core/num/f128.rs
1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21pub mod consts {
22 // FIXME: replace with mathematical constants from cmath.
23
24 /// Archimedes' constant (π)
25 #[unstable(feature = "f128", issue = "116909")]
26 pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
27
28 /// The full circle constant (τ)
29 ///
30 /// Equal to 2π.
31 #[unstable(feature = "f128", issue = "116909")]
32 pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
33
34 /// The golden ratio (φ)
35 #[unstable(feature = "f128", issue = "116909")]
36 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
37 pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
38
39 /// The Euler-Mascheroni constant (γ)
40 #[unstable(feature = "f128", issue = "116909")]
41 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
42 pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
43
44 /// π/2
45 #[unstable(feature = "f128", issue = "116909")]
46 pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
47
48 /// π/3
49 #[unstable(feature = "f128", issue = "116909")]
50 pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
51
52 /// π/4
53 #[unstable(feature = "f128", issue = "116909")]
54 pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
55
56 /// π/6
57 #[unstable(feature = "f128", issue = "116909")]
58 pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
59
60 /// π/8
61 #[unstable(feature = "f128", issue = "116909")]
62 pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
63
64 /// 1/π
65 #[unstable(feature = "f128", issue = "116909")]
66 pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
67
68 /// 1/sqrt(π)
69 #[unstable(feature = "f128", issue = "116909")]
70 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
71 pub const FRAC_1_SQRT_PI: f128 =
72 0.564189583547756286948079451560772585844050629328998856844086_f128;
73
74 /// 1/sqrt(2π)
75 #[doc(alias = "FRAC_1_SQRT_TAU")]
76 #[unstable(feature = "f128", issue = "116909")]
77 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
78 pub const FRAC_1_SQRT_2PI: f128 =
79 0.398942280401432677939946059934381868475858631164934657665926_f128;
80
81 /// 2/π
82 #[unstable(feature = "f128", issue = "116909")]
83 pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
84
85 /// 2/sqrt(π)
86 #[unstable(feature = "f128", issue = "116909")]
87 pub const FRAC_2_SQRT_PI: f128 =
88 1.12837916709551257389615890312154517168810125865799771368817_f128;
89
90 /// sqrt(2)
91 #[unstable(feature = "f128", issue = "116909")]
92 pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
93
94 /// 1/sqrt(2)
95 #[unstable(feature = "f128", issue = "116909")]
96 pub const FRAC_1_SQRT_2: f128 =
97 0.707106781186547524400844362104849039284835937688474036588340_f128;
98
99 /// sqrt(3)
100 #[unstable(feature = "f128", issue = "116909")]
101 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
102 pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
103
104 /// 1/sqrt(3)
105 #[unstable(feature = "f128", issue = "116909")]
106 // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
107 pub const FRAC_1_SQRT_3: f128 =
108 0.577350269189625764509148780501957455647601751270126876018602_f128;
109
110 /// Euler's number (e)
111 #[unstable(feature = "f128", issue = "116909")]
112 pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
113
114 /// log<sub>2</sub>(10)
115 #[unstable(feature = "f128", issue = "116909")]
116 pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
117
118 /// log<sub>2</sub>(e)
119 #[unstable(feature = "f128", issue = "116909")]
120 pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
121
122 /// log<sub>10</sub>(2)
123 #[unstable(feature = "f128", issue = "116909")]
124 pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
125
126 /// log<sub>10</sub>(e)
127 #[unstable(feature = "f128", issue = "116909")]
128 pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
129
130 /// ln(2)
131 #[unstable(feature = "f128", issue = "116909")]
132 pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
133
134 /// ln(10)
135 #[unstable(feature = "f128", issue = "116909")]
136 pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
137}
138
139impl f128 {
140 // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
141 // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
142
143 /// The radix or base of the internal representation of `f128`.
144 #[unstable(feature = "f128", issue = "116909")]
145 pub const RADIX: u32 = 2;
146
147 /// Number of significant digits in base 2.
148 ///
149 /// Note that the size of the mantissa in the bitwise representation is one
150 /// smaller than this since the leading 1 is not stored explicitly.
151 #[unstable(feature = "f128", issue = "116909")]
152 pub const MANTISSA_DIGITS: u32 = 113;
153
154 /// Approximate number of significant digits in base 10.
155 ///
156 /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
157 /// significant digits can be converted to `f128` and back without loss.
158 ///
159 /// Equal to floor(log<sub>10</sub> 2<sup>[`MANTISSA_DIGITS`] − 1</sup>).
160 ///
161 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
162 #[unstable(feature = "f128", issue = "116909")]
163 pub const DIGITS: u32 = 33;
164
165 /// [Machine epsilon] value for `f128`.
166 ///
167 /// This is the difference between `1.0` and the next larger representable number.
