core/option.rs
1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//! over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//! returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//! if denominator == 0.0 {
25//! None
26//! } else {
27//! Some(numerator / denominator)
28//! }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//! // The division was valid
37//! Some(x) => println!("Result: {x}"),
38//! // The division was invalid
39//! None => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//! match optional {
69//! Some(p) => println!("has value {p}"),
70//! None => println!("has no value"),
71//! }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//! let a = stack.pop();
88//! let b = stack.pop();
89//!
90//! match (a, b) {
91//! (Some(x), Some(y)) => Some(x + y),
92//! _ => None,
93//! }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//! Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees that
124//! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and
125//! produces `Option::<T>::None`. These cases are identified by the
126//! second column:
127//!
128//! | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
129//! |---------------------------------------------------------------------|----------------------------------------------------------------------|
130//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
131//! | `&U` | when `U: Sized` |
132//! | `&mut U` | when `U: Sized` |
133//! | `fn`, `extern "C" fn`[^extern_fn] | always |
134//! | [`num::NonZero*`] | always |
135//! | [`ptr::NonNull<U>`] | when `U: Sized` |
136//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
137//!
138//! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
139//!
140//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
141//!
142//! [`Box<U>`]: ../../std/boxed/struct.Box.html
143//! [`num::NonZero*`]: crate::num
144//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
145//! [function call ABI]: ../primitive.fn.html#abi-compatibility
146//! [result_repr]: crate::result#representation
147//!
148//! This is called the "null pointer optimization" or NPO.
149//!
150//! It is further guaranteed that, for the cases above, one can
151//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
152//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
153//! is undefined behavior).
154//!
155//! # Method overview
156//!
157//! In addition to working with pattern matching, [`Option`] provides a wide
158//! variety of different methods.
159//!
160//! ## Querying the variant
161//!
162//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
163//! is [`Some`] or [`None`], respectively.
164//!
165//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
166//! to the contents of the [`Option`] to produce a boolean value.
167//! If this is [`None`] then a default result is returned instead without executing the function.
168//!
169//! [`is_none`]: Option::is_none
170//! [`is_some`]: Option::is_some
171//! [`is_some_and`]: Option::is_some_and
172//! [`is_none_or`]: Option::is_none_or
173//!
174//! ## Adapters for working with references
175//!
176//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
177//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
178//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
179//! <code>[Option]<[&]T::[Target]></code>
180//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
181//! <code>[Option]<[&mut] T::[Target]></code>
182//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
183//! <code>[Option]<[Pin]<[&]T>></code>
184//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
185//! <code>[Option]<[Pin]<[&mut] T>></code>
186//! * [`as_slice`] returns a one-element slice of the contained value, if any.
187//! If this is [`None`], an empty slice is returned.
188//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
189//! If this is [`None`], an empty slice is returned.
190//!
191//! [&]: reference "shared reference"
192//! [&mut]: reference "mutable reference"
193//! [Target]: Deref::Target "ops::Deref::Target"
194//! [`as_deref`]: Option::as_deref
195//! [`as_deref_mut`]: Option::as_deref_mut
196//! [`as_mut`]: Option::as_mut
197//! [`as_pin_mut`]: Option::as_pin_mut
198//! [`as_pin_ref`]: Option::as_pin_ref
199//! [`as_ref`]: Option::as_ref
200//! [`as_slice`]: Option::as_slice
201//! [`as_mut_slice`]: Option::as_mut_slice
202//!
203//! ## Extracting the contained value
204//!
205//! These methods extract the contained value in an [`Option<T>`] when it
206//! is the [`Some`] variant. If the [`Option`] is [`None`]:
207//!
208//! * [`expect`] panics with a provided custom message
209//! * [`unwrap`] panics with a generic message
210//! * [`unwrap_or`] returns the provided default value
211//! * [`unwrap_or_default`] returns the default value of the type `T`
212//! (which must implement the [`Default`] trait)
213//! * [`unwrap_or_else`] returns the result of evaluating the provided
214//! function
215//! * [`unwrap_unchecked`] produces *[undefined behavior]*
216//!
217//! [`expect`]: Option::expect
218//! [`unwrap`]: Option::unwrap
219//! [`unwrap_or`]: Option::unwrap_or
220//! [`unwrap_or_default`]: Option::unwrap_or_default
221//! [`unwrap_or_else`]: Option::unwrap_or_else
222//! [`unwrap_unchecked`]: Option::unwrap_unchecked
223//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
224//!
225//! ## Transforming contained values
226//!
227//! These methods transform [`Option`] to [`Result`]:
228//!
229//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
230//! [`Err(err)`] using the provided default `err` value
231//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
232//! a value of [`Err`] using the provided function
233//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
234//! [`Result`] of an [`Option`]
235//!
236//! [`Err(err)`]: Err
237//! [`Ok(v)`]: Ok
238//! [`Some(v)`]: Some
239//! [`ok_or`]: Option::ok_or
240//! [`ok_or_else`]: Option::ok_or_else
241//! [`transpose`]: Option::transpose
242//!
243//! These methods transform the [`Some`] variant:
244//!
245//! * [`filter`] calls the provided predicate function on the contained
246//! value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
247//! if the function returns `true`; otherwise, returns [`None`]
248//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
249//! * [`inspect`] method takes ownership of the [`Option`] and applies
250//! the provided function to the contained value by reference if [`Some`]
251//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
252//! provided function to the contained value of [`Some`] and leaving
253//! [`None`] values unchanged
254//!
255//! [`Some(t)`]: Some
256//! [`filter`]: Option::filter
257//! [`flatten`]: Option::flatten
258//! [`inspect`]: Option::inspect
259//! [`map`]: Option::map
260//!
261//! These methods transform [`Option<T>`] to a value of a possibly
262//! different type `U`:
263//!
264//! * [`map_or`] applies the provided function to the contained value of
265//! [`Some`], or returns the provided default value if the [`Option`] is
266//! [`None`]
267//! * [`map_or_else`] applies the provided function to the contained value
268//! of [`Some`], or returns the result of evaluating the provided
269//! fallback function if the [`Option`] is [`None`]
270//!
271//! [`map_or`]: Option::map_or
272//! [`map_or_else`]: Option::map_or_else
273//!
274//! These methods combine the [`Some`] variants of two [`Option`] values:
275//!
276//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
277//! provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
278//! * [`zip_with`] calls the provided function `f` and returns
279//! [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
280//! [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//!
282//! [`Some(f(s, o))`]: Some
283//! [`Some(o)`]: Some
284//! [`Some(s)`]: Some
285//! [`Some((s, o))`]: Some
286//! [`zip`]: Option::zip
287//! [`zip_with`]: Option::zip_with
288//!
289//! ## Boolean operators
290//!
291//! These methods treat the [`Option`] as a boolean value, where [`Some`]
292//! acts like [`true`] and [`None`] acts like [`false`]. There are two
293//! categories of these methods: ones that take an [`Option`] as input, and
294//! ones that take a function as input (to be lazily evaluated).
295//!
296//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
297//! input, and produce an [`Option`] as output. Only the [`and`] method can
298//! produce an [`Option<U>`] value having a different inner type `U` than
299//! [`Option<T>`].
300//!
301//! | method | self | input | output |
302//! |---------|-----------|-----------|-----------|
303//! | [`and`] | `None` | (ignored) | `None` |
304//! | [`and`] | `Some(x)` | `None` | `None` |
305//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
306//! | [`or`] | `None` | `None` | `None` |
307//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
308//! | [`or`] | `Some(x)` | (ignored) | `Some(x)` |
309//! | [`xor`] | `None` | `None` | `None` |
310//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
311//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
312//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
313//!
314//! [`and`]: Option::and
315//! [`or`]: Option::or
316//! [`xor`]: Option::xor
317//!
318//! The [`and_then`] and [`or_else`] methods take a function as input, and
319//! only evaluate the function when they need to produce a new value. Only
320//! the [`and_then`] method can produce an [`Option<U>`] value having a
321//! different inner type `U` than [`Option<T>`].
322//!
323//! | method | self | function input | function result | output |
324//! |--------------|-----------|----------------|-----------------|-----------|
325//! | [`and_then`] | `None` | (not provided) | (not evaluated) | `None` |
326//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
327//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
328//! | [`or_else`] | `None` | (not provided) | `None` | `None` |
329//! | [`or_else`] | `None` | (not provided) | `Some(y)` | `Some(y)` |
330//! | [`or_else`] | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
331//!
332//! [`and_then`]: Option::and_then
333//! [`or_else`]: Option::or_else
334//!
335//! This is an example of using methods like [`and_then`] and [`or`] in a
336//! pipeline of method calls. Early stages of the pipeline pass failure
337//! values ([`None`]) through unchanged, and continue processing on
338//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
339//! message if it receives [`None`].
340//!
341//! ```
342//! # use std::collections::BTreeMap;
343//! let mut bt = BTreeMap::new();
344//! bt.insert(20u8, "foo");
345//! bt.insert(42u8, "bar");
346//! let res = [0u8, 1, 11, 200, 22]
347//! .into_iter()
348//! .map(|x| {
349//! // `checked_sub()` returns `None` on error
350//! x.checked_sub(1)
351//! // same with `checked_mul()`
352//! .and_then(|x| x.checked_mul(2))
353//! // `BTreeMap::get` returns `None` on error
354//! .and_then(|x| bt.get(&x))
355//! // Substitute an error message if we have `None` so far
356//! .or(Some(&"error!"))
357//! .copied()
358//! // Won't panic because we unconditionally used `Some` above
359//! .unwrap()
360//! })
361//! .collect::<Vec<_>>();
362//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
363//! ```
364//!
365//! ## Comparison operators
366//!
367//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
368//! [`PartialOrd`] implementation. With this order, [`None`] compares as
369//! less than any [`Some`], and two [`Some`] compare the same way as their
370//! contained values would in `T`. If `T` also implements
371//! [`Ord`], then so does [`Option<T>`].
372//!
373//! ```
374//! assert!(None < Some(0));
375//! assert!(Some(0) < Some(1));
376//! ```
377//!
378//! ## Iterating over `Option`
379//!
