {
1768            (Ok(to), Ok(from)) => to.clone_from(from),
1769            (Err(to), Err(from)) => to.clone_from(from),
1770            (to, from) => *to = from.clone(),
1771        }
1772    }
1773}
1774
1775#[unstable(feature = "ergonomic_clones", issue = "132290")]
1776impl<T, E> crate::clone::UseCloned for Result<T, E>
1777where
1778    T: crate::clone::UseCloned,
1779    E: crate::clone::UseCloned,
1780{
1781}
1782
1783#[stable(feature = "rust1", since = "1.0.0")]
1784impl<T, E> IntoIterator for Result<T, E> {
1785    type Item = T;
1786    type IntoIter = IntoIter<T>;
1787
1788    /// Returns a consuming iterator over the possibly contained value.
1789    ///
1790    /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1791    ///
1792    /// # Examples
1793    ///
1794    /// ```
1795    /// let x: Result<u32, &str> = Ok(5);
1796    /// let v: Vec<u32> = x.into_iter().collect();
1797    /// assert_eq!(v, [5]);
1798    ///
1799    /// let x: Result<u32, &str> = Err("nothing!");
1800    /// let v: Vec<u32> = x.into_iter().collect();
1801    /// assert_eq!(v, []);
1802    /// ```
1803    #[inline]
1804    fn into_iter(self) -> IntoIter<T> {
1805        IntoIter { inner: self.ok() }
1806    }
1807}
1808
1809#[stable(since = "1.4.0", feature = "result_iter")]
1810impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1811    type Item = &'a T;
1812    type IntoIter = Iter<'a, T>;
1813
1814    fn into_iter(self) -> Iter<'a, T> {
1815        self.iter()
1816    }
1817}
1818
1819#[stable(since = "1.4.0", feature = "result_iter")]
1820impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1821    type Item = &'a mut T;
1822    type IntoIter = IterMut<'a, T>;
1823
1824    fn into_iter(self) -> IterMut<'a, T> {
1825        self.iter_mut()
1826    }
1827}
1828
1829/////////////////////////////////////////////////////////////////////////////
1830// The Result Iterators
1831/////////////////////////////////////////////////////////////////////////////
1832
1833/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1834///
1835/// The iterator yields one value if the result is [`Ok`], otherwise none.
1836///
1837/// Created by [`Result::iter`].
1838#[derive(Debug)]
1839#[stable(feature = "rust1", since = "1.0.0")]
1840pub struct Iter<'a, T: 'a> {
1841    inner: Option<&'a T>,
1842}
1843
1844#[stable(feature = "rust1", since = "1.0.0")]
1845impl<'a, T> Iterator for Iter<'a, T> {
1846    type Item = &'a T;
1847
1848    #[inline]
1849    fn next(&mut self) -> Option<&'a T> {
1850        self.inner.take()
1851    }
1852    #[inline]
1853    fn size_hint(&self) -> (usize, Option<usize>) {
1854        let n = if self.inner.is_some() { 1 } else { 0 };
1855        (n, Some(n))
1856    }
1857}
1858
1859#[stable(feature = "rust1", since = "1.0.0")]
1860impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1861    #[inline]
1862    fn next_back(&mut self) -> Option<&'a T> {
1863        self.inner.take()
1864    }
1865}
1866
1867#[stable(feature = "rust1", since = "1.0.0")]
1868impl<T> ExactSizeIterator for Iter<'_, T> {}
1869
1870#[stable(feature = "fused", since = "1.26.0")]
1871impl<T> FusedIterator for Iter<'_, T> {}
1872
1873#[unstable(feature = "trusted_len", issue = "37572")]
1874unsafe impl<A> TrustedLen for Iter<'_, A> {}
1875
1876#[stable(feature = "rust1", since = "1.0.0")]
1877impl<T> Clone for Iter<'_, T> {
1878    #[inline]
1879    fn clone(&self) -> Self {
1880        Iter { inner: self.inner }
1881    }
1882}
1883
1884/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
1885///
1886/// Created by [`Result::iter_mut`].
1887#[derive(Debug)]
1888#[stable(feature = "rust1", since = "1.0.0")]
1889pub struct IterMut<'a, T: 'a> {
1890    inner: Option<&'a mut T>,
1891}
1892
1893#[stable(feature = "rust1", since = "1.0.0")]
1894impl<'a, T> Iterator for IterMut<'a, T> {
1895    type Item = &'a mut T;
1896
1897    #[inline]
1898    fn next(&mut self) -> Option<&'a mut T> {
1899        self.inner.take()
1900    }
1901    #[inline]
1902    fn size_hint(&self) -> (usize, Option<usize>) {
1903        let n = if self.inner.is_some() { 1 } else { 0 };
1904        (n, Some(n))
1905    }
1906}
1907
1908#[stable(feature = "rust1", since = "1.0.0")]
1909impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1910    #[inline]
1911    fn next_back(&mut self) -> Option<&'a mut T> {
1912        self.inner.take()
1913    }
1914}
1915
1916#[stable(feature = "rust1", since = "1.0.0")]
1917impl<T> ExactSizeIterator for IterMut<'_, T> {}
1918
1919#[stable(feature = "fused", since = "1.26.0")]
1920impl<T> FusedIterator for IterMut<'_, T> {}
1921
1922#[unstable(feature = "trusted_len", issue = "37572")]
1923unsafe impl<A> TrustedLen for IterMut<'_, A> {}
1924
1925/// An iterator over the value in a [`Ok`] variant of a [`Result`].