168 ///
169 /// Equal to 2<sup>1 − [`MANTISSA_DIGITS`]</sup>.
170 ///
171 /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
172 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
173 #[unstable(feature = "f128", issue = "116909")]
174 pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
175
176 /// Smallest finite `f128` value.
177 ///
178 /// Equal to −[`MAX`].
179 ///
180 /// [`MAX`]: f128::MAX
181 #[unstable(feature = "f128", issue = "116909")]
182 pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
183 /// Smallest positive normal `f128` value.
184 ///
185 /// Equal to 2<sup>[`MIN_EXP`] − 1</sup>.
186 ///
187 /// [`MIN_EXP`]: f128::MIN_EXP
188 #[unstable(feature = "f128", issue = "116909")]
189 pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
190 /// Largest finite `f128` value.
191 ///
192 /// Equal to
193 /// (1 − 2<sup>−[`MANTISSA_DIGITS`]</sup>) 2<sup>[`MAX_EXP`]</sup>.
194 ///
195 /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
196 /// [`MAX_EXP`]: f128::MAX_EXP
197 #[unstable(feature = "f128", issue = "116909")]
198 pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
199
200 /// One greater than the minimum possible *normal* power of 2 exponent
201 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
202 ///
203 /// This corresponds to the exact minimum possible *normal* power of 2 exponent
204 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
205 /// In other words, all normal numbers representable by this type are
206 /// greater than or equal to 0.5 × 2<sup><i>MIN_EXP</i></sup>.
207 #[unstable(feature = "f128", issue = "116909")]
208 pub const MIN_EXP: i32 = -16_381;
209 /// One greater than the maximum possible power of 2 exponent
210 /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
211 ///
212 /// This corresponds to the exact maximum possible power of 2 exponent
213 /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
214 /// In other words, all numbers representable by this type are
215 /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
216 #[unstable(feature = "f128", issue = "116909")]
217 pub const MAX_EXP: i32 = 16_384;
218
219 /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
220 ///
221 /// Equal to ceil(log<sub>10</sub> [`MIN_POSITIVE`]).
222 ///
223 /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
224 #[unstable(feature = "f128", issue = "116909")]
225 pub const MIN_10_EXP: i32 = -4_931;
226 /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
227 ///
228 /// Equal to floor(log<sub>10</sub> [`MAX`]).
229 ///
230 /// [`MAX`]: f128::MAX
231 #[unstable(feature = "f128", issue = "116909")]
232 pub const MAX_10_EXP: i32 = 4_932;
233
234 /// Not a Number (NaN).
235 ///
236 /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
237 /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
238 /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
239 /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
240 /// info.
241 ///
242 /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
243 /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
244 /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
245 /// The concrete bit pattern may change across Rust versions and target platforms.
246 #[allow(clippy::eq_op)]
247 #[rustc_diagnostic_item = "f128_nan"]
248 #[unstable(feature = "f128", issue = "116909")]
249 pub const NAN: f128 = 0.0_f128 / 0.0_f128;
250
251 /// Infinity (∞).
252 #[unstable(feature = "f128", issue = "116909")]
253 pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
254
255 /// Negative infinity (−∞).
256 #[unstable(feature = "f128", issue = "116909")]
257 pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
258
259 /// Sign bit
260 pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
261
262 /// Exponent mask
263 pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
264
265 /// Mantissa mask
266 pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
267
268 /// Minimum representable positive value (min subnormal)
269 const TINY_BITS: u128 = 0x1;
270
271 /// Minimum representable negative value (min negative subnormal)
272 const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
273
274 /// Returns `true` if this value is NaN.
275 ///
276 /// ```
277 /// #![feature(f128)]
278 /// # // FIXME(f16_f128): remove when `unordtf2` is available
279 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
280 ///
281 /// let nan = f128::NAN;
282 /// let f = 7.0_f128;
283 ///
284 /// assert!(nan.is_nan());
285 /// assert!(!f.is_nan());
286 /// # }
287 /// ```
288 #[inline]
289 #[must_use]
290 #[unstable(feature = "f128", issue = "116909")]
291 #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
292 pub const fn is_nan(self) -> bool {
293 self != self
294 }
295
296 /// Returns `true` if this value is positive infinity or negative infinity, and
297 /// `false` otherwise.
298 ///
299 /// ```
300 /// #![feature(f128)]
301 /// # // FIXME(f16_f128): remove when `eqtf2` is available
302 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
303 ///
304 /// let f = 7.0f128;
305 /// let inf = f128::INFINITY;
306 /// let neg_inf = f128::NEG_INFINITY;
307 /// let nan = f128::NAN;
308 ///
309 /// assert!(!f.is_infinite());
310 /// assert!(!nan.is_infinite());
311 ///
312 /// assert!(inf.is_infinite());
313 /// assert!(neg_inf.is_infinite());
314 /// # }
315 /// ```
316 #[inline]
317 #[must_use]
318 #[unstable(feature = "f128", issue = "116909")]
319 pub const fn is_infinite(self) -> bool {
320 (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
321 }
322
323 /// Returns `true` if this number is neither infinite nor NaN.