380//! An [`Option`] can be iterated over. This can be helpful if you need an
381//! iterator that is conditionally empty. The iterator will either produce
382//! a single value (when the [`Option`] is [`Some`]), or produce no values
383//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
384//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
385//! the [`Option`] is [`None`].
386//!
387//! [`Some(v)`]: Some
388//! [`empty()`]: crate::iter::empty
389//! [`once(v)`]: crate::iter::once
390//!
391//! Iterators over [`Option<T>`] come in three types:
392//!
393//! * [`into_iter`] consumes the [`Option`] and produces the contained
394//! value
395//! * [`iter`] produces an immutable reference of type `&T` to the
396//! contained value
397//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
398//! contained value
399//!
400//! [`into_iter`]: Option::into_iter
401//! [`iter`]: Option::iter
402//! [`iter_mut`]: Option::iter_mut
403//!
404//! An iterator over [`Option`] can be useful when chaining iterators, for
405//! example, to conditionally insert items. (It's not always necessary to
406//! explicitly call an iterator constructor: many [`Iterator`] methods that
407//! accept other iterators will also accept iterable types that implement
408//! [`IntoIterator`], which includes [`Option`].)
409//!
410//! ```
411//! let yep = Some(42);
412//! let nope = None;
413//! // chain() already calls into_iter(), so we don't have to do so
414//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
415//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
416//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
417//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
418//! ```
419//!
420//! One reason to chain iterators in this way is that a function returning
421//! `impl Iterator` must have all possible return values be of the same
422//! concrete type. Chaining an iterated [`Option`] can help with that.
423//!
424//! ```
425//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
426//! // Explicit returns to illustrate return types matching
427//! match do_insert {
428//! true => return (0..4).chain(Some(42)).chain(4..8),
429//! false => return (0..4).chain(None).chain(4..8),
430//! }
431//! }
432//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
433//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
434//! ```
435//!
436//! If we try to do the same thing, but using [`once()`] and [`empty()`],
437//! we can't return `impl Iterator` anymore because the concrete types of
438//! the return values differ.
439//!
440//! [`empty()`]: crate::iter::empty
441//! [`once()`]: crate::iter::once
442//!
443//! ```compile_fail,E0308
444//! # use std::iter::{empty, once};
445//! // This won't compile because all possible returns from the function
446//! // must have the same concrete type.
447//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
448//! // Explicit returns to illustrate return types not matching
449//! match do_insert {
450//! true => return (0..4).chain(once(42)).chain(4..8),
451//! false => return (0..4).chain(empty()).chain(4..8),
452//! }
453//! }
454//! ```
455//!
456//! ## Collecting into `Option`
457//!
458//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
459//! which allows an iterator over [`Option`] values to be collected into an
460//! [`Option`] of a collection of each contained value of the original
461//! [`Option`] values, or [`None`] if any of the elements was [`None`].
462//!
463//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
464//!
465//! ```
466//! let v = [Some(2), Some(4), None, Some(8)];
467//! let res: Option<Vec<_>> = v.into_iter().collect();
468//! assert_eq!(res, None);
469//! let v = [Some(2), Some(4), Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, Some(vec![2, 4, 8]));
472//! ```
473//!
474//! [`Option`] also implements the [`Product`][impl-Product] and
475//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
476//! to provide the [`product`][Iterator::product] and
477//! [`sum`][Iterator::sum] methods.
478//!
479//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
480//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
481//!
482//! ```
483//! let v = [None, Some(1), Some(2), Some(3)];
484//! let res: Option<i32> = v.into_iter().sum();
485//! assert_eq!(res, None);
486//! let v = [Some(1), Some(2), Some(21)];
487//! let res: Option<i32> = v.into_iter().product();
488//! assert_eq!(res, Some(42));
489//! ```
490//!
491//! ## Modifying an [`Option`] in-place
492//!
493//! These methods return a mutable reference to the contained value of an
494//! [`Option<T>`]:
495//!
496//! * [`insert`] inserts a value, dropping any old contents
497//! * [`get_or_insert`] gets the current value, inserting a provided
498//! default value if it is [`None`]
499//! * [`get_or_insert_default`] gets the current value, inserting the
500//! default value of type `T` (which must implement [`Default`]) if it is
501//! [`None`]
502//! * [`get_or_insert_with`] gets the current value, inserting a default
503//! computed by the provided function if it is [`None`]
504//!
505//! [`get_or_insert`]: Option::get_or_insert
506//! [`get_or_insert_default`]: Option::get_or_insert_default
507//! [`get_or_insert_with`]: Option::get_or_insert_with
508//! [`insert`]: Option::insert
509//!
510//! These methods transfer ownership of the contained value of an
511//! [`Option`]:
512//!
513//! * [`take`] takes ownership of the contained value of an [`Option`], if
514//! any, replacing the [`Option`] with [`None`]
515//! * [`replace`] takes ownership of the contained value of an [`Option`],
516//! if any, replacing the [`Option`] with a [`Some`] containing the
517//! provided value
518//!
519//! [`replace`]: Option::replace
520//! [`take`]: Option::take
521//!
522//! # Examples
523//!
524//! Basic pattern matching on [`Option`]:
525//!
526//! ```
527//! let msg = Some("howdy");
528//!
529//! // Take a reference to the contained string
530//! if let Some(m) = &msg {
531//! println!("{}", *m);
532//! }
533//!
534//! // Remove the contained string, destroying the Option
535//! let unwrapped_msg = msg.unwrap_or("default message");
536//! ```
537//!
538//! Initialize a result to [`None`] before a loop:
539//!
540//! ```
541//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
542//!
543//! // A list of data to search through.
544//! let all_the_big_things = [
545//! Kingdom::Plant(250, "redwood"),
546//! Kingdom::Plant(230, "noble fir"),
547//! Kingdom::Plant(229, "sugar pine"),
548//! Kingdom::Animal(25, "blue whale"),
549//! Kingdom::Animal(19, "fin whale"),
550//! Kingdom::Animal(15, "north pacific right whale"),
551//! ];
552//!
553//! // We're going to search for the name of the biggest animal,
554//! // but to start with we've just got `None`.
555//! let mut name_of_biggest_animal = None;
556//! let mut size_of_biggest_animal = 0;
557//! for big_thing in &all_the_big_things {
558//! match *big_thing {
559//! Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
560//! // Now we've found the name of some big animal
561//! size_of_biggest_animal = size;
562//! name_of_biggest_animal = Some(name);
563//! }
564//! Kingdom::Animal(..) | Kingdom::Plant(..) => ()
565//! }
566//! }
567//!
568//! match name_of_biggest_animal {
569//! Some(name) => println!("the biggest animal is {name}"),
570//! None => println!("there are no animals :("),
571//! }
572//! ```
573
574#![stable(feature = "rust1", since = "1.0.0")]
575
576use crate::iter::{self, FusedIterator, TrustedLen};
577use crate::ops::{self, ControlFlow, Deref, DerefMut};
578use crate::panicking::{panic, panic_display};
579use crate::pin::Pin;
580use crate::{cmp, convert, hint, mem, slice};
581
582/// The `Option` type. See [the module level documentation](self) for more.
583#[doc(search_unbox)]
584#[derive(Copy, Eq, Debug, Hash)]
585#[rustc_diagnostic_item = "Option"]
586#[lang = "Option"]
587#[stable(feature = "rust1", since = "1.0.0")]
588#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
589pub enum Option<T> {
590 /// No value.
591 #[lang = "None"]
592 #[stable(feature = "rust1", since = "1.0.0")]
593 None,
594 /// Some value of type `T`.
595 #[lang = "Some"]
596 #[stable(feature = "rust1", since = "1.0.0")]
597 Some(#[stable(feature = "rust1", since = "1.0.0")] T),
598}
599
600/////////////////////////////////////////////////////////////////////////////
601// Type implementation
602/////////////////////////////////////////////////////////////////////////////
603
604impl<T> Option<T> {
605 /////////////////////////////////////////////////////////////////////////
606 // Querying the contained values
607 /////////////////////////////////////////////////////////////////////////
608
609 /// Returns `true` if the option is a [`Some`] value.
610 ///
611 /// # Examples
612 ///
613 /// ```
614 /// let x: Option<u32> = Some(2);
615 /// assert_eq!(x.is_some(), true);
616 ///
617 /// let x: Option<u32> = None;
618 /// assert_eq!(x.is_some(), false);
619 /// ```
620 #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
621 #[inline]
622 #[stable(feature = "rust1", since = "1.0.0")]
623 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
624 pub const fn is_some(&self) -> bool {
625 matches!(*self, Some(_))
626 }
627
628 /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
629 ///
630 /// # Examples
631 ///
632 /// ```
633 /// let x: Option<u32> = Some(2);
634 /// assert_eq!(x.is_some_and(|x| x > 1), true);
635 ///
636 /// let x: Option<u32> = Some(0);
637 /// assert_eq!(x.is_some_and(|x| x > 1), false);
638 ///
639 /// let x: Option<u32> = None;
640 /// assert_eq!(x.is_some_and(|x| x > 1), false);
641 ///
642 /// let x: Option<String> = Some("ownership".to_string());
643 /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
644 /// println!("still alive {:?}", x);
645 /// ```
646 #[must_use]
647 #[inline]
648 #[stable(feature = "is_some_and", since = "1.70.0")]
649 pub fn is_some_and(self, f: impl FnOnce(T) -> bool) -> bool {
650 match self {
651 None => false,
652 Some(x) => f(x),
653 }
654 }
655
656 /// Returns `true` if the option is a [`None`] value.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// let x: Option<u32> = Some(2);
662 /// assert_eq!(x.is_none(), false);
663 ///
664 /// let x: Option<u32> = None;
665 /// assert_eq!(x.is_none(), true);
666 /// ```
667 #[must_use = "if you intended to assert that this doesn't have a value, consider \
668 wrapping this in an `assert!()` instead"]
669 #[inline]
670 #[stable(feature = "rust1", since = "1.0.0")]
671 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
672 pub const fn is_none(&self) -> bool {
673 !self.is_some()
674 }
675
676 /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
677 ///
678 /// # Examples
679 ///
680 /// ```
681 /// let x: Option<u32> = Some(2);
682 /// assert_eq!(x.is_none_or(|x| x > 1), true);
683 ///
684 /// let x: Option<u32> = Some(0);
685 /// assert_eq!(x.is_none_or(|x| x > 1), false);
686 ///
687 /// let x: Option<u32> = None;
688 /// assert_eq!(x.is_none_or(|x| x > 1), true);
689 ///
690 /// let x: Option<String> = Some("ownership".to_string());
691 /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
692 /// println!("still alive {:?}", x);
693 /// ```
694 #[must_use]
695 #[inline]
696 #[stable(feature = "is_none_or", since = "1.82.0")]
697 pub fn is_none_or(self, f: impl FnOnce(T) -> bool) -> bool {
698 match self {
699 None => true,
700 Some(x) => f(x),
701 }
702 }
703
704 /////////////////////////////////////////////////////////////////////////
705 // Adapter for working with references
706 /////////////////////////////////////////////////////////////////////////
707
708 /// Converts from `&Option<T>` to `Option<&T>`.