1926///
1927/// The iterator yields one value if the result is [`Ok`], otherwise none.
1928///
1929/// This struct is created by the [`into_iter`] method on
1930/// [`Result`] (provided by the [`IntoIterator`] trait).
1931///
1932/// [`into_iter`]: IntoIterator::into_iter
1933#[derive(Clone, Debug)]
1934#[stable(feature = "rust1", since = "1.0.0")]
1935pub struct IntoIter<T> {
1936    inner: Option<T>,
1937}
1938
1939#[stable(feature = "rust1", since = "1.0.0")]
1940impl<T> Iterator for IntoIter<T> {
1941    type Item = T;
1942
1943    #[inline]
1944    fn next(&mut self) -> Option<T> {
1945        self.inner.take()
1946    }
1947    #[inline]
1948    fn size_hint(&self) -> (usize, Option<usize>) {
1949        let n = if self.inner.is_some() { 1 } else { 0 };
1950        (n, Some(n))
1951    }
1952}
1953
1954#[stable(feature = "rust1", since = "1.0.0")]
1955impl<T> DoubleEndedIterator for IntoIter<T> {
1956    #[inline]
1957    fn next_back(&mut self) -> Option<T> {
1958        self.inner.take()
1959    }
1960}
1961
1962#[stable(feature = "rust1", since = "1.0.0")]
1963impl<T> ExactSizeIterator for IntoIter<T> {}
1964
1965#[stable(feature = "fused", since = "1.26.0")]
1966impl<T> FusedIterator for IntoIter<T> {}
1967
1968#[unstable(feature = "trusted_len", issue = "37572")]
1969unsafe impl<A> TrustedLen for IntoIter<A> {}
1970
1971/////////////////////////////////////////////////////////////////////////////
1972// FromIterator
1973/////////////////////////////////////////////////////////////////////////////
1974
1975#[stable(feature = "rust1", since = "1.0.0")]
1976impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
1977    /// Takes each element in the `Iterator`: if it is an `Err`, no further
1978    /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
1979    /// container with the values of each `Result` is returned.
1980    ///
1981    /// Here is an example which increments every integer in a vector,
1982    /// checking for overflow:
1983    ///
1984    /// ```
1985    /// let v = vec![1, 2];
1986    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
1987    ///     x.checked_add(1).ok_or("Overflow!")
1988    /// ).collect();
1989    /// assert_eq!(res, Ok(vec![2, 3]));
1990    /// ```
1991    ///
1992    /// Here is another example that tries to subtract one from another list
1993    /// of integers, this time checking for underflow:
1994    ///
1995    /// ```
1996    /// let v = vec![1, 2, 0];
1997    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
1998    ///     x.checked_sub(1).ok_or("Underflow!")
1999    /// ).collect();
2000    /// assert_eq!(res, Err("Underflow!"));
2001    /// ```
2002    ///
2003    /// Here is a variation on the previous example, showing that no
2004    /// further elements are taken from `iter` after the first `Err`.
2005    ///
2006    /// ```
2007    /// let v = vec![3, 2, 1, 10];
2008    /// let mut shared = 0;
2009    /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2010    ///     shared += x;
2011    ///     x.checked_sub(2).ok_or("Underflow!")
2012    /// }).collect();
2013    /// assert_eq!(res, Err("Underflow!"));
2014    /// assert_eq!(shared, 6);
2015    /// ```
2016    ///
2017    /// Since the third element caused an underflow, no further elements were taken,
2018    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2019    #[inline]
2020    fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2021        iter::try_process(iter.into_iter(), |i| i.collect())
2022    }
2023}
2024
2025#[unstable(feature = "try_trait_v2", issue = "84277")]
2026impl<T, E> ops::Try for Result<T, E> {
2027    type Output = T;
2028    type Residual = Result<convert::Infallible, E>;
2029
2030    #[inline]
2031    fn from_output(output: Self::Output) -> Self {
2032        Ok(output)
2033    }
2034
2035    #[inline]
2036    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2037        match self {
2038            Ok(v) => ControlFlow::Continue(v),
2039            Err(e) => ControlFlow::Break(Err(e)),
2040        }
2041    }
2042}
2043
2044#[unstable(feature = "try_trait_v2", issue = "84277")]
2045impl<T, E, F: From<E>> ops::FromResidual<Result<convert::Infallible, E>> for Result<T, F> {
2046    #[inline]
2047    #[track_caller]
2048    fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2049        match residual {
2050            Err(e) => Err(From::from(e)),
2051        }
2052    }
2053}
2054#[diagnostic::do_not_recommend]
2055#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2056impl<T, E, F: From<E>> ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2057    #[inline]
2058    fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2059        Err(From::from(e))
2060    }
2061}
2062
2063#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2064impl<T, E> ops::Residual<T> for Result<convert::Infallible, E> {
2065    type TryType = Result<T, E>;
2066}