324 ///
325 /// ```
326 /// #![feature(f128)]
327 /// # // FIXME(f16_f128): remove when `lttf2` is available
328 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
329 ///
330 /// let f = 7.0f128;
331 /// let inf: f128 = f128::INFINITY;
332 /// let neg_inf: f128 = f128::NEG_INFINITY;
333 /// let nan: f128 = f128::NAN;
334 ///
335 /// assert!(f.is_finite());
336 ///
337 /// assert!(!nan.is_finite());
338 /// assert!(!inf.is_finite());
339 /// assert!(!neg_inf.is_finite());
340 /// # }
341 /// ```
342 #[inline]
343 #[must_use]
344 #[unstable(feature = "f128", issue = "116909")]
345 #[rustc_const_unstable(feature = "f128", issue = "116909")]
346 pub const fn is_finite(self) -> bool {
347 // There's no need to handle NaN separately: if self is NaN,
348 // the comparison is not true, exactly as desired.
349 self.abs() < Self::INFINITY
350 }
351
352 /// Returns `true` if the number is [subnormal].
353 ///
354 /// ```
355 /// #![feature(f128)]
356 /// # // FIXME(f16_f128): remove when `eqtf2` is available
357 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
358 ///
359 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
360 /// let max = f128::MAX;
361 /// let lower_than_min = 1.0e-4960_f128;
362 /// let zero = 0.0_f128;
363 ///
364 /// assert!(!min.is_subnormal());
365 /// assert!(!max.is_subnormal());
366 ///
367 /// assert!(!zero.is_subnormal());
368 /// assert!(!f128::NAN.is_subnormal());
369 /// assert!(!f128::INFINITY.is_subnormal());
370 /// // Values between `0` and `min` are Subnormal.
371 /// assert!(lower_than_min.is_subnormal());
372 /// # }
373 /// ```
374 ///
375 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
376 #[inline]
377 #[must_use]
378 #[unstable(feature = "f128", issue = "116909")]
379 pub const fn is_subnormal(self) -> bool {
380 matches!(self.classify(), FpCategory::Subnormal)
381 }
382
383 /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
384 ///
385 /// ```
386 /// #![feature(f128)]
387 /// # // FIXME(f16_f128): remove when `eqtf2` is available
388 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
389 ///
390 /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
391 /// let max = f128::MAX;
392 /// let lower_than_min = 1.0e-4960_f128;
393 /// let zero = 0.0_f128;
394 ///
395 /// assert!(min.is_normal());
396 /// assert!(max.is_normal());
397 ///
398 /// assert!(!zero.is_normal());
399 /// assert!(!f128::NAN.is_normal());
400 /// assert!(!f128::INFINITY.is_normal());
401 /// // Values between `0` and `min` are Subnormal.
402 /// assert!(!lower_than_min.is_normal());
403 /// # }
404 /// ```
405 ///
406 /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
407 #[inline]
408 #[must_use]
409 #[unstable(feature = "f128", issue = "116909")]
410 pub const fn is_normal(self) -> bool {
411 matches!(self.classify(), FpCategory::Normal)
412 }
413
414 /// Returns the floating point category of the number. If only one property
415 /// is going to be tested, it is generally faster to use the specific
416 /// predicate instead.
417 ///
418 /// ```
419 /// #![feature(f128)]
420 /// # // FIXME(f16_f128): remove when `eqtf2` is available
421 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
422 ///
423 /// use std::num::FpCategory;
424 ///
425 /// let num = 12.4_f128;
426 /// let inf = f128::INFINITY;
427 ///
428 /// assert_eq!(num.classify(), FpCategory::Normal);
429 /// assert_eq!(inf.classify(), FpCategory::Infinite);
430 /// # }
431 /// ```
432 #[inline]
433 #[unstable(feature = "f128", issue = "116909")]
434 pub const fn classify(self) -> FpCategory {
435 let bits = self.to_bits();
436 match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
437 (0, Self::EXP_MASK) => FpCategory::Infinite,
438 (_, Self::EXP_MASK) => FpCategory::Nan,
439 (0, 0) => FpCategory::Zero,
440 (_, 0) => FpCategory::Subnormal,
441 _ => FpCategory::Normal,
442 }
443 }
444
445 /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
446 /// positive sign bit and positive infinity.
447 ///
448 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
449 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
450 /// conserved over arithmetic operations, the result of `is_sign_positive` on
451 /// a NaN might produce an unexpected or non-portable result. See the [specification
452 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
453 /// if you need fully portable behavior (will return `false` for all NaNs).