709 ///
710 /// # Examples
711 ///
712 /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
713 /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
714 /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
715 /// reference to the value inside the original.
716 ///
717 /// [`map`]: Option::map
718 /// [String]: ../../std/string/struct.String.html "String"
719 /// [`String`]: ../../std/string/struct.String.html "String"
720 ///
721 /// ```
722 /// let text: Option<String> = Some("Hello, world!".to_string());
723 /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
724 /// // then consume *that* with `map`, leaving `text` on the stack.
725 /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
726 /// println!("still can print text: {text:?}");
727 /// ```
728 #[inline]
729 #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
730 #[stable(feature = "rust1", since = "1.0.0")]
731 pub const fn as_ref(&self) -> Option<&T> {
732 match *self {
733 Some(ref x) => Some(x),
734 None => None,
735 }
736 }
737
738 /// Converts from `&mut Option<T>` to `Option<&mut T>`.
739 ///
740 /// # Examples
741 ///
742 /// ```
743 /// let mut x = Some(2);
744 /// match x.as_mut() {
745 /// Some(v) => *v = 42,
746 /// None => {},
747 /// }
748 /// assert_eq!(x, Some(42));
749 /// ```
750 #[inline]
751 #[stable(feature = "rust1", since = "1.0.0")]
752 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
753 pub const fn as_mut(&mut self) -> Option<&mut T> {
754 match *self {
755 Some(ref mut x) => Some(x),
756 None => None,
757 }
758 }
759
760 /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
761 ///
762 /// [&]: reference "shared reference"
763 #[inline]
764 #[must_use]
765 #[stable(feature = "pin", since = "1.33.0")]
766 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
767 pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
768 // FIXME(const-hack): use `map` once that is possible
769 match Pin::get_ref(self).as_ref() {
770 // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
771 // which is pinned.
772 Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
773 None => None,
774 }
775 }
776
777 /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
778 ///
779 /// [&mut]: reference "mutable reference"
780 #[inline]
781 #[must_use]
782 #[stable(feature = "pin", since = "1.33.0")]
783 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
784 pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
785 // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
786 // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
787 unsafe {
788 // FIXME(const-hack): use `map` once that is possible
789 match Pin::get_unchecked_mut(self).as_mut() {
790 Some(x) => Some(Pin::new_unchecked(x)),
791 None => None,
792 }
793 }
794 }
795
796 #[inline]
797 const fn len(&self) -> usize {
798 // Using the intrinsic avoids emitting a branch to get the 0 or 1.
799 let discriminant: isize = crate::intrinsics::discriminant_value(self);
800 discriminant as usize
801 }
802
803 /// Returns a slice of the contained value, if any. If this is `None`, an
804 /// empty slice is returned. This can be useful to have a single type of
805 /// iterator over an `Option` or slice.
806 ///
807 /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
808 /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
809 ///
810 /// # Examples
811 ///
812 /// ```rust
813 /// assert_eq!(
814 /// [Some(1234).as_slice(), None.as_slice()],
815 /// [&[1234][..], &[][..]],
816 /// );
817 /// ```
818 ///
819 /// The inverse of this function is (discounting
820 /// borrowing) [`[_]::first`](slice::first):
821 ///
822 /// ```rust
823 /// for i in [Some(1234_u16), None] {
824 /// assert_eq!(i.as_ref(), i.as_slice().first());
825 /// }
826 /// ```
827 #[inline]
828 #[must_use]
829 #[stable(feature = "option_as_slice", since = "1.75.0")]
830 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
831 pub const fn as_slice(&self) -> &[T] {
832 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
833 // to the payload, with a length of 1, so this is equivalent to
834 // `slice::from_ref`, and thus is safe.
835 // When the `Option` is `None`, the length used is 0, so to be safe it
836 // just needs to be aligned, which it is because `&self` is aligned and
837 // the offset used is a multiple of alignment.
838 //
839 // In the new version, the intrinsic always returns a pointer to an
840 // in-bounds and correctly aligned position for a `T` (even if in the
841 // `None` case it's just padding).
842 unsafe {
843 slice::from_raw_parts(
844 (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
845 self.len(),
846 )
847 }
848 }
849
850 /// Returns a mutable slice of the contained value, if any. If this is
851 /// `None`, an empty slice is returned. This can be useful to have a
852 /// single type of iterator over an `Option` or slice.
853 ///
854 /// Note: Should you have an `Option<&mut T>` instead of a
855 /// `&mut Option<T>`, which this method takes, you can obtain a mutable
856 /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
857 ///
858 /// # Examples
859 ///
860 /// ```rust
861 /// assert_eq!(
862 /// [Some(1234).as_mut_slice(), None.as_mut_slice()],
863 /// [&mut [1234][..], &mut [][..]],
864 /// );
865 /// ```
866 ///
867 /// The result is a mutable slice of zero or one items that points into
868 /// our original `Option`:
869 ///
870 /// ```rust
871 /// let mut x = Some(1234);
872 /// x.as_mut_slice()[0] += 1;
873 /// assert_eq!(x, Some(1235));
874 /// ```
875 ///
876 /// The inverse of this method (discounting borrowing)
877 /// is [`[_]::first_mut`](slice::first_mut):
878 ///
879 /// ```rust
880 /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
881 /// ```
882 #[inline]
883 #[must_use]
884 #[stable(feature = "option_as_slice", since = "1.75.0")]
885 #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
886 pub const fn as_mut_slice(&mut self) -> &mut [T] {
887 // SAFETY: When the `Option` is `Some`, we're using the actual pointer
888 // to the payload, with a length of 1, so this is equivalent to
889 // `slice::from_mut`, and thus is safe.
890 // When the `Option` is `None`, the length used is 0, so to be safe it
891 // just needs to be aligned, which it is because `&self` is aligned and
892 // the offset used is a multiple of alignment.
893 //
894 // In the new version, the intrinsic creates a `*const T` from a
895 // mutable reference so it is safe to cast back to a mutable pointer
896 // here. As with `as_slice`, the intrinsic always returns a pointer to
897 // an in-bounds and correctly aligned position for a `T` (even if in
898 // the `None` case it's just padding).
899 unsafe {
900 slice::from_raw_parts_mut(
901 (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
902 self.len(),
903 )
904 }
905 }
906
907 /////////////////////////////////////////////////////////////////////////
908 // Getting to contained values
909 /////////////////////////////////////////////////////////////////////////
910
911 /// Returns the contained [`Some`] value, consuming the `self` value.
912 ///
913 /// # Panics
914 ///
915 /// Panics if the value is a [`None`] with a custom panic message provided by
916 /// `msg`.
917 ///
918 /// # Examples
919 ///
920 /// ```
921 /// let x = Some("value");
922 /// assert_eq!(x.expect("fruits are healthy"), "value");
923 /// ```
924 ///
925 /// ```should_panic
926 /// let x: Option<&str> = None;
927 /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
928 /// ```
929 ///
930 /// # Recommended Message Style
931 ///
932 /// We recommend that `expect` messages are used to describe the reason you
933 /// _expect_ the `Option` should be `Some`.
934 ///
935 /// ```should_panic
936 /// # let slice: &[u8] = &[];
937 /// let item = slice.get(0)
938 /// .expect("slice should not be empty");
939 /// ```
940 ///
941 /// **Hint**: If you're having trouble remembering how to phrase expect
942 /// error messages remember to focus on the word "should" as in "env
943 /// variable should be set by blah" or "the given binary should be available
944 /// and executable by the current user".
945 ///
946 /// For more detail on expect message styles and the reasoning behind our
947 /// recommendation please refer to the section on ["Common Message
948 /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
949 #[inline]
950 #[track_caller]
951 #[stable(feature = "rust1", since = "1.0.0")]
952 #[rustc_diagnostic_item = "option_expect"]
953 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
954 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
955 pub const fn expect(self, msg: &str) -> T {
956 match self {
957 Some(val) => val,
958 None => expect_failed(msg),
959 }
960 }
961
962 /// Returns the contained [`Some`] value, consuming the `self` value.
963 ///
964 /// Because this function may panic, its use is generally discouraged.
965 /// Panics are meant for unrecoverable errors, and
966 /// [may abort the entire program][panic-abort].
967 ///
968 /// Instead, prefer to use pattern matching and handle the [`None`]
969 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
970 /// [`unwrap_or_default`]. In functions returning `Option`, you can use
971 /// [the `?` (try) operator][try-option].
972 ///
973 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
974 /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
975 /// [`unwrap_or`]: Option::unwrap_or
976 /// [`unwrap_or_else`]: Option::unwrap_or_else
977 /// [`unwrap_or_default`]: Option::unwrap_or_default
978 ///
979 /// # Panics
980 ///
981 /// Panics if the self value equals [`None`].
982 ///
983 /// # Examples
984 ///
985 /// ```
986 /// let x = Some("air");
987 /// assert_eq!(x.unwrap(), "air");
988 /// ```
989 ///
990 /// ```should_panic
991 /// let x: Option<&str> = None;
992 /// assert_eq!(x.unwrap(), "air"); // fails
993 /// ```
994 #[inline(always)]
995 #[track_caller]
996 #[stable(feature = "rust1", since = "1.0.0")]
997 #[rustc_diagnostic_item = "option_unwrap"]
998 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
999 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1000 pub const fn unwrap(self) -> T {
1001 match self {
1002 Some(val) => val,
1003 None => unwrap_failed(),
1004 }
1005 }
1006
1007 /// Returns the contained [`Some`] value or a provided default.
1008 ///
1009 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1010 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1011 /// which is lazily evaluated.
1012 ///
1013 /// [`unwrap_or_else`]: Option::unwrap_or_else
1014 ///
1015 /// # Examples
1016 ///
1017 /// ```
1018 /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1019 /// assert_eq!(None.unwrap_or("bike"), "bike");
1020 /// ```
1021 #[inline]
1022 #[stable(feature = "rust1", since = "1.0.0")]
1023 pub fn unwrap_or(self, default: T) -> T {
1024 match self {
1025 Some(x) => x,
1026 None => default,
1027 }
1028 }
1029
1030 /// Returns the contained [`Some`] value or computes it from a closure.
1031 ///
1032 /// # Examples
1033 ///
1034 /// ```
1035 /// let k = 10;
1036 /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1037 /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1038 /// ```
1039 #[inline]
1040 #[track_caller]
1041 #[stable(feature = "rust1", since = "1.0.0")]
1042 pub fn unwrap_or_else<F>(self, f: F) -> T
1043 where
1044 F: FnOnce() -> T,
1045 {
1046 match self {
1047 Some(x) => x,
1048 None => f(),
1049 }
1050 }
1051
1052 /// Returns the contained [`Some`] value or a default.
1053 ///
1054 /// Consumes the `self` argument then, if [`Some`], returns the contained
1055 /// value, otherwise if [`None`], returns the [default value] for that
1056 /// type.
1057 ///
1058 /// # Examples
1059 ///
1060 /// ```
1061 /// let x: Option<u32> = None;
1062 /// let y: Option<u32> = Some(12);
1063 ///
1064 /// assert_eq!(x.unwrap_or_default(), 0);
1065 /// assert_eq!(y.unwrap_or_default(), 12);
1066 /// ```
1067 ///
1068 /// [default value]: Default::default
1069 /// [`parse`]: str::parse
1070 /// [`FromStr`]: crate::str::FromStr
1071 #[inline]
1072 #[stable(feature = "rust1", since = "1.0.0")]
1073 pub fn unwrap_or_default(self) -> T
1074 where
1075 T: Default,
1076 {
1077 match self {
1078 Some(x) => x,
1079 None => T::default(),
1080 }
1081 }
1082
1083 /// Returns the contained [`Some`] value, consuming the `self` value,
1084 /// without checking that the value is not [`None`].
1085 ///
1086 /// # Safety
1087 ///
1088 /// Calling this method on [`None`] is *[undefined behavior]*.
1089 ///
1090 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1091 ///
1092 /// # Examples
1093 ///
1094 /// ```
1095 /// let x = Some("air");
1096 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1097 /// ```
1098 ///
1099 /// ```no_run
1100 /// let x: Option<&str> = None;
1101 /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1102 /// ```
1103 #[inline]
1104 #[track_caller]
1105 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1106 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1107 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1108 pub const unsafe fn unwrap_unchecked(self) -> T {
1109 match self {
1110 Some(val) => val,
1111 // SAFETY: the safety contract must be upheld by the caller.
1112 None => unsafe { hint::unreachable_unchecked() },
1113 }
1114 }
1115
1116 /////////////////////////////////////////////////////////////////////////
1117 // Transforming contained values
1118 /////////////////////////////////////////////////////////////////////////
1119
1120 /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1121 ///
1122 /// # Examples
1123 ///
1124 /// Calculates the length of an <code>Option<[String]></code> as an
1125 /// <code>Option<[usize]></code>, consuming the original:
1126 ///
1127 /// [String]: ../../std/string/struct.String.html "String"
1128 /// ```
1129 /// let maybe_some_string = Some(String::from("Hello, World!"));
1130 /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1131 /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1132 /// assert_eq!(maybe_some_len, Some(13));
1133 ///
1134 /// let x: Option<&str> = None;
1135 /// assert_eq!(x.map(|s| s.len()), None);
1136 /// ```
1137 #[inline]
1138 #[stable(feature = "rust1", since = "1.0.0")]
1139 pub fn map<U, F>(self, f: F) -> Option<U>
1140 where
1141 F: FnOnce(T) -> U,
1142 {
1143 match self {
1144 Some(x) => Some(f(x)),
1145 None => None,
1146 }
1147 }
1148
1149 /// Calls a function with a reference to the contained value if [`Some`].
1150 ///
1151 /// Returns the original option.
1152 ///
1153 /// # Examples
1154 ///
1155 /// ```
1156 /// let list = vec![1, 2, 3];
1157 ///
1158 /// // prints "got: 2"
1159 /// let x = list
1160 /// .get(1)
1161 /// .inspect(|x| println!("got: {x}"))
1162 /// .expect("list should be long enough");
1163 ///
1164 /// // prints nothing
1165 /// list.get(5).inspect(|x| println!("got: {x}"));
1166 /// ```
1167 #[inline]
1168 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1169 pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
1170 if let Some(ref x) = self {
1171 f(x);
1172 }
1173
1174 self
1175 }
1176
1177 /// Returns the provided default result (if none),
1178 /// or applies a function to the contained value (if any).
1179 ///
1180 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1181 /// the result of a function call, it is recommended to use [`map_or_else`],
1182 /// which is lazily evaluated.
1183 ///
1184 /// [`map_or_else`]: Option::map_or_else
1185 ///
1186 /// # Examples
1187 ///
1188 /// ```
1189 /// let x = Some("foo");
1190 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1191 ///
1192 /// let x: Option<&str> = None;
1193 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1194 /// ```
1195 #[inline]
1196 #[stable(feature = "rust1", since = "1.0.0")]
1197 #[must_use = "if you don't need the returned value, use `if let` instead"]
1198 pub fn map_or<U, F>(self, default: U, f: F) -> U
1199 where
1200 F: FnOnce(T) -> U,
1201 {
1202 match self {
1203 Some(t) => f(t),
1204 None => default,
1205 }
1206 }
1207
1208 /// Computes a default function result (if none), or
1209 /// applies a different function to the contained value (if any).
1210 ///
1211 /// # Basic examples
1212 ///
1213 /// ```
1214 /// let k = 21;
1215 ///
1216 /// let x = Some("foo");
1217 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1218 ///
1219 /// let x: Option<&str> = None;
1220 /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1221 /// ```
1222 ///
1223 /// # Handling a Result-based fallback
1224 ///
1225 /// A somewhat common occurrence when dealing with optional values
1226 /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1227 /// a fallible fallback if the option is not present. This example
1228 /// parses a command line argument (if present), or the contents of a file to
1229 /// an integer. However, unlike accessing the command line argument, reading
1230 /// the file is fallible, so it must be wrapped with `Ok`.
1231 ///
1232 /// ```no_run
1233 /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1234 /// let v: u64 = std::env::args()
1235 /// .nth(1)
1236 /// .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1237 /// .parse()?;
1238 /// # Ok(())
1239 /// # }
1240 /// ```
1241 #[inline]
1242 #[stable(feature = "rust1", since = "1.0.0")]
1243 pub fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1244 where
1245 D: FnOnce() -> U,
1246 F: FnOnce(T) -> U,
1247 {
1248 match self {
1249 Some(t) => f(t),
1250 None => default(),
1251 }
1252 }
1253
1254 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1255 /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1256 ///
1257 /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1258 /// result of a function call, it is recommended to use [`ok_or_else`], which is
1259 /// lazily evaluated.
1260 ///
1261 /// [`Ok(v)`]: Ok
1262 /// [`Err(err)`]: Err
1263 /// [`Some(v)`]: Some
1264 /// [`ok_or_else`]: Option::ok_or_else
1265 ///
1266 /// # Examples
1267 ///
1268 /// ```
1269 /// let x = Some("foo");
1270 /// assert_eq!(x.ok_or(0), Ok("foo"));
1271 ///
1272 /// let x: Option<&str> = None;
1273 /// assert_eq!(x.ok_or(0), Err(0));
1274 /// ```
1275 #[inline]
1276 #[stable(feature = "rust1", since = "1.0.0")]
1277 pub fn ok_or<E>(self, err: E) -> Result<T, E> {
1278 match self {
1279 Some(v) => Ok(v),
1280 None => Err(err),
1281 }
1282 }
1283
1284 /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1285 /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1286 ///
1287 /// [`Ok(v)`]: Ok
1288 /// [`Err(err())`]: Err
1289 /// [`Some(v)`]: Some
1290 ///
1291 /// # Examples
1292 ///
1293 /// ```
1294 /// let x = Some("foo");
1295 /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1296 ///
1297 /// let x: Option<&str> = None;
1298 /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1299 /// ```
1300 #[inline]
1301 #[stable(feature = "rust1", since = "1.0.0")]
1302 pub fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1303 where
1304 F: FnOnce() -> E,
1305 {
1306 match self {
1307 Some(v) => Ok(v),
1308 None => Err(err()),
1309 }
1310 }
1311
1312 /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1313 ///
1314 /// Leaves the original Option in-place, creating a new one with a reference
1315 /// to the original one, additionally coercing the contents via [`Deref`].
1316 ///
1317 /// # Examples
1318 ///
1319 /// ```
1320 /// let x: Option<String> = Some("hey".to_owned());
1321 /// assert_eq!(x.as_deref(), Some("hey"));
1322 ///
1323 /// let x: Option<String> = None;
1324 /// assert_eq!(x.as_deref(), None);
1325 /// ```
1326 #[inline]
1327 #[stable(feature = "option_deref", since = "1.40.0")]
1328 pub fn as_deref(&self) -> Option<&T::Target>
1329 where
1330 T: Deref,
1331 {
1332 self.as_ref().map(|t| t.deref())
1333 }
1334
1335 /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1336 ///
1337 /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1338 /// the inner type's [`Deref::Target`] type.
1339 ///
1340 /// # Examples
1341 ///
1342 /// ```
1343 /// let mut x: Option<String> = Some("hey".to_owned());
1344 /// assert_eq!(x.as_deref_mut().map(|x| {
1345 /// x.make_ascii_uppercase();
1346 /// x
1347 /// }), Some("HEY".to_owned().as_mut_str()));
1348 /// ```
1349 #[inline]
1350 #[stable(feature = "option_deref", since = "1.40.0")]
1351 pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1352 where
1353 T: DerefMut,
1354 {
1355 self.as_mut().map(|t| t.deref_mut())
1356 }
1357
1358 /////////////////////////////////////////////////////////////////////////
1359 // Iterator constructors
1360 /////////////////////////////////////////////////////////////////////////
1361
1362 /// Returns an iterator over the possibly contained value.
1363 ///
1364 /// # Examples
1365 ///
1366 /// ```
1367 /// let x = Some(4);
1368 /// assert_eq!(x.iter().next(), Some(&4));
1369 ///
1370 /// let x: Option<u32> = None;
1371 /// assert_eq!(x.iter().next(), None);
1372 /// ```
1373 #[inline]
1374 #[stable(feature = "rust1", since = "1.0.0")]
1375 pub fn iter(&self) -> Iter<'_, T> {
1376 Iter { inner: Item { opt: self.as_ref() } }
1377 }
1378
1379 /// Returns a mutable iterator over the possibly contained value.
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// let mut x = Some(4);
1385 /// match x.iter_mut().next() {
1386 /// Some(v) => *v = 42,
1387 /// None => {},
1388 /// }
1389 /// assert_eq!(x, Some(42));
1390 ///
1391 /// let mut x: Option<u32> = None;
1392 /// assert_eq!(x.iter_mut().next(), None);
1393 /// ```
1394 #[inline]
1395 #[stable(feature = "rust1", since = "1.0.0")]
1396 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1397 IterMut { inner: Item { opt: self.as_mut() } }
1398 }
1399
1400 /////////////////////////////////////////////////////////////////////////
1401 // Boolean operations on the values, eager and lazy
1402 /////////////////////////////////////////////////////////////////////////
1403
1404 /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1405 ///
1406 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1407 /// result of a function call, it is recommended to use [`and_then`], which is
1408 /// lazily evaluated.
1409 ///
1410 /// [`and_then`]: Option::and_then
1411 ///
1412 /// # Examples
1413 ///
1414 /// ```
1415 /// let x = Some(2);
1416 /// let y: Option<&str> = None;
1417 /// assert_eq!(x.and(y), None);
1418 ///
1419 /// let x: Option<u32> = None;
1420 /// let y = Some("foo");
1421 /// assert_eq!(x.and(y), None);
1422 ///
1423 /// let x = Some(2);
1424 /// let y = Some("foo");
1425 /// assert_eq!(x.and(y), Some("foo"));
1426 ///
1427 /// let x: Option<u32> = None;
1428 /// let y: Option<&str> = None;
1429 /// assert_eq!(x.and(y), None);
1430 /// ```
1431 #[inline]
1432 #[stable(feature = "rust1", since = "1.0.0")]
1433 pub fn and<U>(self, optb: Option<U>) -> Option<U> {
1434 match self {
1435 Some(_) => optb,
1436 None => None,
1437 }
1438 }
1439
1440 /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1441 /// wrapped value and returns the result.
1442 ///
1443 /// Some languages call this operation flatmap.
1444 ///
1445 /// # Examples
1446 ///
1447 /// ```
1448 /// fn sq_then_to_string(x: u32) -> Option<String> {
1449 /// x.checked_mul(x).map(|sq| sq.to_string())
1450 /// }
1451 ///
1452 /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1453 /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1454 /// assert_eq!(None.and_then(sq_then_to_string), None);
1455 /// ```
1456 ///
1457 /// Often used to chain fallible operations that may return [`None`].
1458 ///
1459 /// ```
1460 /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1461 ///
1462 /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1463 /// assert_eq!(item_0_1, Some(&"A1"));
1464 ///
1465 /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1466 /// assert_eq!(item_2_0, None);
1467 /// ```
1468 #[doc(alias = "flatmap")]
1469 #[inline]
1470 #[stable(feature = "rust1", since = "1.0.0")]
1471 #[rustc_confusables("flat_map", "flatmap")]
1472 pub fn and_then<U, F>(self, f: F) -> Option<U>
1473 where
1474 F: FnOnce(T) -> Option<U>,
1475 {
1476 match self {
1477 Some(x) => f(x),
1478 None => None,
1479 }
1480 }
1481
1482 /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1483 /// with the wrapped value and returns:
1484 ///
1485 /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1486 /// value), and
1487 /// - [`None`] if `predicate` returns `false`.
1488 ///
1489 /// This function works similar to [`Iterator::filter()`]. You can imagine
1490 /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1491 /// lets you decide which elements to keep.
1492 ///
1493 /// # Examples
1494 ///
1495 /// ```rust
1496 /// fn is_even(n: &i32) -> bool {
1497 /// n % 2 == 0
1498 /// }
1499 ///
1500 /// assert_eq!(None.filter(is_even), None);
1501 /// assert_eq!(Some(3).filter(is_even), None);
1502 /// assert_eq!(Some(4).filter(is_even), Some(4));
1503 /// ```
1504 ///
1505 /// [`Some(t)`]: Some
1506 #[inline]
1507 #[stable(feature = "option_filter", since = "1.27.0")]
1508 pub fn filter<P>(self, predicate: P) -> Self
1509 where
1510 P: FnOnce(&T) -> bool,
1511 {
1512 if let Some(x) = self {
1513 if predicate(&x) {
1514 return Some(x);
1515 }
1516 }
1517 None
1518 }
1519
1520 /// Returns the option if it contains a value, otherwise returns `optb`.
1521 ///
1522 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1523 /// result of a function call, it is recommended to use [`or_else`], which is
1524 /// lazily evaluated.
1525 ///
1526 /// [`or_else`]: Option::or_else
1527 ///
1528 /// # Examples
1529 ///
1530 /// ```
1531 /// let x = Some(2);
1532 /// let y = None;
1533 /// assert_eq!(x.or(y), Some(2));
1534 ///
1535 /// let x = None;
1536 /// let y = Some(100);
1537 /// assert_eq!(x.or(y), Some(100));
1538 ///
1539 /// let x = Some(2);
1540 /// let y = Some(100);
1541 /// assert_eq!(x.or(y), Some(2));
1542 ///
1543 /// let x: Option<u32> = None;
1544 /// let y = None;
1545 /// assert_eq!(x.or(y), None);
1546 /// ```
1547 #[inline]
1548 #[stable(feature = "rust1", since = "1.0.0")]
1549 pub fn or(self, optb: Option<T>) -> Option<T> {
1550 match self {
1551 x @ Some(_) => x,
1552 None => optb,
1553 }
1554 }
1555
1556 /// Returns the option if it contains a value, otherwise calls `f` and
1557 /// returns the result.
1558 ///
1559 /// # Examples
1560 ///
1561 /// ```
1562 /// fn nobody() -> Option<&'static str> { None }
1563 /// fn vikings() -> Option<&'static str> { Some("vikings") }
1564 ///
1565 /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1566 /// assert_eq!(None.or_else(vikings), Some("vikings"));
1567 /// assert_eq!(None.or_else(nobody), None);
1568 /// ```
1569 #[inline]
1570 #[stable(feature = "rust1", since = "1.0.0")]
1571 pub fn or_else<F>(self, f: F) -> Option<T>
1572 where
1573 F: FnOnce() -> Option<T>,
1574 {
1575 match self {
1576 x @ Some(_) => x,
1577 None => f(),
1578 }
1579 }
1580
1581 /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1582 ///
1583 /// # Examples
1584 ///
1585 /// ```
1586 /// let x = Some(2);
1587 /// let y: Option<u32> = None;
1588 /// assert_eq!(x.xor(y), Some(2));
1589 ///
1590 /// let x: Option<u32> = None;
1591 /// let y = Some(2);
1592 /// assert_eq!(x.xor(y), Some(2));
1593 ///
1594 /// let x = Some(2);
1595 /// let y = Some(2);
1596 /// assert_eq!(x.xor(y), None);
1597 ///
1598 /// let x: Option<u32> = None;
1599 /// let y: Option<u32> = None;
1600 /// assert_eq!(x.xor(y), None);
1601 /// ```
1602 #[inline]
1603 #[stable(feature = "option_xor", since = "1.37.0")]
1604 pub fn xor(self, optb: Option<T>) -> Option<T> {
1605 match (self, optb) {
1606 (a @ Some(_), None) => a,
1607 (None, b @ Some(_)) => b,
1608 _ => None,
1609 }
1610 }
1611
1612 /////////////////////////////////////////////////////////////////////////
1613 // Entry-like operations to insert a value and return a reference
1614 /////////////////////////////////////////////////////////////////////////
1615
1616 /// Inserts `value` into the option, then returns a mutable reference to it.
1617 ///
1618 /// If the option already contains a value, the old value is dropped.
1619 ///
1620 /// See also [`Option::get_or_insert`], which doesn't update the value if
1621 /// the option already contains [`Some`].
1622 ///
1623 /// # Example
1624 ///
1625 /// ```
1626 /// let mut opt = None;
1627 /// let val = opt.insert(1);
1628 /// assert_eq!(*val, 1);
1629 /// assert_eq!(opt.unwrap(), 1);
1630 /// let val = opt.insert(2);
1631 /// assert_eq!(*val, 2);
1632 /// *val = 3;
1633 /// assert_eq!(opt.unwrap(), 3);
1634 /// ```
1635 #[must_use = "if you intended to set a value, consider assignment instead"]
1636 #[inline]
1637 #[stable(feature = "option_insert", since = "1.53.0")]
1638 pub fn insert(&mut self, value: T) -> &mut T {
1639 *self = Some(value);
1640
1641 // SAFETY: the code above just filled the option
1642 unsafe { self.as_mut().unwrap_unchecked() }
1643 }
1644
1645 /// Inserts `value` into the option if it is [`None`], then
1646 /// returns a mutable reference to the contained value.
1647 ///
1648 /// See also [`Option::insert`], which updates the value even if
1649 /// the option already contains [`Some`].
1650 ///
1651 /// # Examples
1652 ///
1653 /// ```
1654 /// let mut x = None;
1655 ///
1656 /// {
1657 /// let y: &mut u32 = x.get_or_insert(5);
1658 /// assert_eq!(y, &5);
1659 ///
1660 /// *y = 7;
1661 /// }
1662 ///
1663 /// assert_eq!(x, Some(7));
1664 /// ```
1665 #[inline]
1666 #[stable(feature = "option_entry", since = "1.20.0")]
1667 pub fn get_or_insert(&mut self, value: T) -> &mut T {
1668 self.get_or_insert_with(|| value)
1669 }
1670
1671 /// Inserts the default value into the option if it is [`None`], then
1672 /// returns a mutable reference to the contained value.
1673 ///
1674 /// # Examples
1675 ///
1676 /// ```
1677 /// let mut x = None;
1678 ///
1679 /// {
1680 /// let y: &mut u32 = x.get_or_insert_default();
1681 /// assert_eq!(y, &0);
1682 ///
1683 /// *y = 7;
1684 /// }
1685 ///
1686 /// assert_eq!(x, Some(7));
1687 /// ```
1688 #[inline]
1689 #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1690 pub fn get_or_insert_default(&mut self) -> &mut T
1691 where
1692 T: Default,
1693 {
1694 self.get_or_insert_with(T::default)
1695 }
1696
1697 /// Inserts a value computed from `f` into the option if it is [`None`],
1698 /// then returns a mutable reference to the contained value.
1699 ///
1700 /// # Examples
1701 ///
1702 /// ```
1703 /// let mut x = None;
1704 ///
1705 /// {
1706 /// let y: &mut u32 = x.get_or_insert_with(|| 5);
1707 /// assert_eq!(y, &5);
1708 ///
1709 /// *y = 7;
1710 /// }
1711 ///
1712 /// assert_eq!(x, Some(7));
1713 /// ```
1714 #[inline]
1715 #[stable(feature = "option_entry", since = "1.20.0")]
1716 pub fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1717 where
1718 F: FnOnce() -> T,
1719 {
1720 if let None = self {
1721 *self = Some(f());
1722 }
1723
1724 // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1725 // variant in the code above.
1726 unsafe { self.as_mut().unwrap_unchecked() }
1727 }
1728
1729 /////////////////////////////////////////////////////////////////////////
1730 // Misc
1731 /////////////////////////////////////////////////////////////////////////
1732
1733 /// Takes the value out of the option, leaving a [`None`] in its place.
1734 ///
1735 /// # Examples
1736 ///
1737 /// ```
1738 /// let mut x = Some(2);
1739 /// let y = x.take();
1740 /// assert_eq!(x, None);
1741 /// assert_eq!(y, Some(2));
1742 ///
1743 /// let mut x: Option<u32> = None;
1744 /// let y = x.take();
1745 /// assert_eq!(x, None);
1746 /// assert_eq!(y, None);
1747 /// ```
1748 #[inline]
1749 #[stable(feature = "rust1", since = "1.0.0")]
1750 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1751 pub const fn take(&mut self) -> Option<T> {
1752 // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1753 mem::replace(self, None)
1754 }
1755
1756 /// Takes the value out of the option, but only if the predicate evaluates to
1757 /// `true` on a mutable reference to the value.
1758 ///
1759 /// In other words, replaces `self` with `None` if the predicate returns `true`.
1760 /// This method operates similar to [`Option::take`] but conditional.
1761 ///
1762 /// # Examples
1763 ///
1764 /// ```
1765 /// let mut x = Some(42);
1766 ///
1767 /// let prev = x.take_if(|v| if *v == 42 {
1768 /// *v += 1;
1769 /// false
1770 /// } else {
1771 /// false
1772 /// });
1773 /// assert_eq!(x, Some(43));
1774 /// assert_eq!(prev, None);
1775 ///
1776 /// let prev = x.take_if(|v| *v == 43);
1777 /// assert_eq!(x, None);
1778 /// assert_eq!(prev, Some(43));
1779 /// ```
1780 #[inline]
1781 #[stable(feature = "option_take_if", since = "1.80.0")]
1782 pub fn take_if<P>(&mut self, predicate: P) -> Option<T>
1783 where
1784 P: FnOnce(&mut T) -> bool,
1785 {
1786 if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1787 }
1788
1789 /// Replaces the actual value in the option by the value given in parameter,
1790 /// returning the old value if present,
1791 /// leaving a [`Some`] in its place without deinitializing either one.
1792 ///
1793 /// # Examples
1794 ///
1795 /// ```
1796 /// let mut x = Some(2);
1797 /// let old = x.replace(5);
1798 /// assert_eq!(x, Some(5));
1799 /// assert_eq!(old, Some(2));
1800 ///
1801 /// let mut x = None;
1802 /// let old = x.replace(3);
1803 /// assert_eq!(x, Some(3));
1804 /// assert_eq!(old, None);
1805 /// ```
1806 #[inline]
1807 #[stable(feature = "option_replace", since = "1.31.0")]
1808 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1809 pub const fn replace(&mut self, value: T) -> Option<T> {
1810 mem::replace(self, Some(value))
1811 }
1812
1813 /// Zips `self` with another `Option`.
1814 ///
1815 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1816 /// Otherwise, `None` is returned.
1817 ///
1818 /// # Examples
1819 ///
1820 /// ```
1821 /// let x = Some(1);
1822 /// let y = Some("hi");
1823 /// let z = None::<u8>;
1824 ///
1825 /// assert_eq!(x.zip(y), Some((1, "hi")));
1826 /// assert_eq!(x.zip(z), None);
1827 /// ```
1828 #[stable(feature = "option_zip_option", since = "1.46.0")]
1829 pub fn zip<U>(self, other: Option<U>) -> Option<(T, U)> {
1830 match (self, other) {
1831 (Some(a), Some(b)) => Some((a, b)),
1832 _ => None,
1833 }
1834 }
1835
1836 /// Zips `self` and another `Option` with function `f`.
1837 ///
1838 /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1839 /// Otherwise, `None` is returned.
1840 ///
1841 /// # Examples
1842 ///
1843 /// ```
1844 /// #![feature(option_zip)]
1845 ///
1846 /// #[derive(Debug, PartialEq)]
1847 /// struct Point {
1848 /// x: f64,
1849 /// y: f64,
1850 /// }
1851 ///
1852 /// impl Point {
1853 /// fn new(x: f64, y: f64) -> Self {
1854 /// Self { x, y }
1855 /// }
1856 /// }
1857 ///
1858 /// let x = Some(17.5);
1859 /// let y = Some(42.7);
1860 ///
1861 /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1862 /// assert_eq!(x.zip_with(None, Point::new), None);
1863 /// ```
1864 #[unstable(feature = "option_zip", issue = "70086")]
1865 pub fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1866 where
1867 F: FnOnce(T, U) -> R,
1868 {
1869 match (self, other) {
1870 (Some(a), Some(b)) => Some(f(a, b)),
1871 _ => None,
1872 }
1873 }
1874}
1875
1876impl<T, U> Option<(T, U)> {
1877 /// Unzips an option containing a tuple of two options.
1878 ///
1879 /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1880 /// Otherwise, `(None, None)` is returned.
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// let x = Some((1, "hi"));
1886 /// let y = None::<(u8, u32)>;
1887 ///
1888 /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1889 /// assert_eq!(y.unzip(), (None, None));
1890 /// ```
1891 #[inline]
1892 #[stable(feature = "unzip_option", since = "1.66.0")]
1893 pub fn unzip(self) -> (Option<T>, Option<U>) {
1894 match self {
1895 Some((a, b)) => (Some(a), Some(b)),
1896 None => (None, None),
1897 }
1898 }
1899}
1900
1901impl<T> Option<&T> {
1902 /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1903 /// option.
1904 ///
1905 /// # Examples
1906 ///
1907 /// ```
1908 /// let x = 12;
1909 /// let opt_x = Some(&x);
1910 /// assert_eq!(opt_x, Some(&12));
1911 /// let copied = opt_x.copied();
1912 /// assert_eq!(copied, Some(12));
1913 /// ```
1914 #[must_use = "`self` will be dropped if the result is not used"]
1915 #[stable(feature = "copied", since = "1.35.0")]
1916 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1917 pub const fn copied(self) -> Option<T>
1918 where
1919 T: Copy,
1920 {
1921 // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
1922 // ready yet, should be reverted when possible to avoid code repetition
1923 match self {
1924 Some(&v) => Some(v),
1925 None => None,
1926 }
1927 }
1928
1929 /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
1930 /// option.
1931 ///
1932 /// # Examples
1933 ///
1934 /// ```
1935 /// let x = 12;
1936 /// let opt_x = Some(&x);
1937 /// assert_eq!(opt_x, Some(&12));
1938 /// let cloned = opt_x.cloned();
1939 /// assert_eq!(cloned, Some(12));
1940 /// ```
1941 #[must_use = "`self` will be dropped if the result is not used"]
1942 #[stable(feature = "rust1", since = "1.0.0")]
1943 pub fn cloned(self) -> Option<T>
1944 where
1945 T: Clone,
1946 {
1947 match self {
1948 Some(t) => Some(t.clone()),
1949 None => None,
1950 }
1951 }
1952}
1953
1954impl<T> Option<&mut T> {
1955 /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
1956 /// option.
1957 ///
1958 /// # Examples
1959 ///
1960 /// ```
1961 /// let mut x = 12;
1962 /// let opt_x = Some(&mut x);
1963 /// assert_eq!(opt_x, Some(&mut 12));
1964 /// let copied = opt_x.copied();
1965 /// assert_eq!(copied, Some(12));
1966 /// ```
1967 #[must_use = "`self` will be dropped if the result is not used"]
1968 #[stable(feature = "copied", since = "1.35.0")]
1969 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1970 pub const fn copied(self) -> Option<T>
1971 where
1972 T: Copy,
1973 {
1974 match self {
1975 Some(&mut t) => Some(t),
1976 None => None,
1977 }
1978 }
1979
1980 /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
1981 /// option.
1982 ///
1983 /// # Examples
1984 ///
1985 /// ```
1986 /// let mut x = 12;
1987 /// let opt_x = Some(&mut x);
1988 /// assert_eq!(opt_x, Some(&mut 12));
1989 /// let cloned = opt_x.cloned();
1990 /// assert_eq!(cloned, Some(12));
1991 /// ```
1992 #[must_use = "`self` will be dropped if the result is not used"]
1993 #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
1994 pub fn cloned(self) -> Option<T>
1995 where
1996 T: Clone,
1997 {
1998 match self {
1999 Some(t) => Some(t.clone()),
2000 None => None,
2001 }
2002 }
2003}
2004
2005impl<T, E> Option<Result<T, E>> {
2006 /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2007 ///
2008 /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
2009 /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
2010 /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
2011 ///
2012 /// # Examples
2013 ///
2014 /// ```
2015 /// #[derive(Debug, Eq, PartialEq)]
2016 /// struct SomeErr;
2017 ///
2018 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
2019 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
2020 /// assert_eq!(x, y.transpose());
2021 /// ```
2022 #[inline]
2023 #[stable(feature = "transpose_result", since = "1.33.0")]
2024 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2025 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2026 pub const fn transpose(self) -> Result<Option<T>, E> {
2027 match self {
2028 Some(Ok(x)) => Ok(Some(x)),
2029 Some(Err(e)) => Err(e),
2030 None => Ok(None),
2031 }
2032 }
2033}
2034
2035#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2036#[cfg_attr(feature = "panic_immediate_abort", inline)]
2037#[cold]
2038#[track_caller]
2039const fn unwrap_failed() -> ! {
2040 panic("called `Option::unwrap()` on a `None` value")
2041}
2042
2043// This is a separate function to reduce the code size of .expect() itself.
2044#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2045#[cfg_attr(feature = "panic_immediate_abort", inline)]
2046#[cold]
2047#[track_caller]
2048const fn expect_failed(msg: &str) -> ! {
2049 panic_display(&msg)
2050}
2051
2052/////////////////////////////////////////////////////////////////////////////
2053// Trait implementations
2054/////////////////////////////////////////////////////////////////////////////
2055
2056#[stable(feature = "rust1", since = "1.0.0")]
2057impl<T> Clone for Option<T>
2058where
2059 T: Clone,
2060{
2061 #[inline]
2062 fn clone(&self) -> Self {
2063 match self {
2064 Some(x) => Some(x.clone()),
2065 None => None,
2066 }
2067 }
2068
2069 #[inline]
2070 fn clone_from(&mut self, source: &Self) {
2071 match (self, source) {
2072 (Some(to), Some(from)) => to.clone_from(from),
2073 (to, from) => *to = from.clone(),
2074 }
2075 }
2076}
2077
2078#[unstable(feature = "ergonomic_clones", issue = "132290")]
2079impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2080
2081#[stable(feature = "rust1", since = "1.0.0")]
2082impl<T> Default for Option<T> {
2083 /// Returns [`None`][Option::None].
2084 ///
2085 /// # Examples
2086 ///
2087 /// ```
2088 /// let opt: Option<u32> = Option::default();
2089 /// assert!(opt.is_none());
2090 /// ```
2091 #[inline]
2092 fn default() -> Option<T> {
2093 None
2094 }
2095}
2096
2097#[stable(feature = "rust1", since = "1.0.0")]
2098impl<T> IntoIterator for Option<T> {
2099 type Item = T;
2100 type IntoIter = IntoIter<T>;
2101
2102 /// Returns a consuming iterator over the possibly contained value.
2103 ///
2104 /// # Examples
2105 ///
2106 /// ```
2107 /// let x = Some("string");
2108 /// let v: Vec<&str> = x.into_iter().collect();
2109 /// assert_eq!(v, ["string"]);
2110 ///
2111 /// let x = None;
2112 /// let v: Vec<&str> = x.into_iter().collect();
2113 /// assert!(v.is_empty());
2114 /// ```
2115 #[inline]
2116 fn into_iter(self) -> IntoIter<T> {
2117 IntoIter { inner: Item { opt: self } }
2118 }
2119}
2120
2121#[stable(since = "1.4.0", feature = "option_iter")]
2122impl<'a, T> IntoIterator for &'a Option<T> {
2123 type Item = &'a T;
2124 type IntoIter = Iter<'a, T>;
2125
2126 fn into_iter(self) -> Iter<'a, T> {
2127 self.iter()
2128 }
2129}
2130
2131#[stable(since = "1.4.0", feature = "option_iter")]
2132impl<'a, T> IntoIterator for &'a mut Option<T> {
2133 type Item = &'a mut T;
2134 type IntoIter = IterMut<'a, T>;
2135
2136 fn into_iter(self) -> IterMut<'a, T> {
2137 self.iter_mut()
2138 }
2139}
2140
2141#[stable(since = "1.12.0", feature = "option_from")]
2142impl<T> From<T> for Option<T> {
2143 /// Moves `val` into a new [`Some`].
2144 ///
2145 /// # Examples
2146 ///
2147 /// ```
2148 /// let o: Option<u8> = Option::from(67);
2149 ///
2150 /// assert_eq!(Some(67), o);
2151 /// ```
2152 fn from(val: T) -> Option<T> {
2153 Some(val)
2154 }
2155}
2156
2157#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2158impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
2159 /// Converts from `&Option<T>` to `Option<&T>`.
2160 ///
2161 /// # Examples
2162 ///
2163 /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2164 /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2165 /// so this technique uses `from` to first take an [`Option`] to a reference
2166 /// to the value inside the original.
2167 ///
2168 /// [`map`]: Option::map
2169 /// [String]: ../../std/string/struct.String.html "String"
2170 ///
2171 /// ```
2172 /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2173 /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2174 ///
2175 /// println!("Can still print s: {s:?}");
2176 ///
2177 /// assert_eq!(o, Some(18));
2178 /// ```
2179 fn from(o: &'a Option<T>) -> Option<&'a T> {
2180 o.as_ref()
2181 }
2182}
2183
2184#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2185impl<'a, T> From<&'a mut Option<T>> for Option<&'a mut T> {
2186 /// Converts from `&mut Option<T>` to `Option<&mut T>`
2187 ///
2188 /// # Examples
2189 ///
2190 /// ```
2191 /// let mut s = Some(String::from("Hello"));
2192 /// let o: Option<&mut String> = Option::from(&mut s);
2193 ///
2194 /// match o {
2195 /// Some(t) => *t = String::from("Hello, Rustaceans!"),
2196 /// None => (),
2197 /// }
2198 ///
2199 /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2200 /// ```
2201 fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2202 o.as_mut()
2203 }
2204}
2205
2206// Ideally, LLVM should be able to optimize our derive code to this.
2207// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2208// go back to deriving `PartialEq`.
2209#[stable(feature = "rust1", since = "1.0.0")]
2210impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2211#[stable(feature = "rust1", since = "1.0.0")]
2212impl<T: PartialEq> PartialEq for Option<T> {
2213 #[inline]
2214 fn eq(&self, other: &Self) -> bool {
2215 // Spelling out the cases explicitly optimizes better than
2216 // `_ => false`
2217 match (self, other) {
2218 (Some(l), Some(r)) => *l == *r,
2219 (Some(_), None) => false,
2220 (None, Some(_)) => false,
2221 (None, None) => true,
2222 }
2223 }
2224}
2225
2226// Manually implementing here somewhat improves codegen for
2227// https://github.com/rust-lang/rust/issues/49892, although still
2228// not optimal.
2229#[stable(feature = "rust1", since = "1.0.0")]
2230impl<T: PartialOrd> PartialOrd for Option<T> {
2231 #[inline]
2232 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2233 match (self, other) {
2234 (Some(l), Some(r)) => l.partial_cmp(r),
2235 (Some(_), None) => Some(cmp::Ordering::Greater),
2236 (None, Some(_)) => Some(cmp::Ordering::Less),
2237 (None, None) => Some(cmp::Ordering::Equal),
2238 }
2239 }
2240}
2241
2242#[stable(feature = "rust1", since = "1.0.0")]
2243impl<T: Ord> Ord for Option<T> {
2244 #[inline]
2245 fn cmp(&self, other: &Self) -> cmp::Ordering {
2246 match (self, other) {
2247 (Some(l), Some(r)) => l.cmp(r),
2248 (Some(_), None) => cmp::Ordering::Greater,
2249 (None, Some(_)) => cmp::Ordering::Less,
2250 (None, None) => cmp::Ordering::Equal,
2251 }
2252 }
2253}
2254
2255/////////////////////////////////////////////////////////////////////////////
2256// The Option Iterators
2257/////////////////////////////////////////////////////////////////////////////
2258
2259#[derive(Clone, Debug)]
2260struct Item<A> {
2261 opt: Option<A>,
2262}
2263
2264impl<A> Iterator for Item<A> {
2265 type Item = A;
2266
2267 #[inline]
2268 fn next(&mut self) -> Option<A> {
2269 self.opt.take()
2270 }
2271
2272 #[inline]
2273 fn size_hint(&self) -> (usize, Option<usize>) {
2274 let len = self.len();
2275 (len, Some(len))
2276 }
2277}
2278
2279impl<A> DoubleEndedIterator for Item<A> {
2280 #[inline]
2281 fn next_back(&mut self) -> Option<A> {
2282 self.opt.take()
2283 }
2284}
2285
2286impl<A> ExactSizeIterator for Item<A> {
2287 #[inline]
2288 fn len(&self) -> usize {
2289 self.opt.len()
2290 }
2291}
2292impl<A> FusedIterator for Item<A> {}
2293unsafe impl<A> TrustedLen for Item<A> {}
2294
2295/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2296///
2297/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2298///
2299/// This `struct` is created by the [`Option::iter`] function.
2300#[stable(feature = "rust1", since = "1.0.0")]
2301#[derive(Debug)]
2302pub struct Iter<'a, A: 'a> {
2303 inner: Item<&'a A>,
2304}
2305
2306#[stable(feature = "rust1", since = "1.0.0")]
2307impl<'a, A> Iterator for Iter<'a, A> {
2308 type Item = &'a A;
2309
2310 #[inline]
2311 fn next(&mut self) -> Option<&'a A> {
2312 self.inner.next()
2313 }
2314 #[inline]
2315 fn size_hint(&self) -> (usize, Option<usize>) {
2316 self.inner.size_hint()
2317 }
2318}
2319
2320#[stable(feature = "rust1", since = "1.0.0")]
2321impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2322 #[inline]
2323 fn next_back(&mut self) -> Option<&'a A> {
2324 self.inner.next_back()
2325 }
2326}
2327
2328#[stable(feature = "rust1", since = "1.0.0")]
2329impl<A> ExactSizeIterator for Iter<'_, A> {}
2330
2331#[stable(feature = "fused", since = "1.26.0")]
2332impl<A> FusedIterator for Iter<'_, A> {}
2333
2334#[unstable(feature = "trusted_len", issue = "37572")]
2335unsafe impl<A> TrustedLen for Iter<'_, A> {}
2336
2337#[stable(feature = "rust1", since = "1.0.0")]
2338impl<A> Clone for Iter<'_, A> {
2339 #[inline]
2340 fn clone(&self) -> Self {
2341 Iter { inner: self.inner.clone() }
2342 }
2343}
2344
2345/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2346///
2347/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2348///
2349/// This `struct` is created by the [`Option::iter_mut`] function.
2350#[stable(feature = "rust1", since = "1.0.0")]
2351#[derive(Debug)]
2352pub struct IterMut<'a, A: 'a> {
2353 inner: Item<&'a mut A>,
2354}
2355
2356#[stable(feature = "rust1", since = "1.0.0")]
2357impl<'a, A> Iterator for IterMut<'a, A> {
2358 type Item = &'a mut A;
2359
2360 #[inline]
2361 fn next(&mut self) -> Option<&'a mut A> {
2362 self.inner.next()
2363 }
2364 #[inline]
2365 fn size_hint(&self) -> (usize, Option<usize>) {
2366 self.inner.size_hint()
2367 }
2368}
2369
2370#[stable(feature = "rust1", since = "1.0.0")]
2371impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2372 #[inline]
2373 fn next_back(&mut self) -> Option<&'a mut A> {
2374 self.inner.next_back()
2375 }
2376}
2377
2378#[stable(feature = "rust1", since = "1.0.0")]
2379impl<A> ExactSizeIterator for IterMut<'_, A> {}
2380
2381#[stable(feature = "fused", since = "1.26.0")]
2382impl<A> FusedIterator for IterMut<'_, A> {}
2383#[unstable(feature = "trusted_len", issue = "37572")]
2384unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2385
2386/// An iterator over the value in [`Some`] variant of an [`Option`].
2387///
2388/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2389///
2390/// This `struct` is created by the [`Option::into_iter`] function.
2391#[derive(Clone, Debug)]
2392#[stable(feature = "rust1", since = "1.0.0")]
2393pub struct IntoIter<A> {
2394 inner: Item<A>,
2395}
2396
2397#[stable(feature = "rust1", since = "1.0.0")]
2398impl<A> Iterator for IntoIter<A> {
2399 type Item = A;
2400
2401 #[inline]
2402 fn next(&mut self) -> Option<A> {
2403 self.inner.next()
2404 }
2405 #[inline]
2406 fn size_hint(&self) -> (usize, Option<usize>) {
2407 self.inner.size_hint()
2408 }
2409}
2410
2411#[stable(feature = "rust1", since = "1.0.0")]
2412impl<A> DoubleEndedIterator for IntoIter<A> {
2413 #[inline]
2414 fn next_back(&mut self) -> Option<A> {
2415 self.inner.next_back()
2416 }
2417}
2418
2419#[stable(feature = "rust1", since = "1.0.0")]
2420impl<A> ExactSizeIterator for IntoIter<A> {}
2421
2422#[stable(feature = "fused", since = "1.26.0")]
2423impl<A> FusedIterator for IntoIter<A> {}
2424
2425#[unstable(feature = "trusted_len", issue = "37572")]
2426unsafe impl<A> TrustedLen for IntoIter<A> {}
2427
2428/////////////////////////////////////////////////////////////////////////////
2429// FromIterator
2430/////////////////////////////////////////////////////////////////////////////
2431
2432#[stable(feature = "rust1", since = "1.0.0")]
2433impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2434 /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2435 /// no further elements are taken, and the [`None`][Option::None] is
2436 /// returned. Should no [`None`][Option::None] occur, a container of type
2437 /// `V` containing the values of each [`Option`] is returned.
2438 ///
2439 /// # Examples
2440 ///
2441 /// Here is an example which increments every integer in a vector.
2442 /// We use the checked variant of `add` that returns `None` when the
2443 /// calculation would result in an overflow.
2444 ///
2445 /// ```
2446 /// let items = vec![0_u16, 1, 2];
2447 ///
2448 /// let res: Option<Vec<u16>> = items
2449 /// .iter()
2450 /// .map(|x| x.checked_add(1))
2451 /// .collect();
2452 ///
2453 /// assert_eq!(res, Some(vec![1, 2, 3]));
2454 /// ```
2455 ///
2456 /// As you can see, this will return the expected, valid items.
2457 ///
2458 /// Here is another example that tries to subtract one from another list
2459 /// of integers, this time checking for underflow:
2460 ///
2461 /// ```
2462 /// let items = vec![2_u16, 1, 0];
2463 ///
2464 /// let res: Option<Vec<u16>> = items
2465 /// .iter()
2466 /// .map(|x| x.checked_sub(1))
2467 /// .collect();
2468 ///
2469 /// assert_eq!(res, None);
2470 /// ```
2471 ///
2472 /// Since the last element is zero, it would underflow. Thus, the resulting
2473 /// value is `None`.
2474 ///
2475 /// Here is a variation on the previous example, showing that no
2476 /// further elements are taken from `iter` after the first `None`.
2477 ///
2478 /// ```
2479 /// let items = vec![3_u16, 2, 1, 10];
2480 ///
2481 /// let mut shared = 0;
2482 ///
2483 /// let res: Option<Vec<u16>> = items
2484 /// .iter()
2485 /// .map(|x| { shared += x; x.checked_sub(2) })
2486 /// .collect();
2487 ///
2488 /// assert_eq!(res, None);
2489 /// assert_eq!(shared, 6);
2490 /// ```
2491 ///
2492 /// Since the third element caused an underflow, no further elements were taken,
2493 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2494 #[inline]
2495 fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2496 // FIXME(#11084): This could be replaced with Iterator::scan when this
2497 // performance bug is closed.
2498
2499 iter::try_process(iter.into_iter(), |i| i.collect())
2500 }
2501}
2502
2503#[unstable(feature = "try_trait_v2", issue = "84277")]
2504impl<T> ops::Try for Option<T> {
2505 type Output = T;
2506 type Residual = Option<convert::Infallible>;
2507
2508 #[inline]
2509 fn from_output(output: Self::Output) -> Self {
2510 Some(output)
2511 }
2512
2513 #[inline]
2514 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2515 match self {
2516 Some(v) => ControlFlow::Continue(v),
2517 None => ControlFlow::Break(None),
2518 }
2519 }
2520}
2521
2522#[unstable(feature = "try_trait_v2", issue = "84277")]
2523// Note: manually specifying the residual type instead of using the default to work around
2524// https://github.com/rust-lang/rust/issues/99940
2525impl<T> ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2526 #[inline]
2527 fn from_residual(residual: Option<convert::Infallible>) -> Self {
2528 match residual {
2529 None => None,
2530 }
2531 }
2532}
2533
2534#[diagnostic::do_not_recommend]
2535#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2536impl<T> ops::FromResidual<ops::Yeet<()>> for Option<T> {
2537 #[inline]
2538 fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2539 None
2540 }
2541}
2542
2543#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2544impl<T> ops::Residual<T> for Option<convert::Infallible> {
2545 type TryType = Option<T>;
2546}
2547
2548impl<T> Option<Option<T>> {
2549 /// Converts from `Option<Option<T>>` to `Option<T>`.
2550 ///
2551 /// # Examples
2552 ///
2553 /// Basic usage:
2554 ///
2555 /// ```
2556 /// let x: Option<Option<u32>> = Some(Some(6));
2557 /// assert_eq!(Some(6), x.flatten());
2558 ///
2559 /// let x: Option<Option<u32>> = Some(None);
2560 /// assert_eq!(None, x.flatten());
2561 ///
2562 /// let x: Option<Option<u32>> = None;
2563 /// assert_eq!(None, x.flatten());
2564 /// ```
2565 ///
2566 /// Flattening only removes one level of nesting at a time:
2567 ///
2568 /// ```
2569 /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2570 /// assert_eq!(Some(Some(6)), x.flatten());
2571 /// assert_eq!(Some(6), x.flatten().flatten());
2572 /// ```
2573 #[inline]
2574 #[stable(feature = "option_flattening", since = "1.40.0")]
2575 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2576 #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2577 pub const fn flatten(self) -> Option<T> {
2578 // FIXME(const-hack): could be written with `and_then`
2579 match self {
2580 Some(inner) => inner,
2581 None => None,
2582 }
2583 }
2584}
2585
2586impl<T, const N: usize> [Option<T>; N] {
2587 /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2588 ///
2589 /// # Examples
2590 ///
2591 /// ```
2592 /// #![feature(option_array_transpose)]
2593 /// # use std::option::Option;
2594 ///
2595 /// let data = [Some(0); 1000];
2596 /// let data: Option<[u8; 1000]> = data.transpose();
2597 /// assert_eq!(data, Some([0; 1000]));
2598 ///
2599 /// let data = [Some(0), None];
2600 /// let data: Option<[u8; 2]> = data.transpose();
2601 /// assert_eq!(data, None);
2602 /// ```
2603 #[inline]
2604 #[unstable(feature = "option_array_transpose", issue = "130828")]
2605 pub fn transpose(self) -> Option<[T; N]> {
2606 self.try_map(core::convert::identity)
2607 }
2608}