454 ///
455 /// ```
456 /// #![feature(f128)]
457 ///
458 /// let f = 7.0_f128;
459 /// let g = -7.0_f128;
460 ///
461 /// assert!(f.is_sign_positive());
462 /// assert!(!g.is_sign_positive());
463 /// ```
464 #[inline]
465 #[must_use]
466 #[unstable(feature = "f128", issue = "116909")]
467 pub const fn is_sign_positive(self) -> bool {
468 !self.is_sign_negative()
469 }
470
471 /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
472 /// negative sign bit and negative infinity.
473 ///
474 /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
475 /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
476 /// conserved over arithmetic operations, the result of `is_sign_negative` on
477 /// a NaN might produce an unexpected or non-portable result. See the [specification
478 /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
479 /// if you need fully portable behavior (will return `false` for all NaNs).
480 ///
481 /// ```
482 /// #![feature(f128)]
483 ///
484 /// let f = 7.0_f128;
485 /// let g = -7.0_f128;
486 ///
487 /// assert!(!f.is_sign_negative());
488 /// assert!(g.is_sign_negative());
489 /// ```
490 #[inline]
491 #[must_use]
492 #[unstable(feature = "f128", issue = "116909")]
493 pub const fn is_sign_negative(self) -> bool {
494 // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
495 // applies to zeros and NaNs as well.
496 // SAFETY: This is just transmuting to get the sign bit, it's fine.
497 (self.to_bits() & (1 << 127)) != 0
498 }
499
500 /// Returns the least number greater than `self`.
501 ///
502 /// Let `TINY` be the smallest representable positive `f128`. Then,
503 /// - if `self.is_nan()`, this returns `self`;
504 /// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
505 /// - if `self` is `-TINY`, this returns -0.0;
506 /// - if `self` is -0.0 or +0.0, this returns `TINY`;
507 /// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
508 /// - otherwise the unique least value greater than `self` is returned.
509 ///
510 /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
511 /// is finite `x == x.next_up().next_down()` also holds.
512 ///
513 /// ```rust
514 /// #![feature(f128)]
515 /// # // FIXME(f16_f128): remove when `eqtf2` is available
516 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
517 ///
518 /// // f128::EPSILON is the difference between 1.0 and the next number up.
519 /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
520 /// // But not for most numbers.
521 /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
522 /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
523 /// # }
524 /// ```
525 ///
526 /// This operation corresponds to IEEE-754 `nextUp`.
527 ///
528 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
529 /// [`INFINITY`]: Self::INFINITY
530 /// [`MIN`]: Self::MIN
531 /// [`MAX`]: Self::MAX
532 #[inline]
533 #[doc(alias = "nextUp")]
534 #[unstable(feature = "f128", issue = "116909")]
535 pub const fn next_up(self) -> Self {
536 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
537 // denormals to zero. This is in general unsound and unsupported, but here
538 // we do our best to still produce the correct result on such targets.
539 let bits = self.to_bits();
540 if self.is_nan() || bits == Self::INFINITY.to_bits() {
541 return self;
542 }
543
544 let abs = bits & !Self::SIGN_MASK;
545 let next_bits = if abs == 0 {
546 Self::TINY_BITS
547 } else if bits == abs {
548 bits + 1
549 } else {
550 bits - 1
551 };
552 Self::from_bits(next_bits)
553 }
554
555 /// Returns the greatest number less than `self`.
556 ///
557 /// Let `TINY` be the smallest representable positive `f128`. Then,
558 /// - if `self.is_nan()`, this returns `self`;
559 /// - if `self` is [`INFINITY`], this returns [`MAX`];
560 /// - if `self` is `TINY`, this returns 0.0;
561 /// - if `self` is -0.0 or +0.0, this returns `-TINY`;
562 /// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
563 /// - otherwise the unique greatest value less than `self` is returned.
564 ///
565 /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
566 /// is finite `x == x.next_down().next_up()` also holds.
567 ///
568 /// ```rust
569 /// #![feature(f128)]
570 /// # // FIXME(f16_f128): remove when `eqtf2` is available
571 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
572 ///
573 /// let x = 1.0f128;
574 /// // Clamp value into range [0, 1).
575 /// let clamped = x.clamp(0.0, 1.0f128.next_down());
576 /// assert!(clamped < 1.0);
577 /// assert_eq!(clamped.next_up(), 1.0);
578 /// # }
579 /// ```
580 ///
581 /// This operation corresponds to IEEE-754 `nextDown`.
582 ///
583 /// [`NEG_INFINITY`]: Self::NEG_INFINITY
584 /// [`INFINITY`]: Self::INFINITY
585 /// [`MIN`]: Self::MIN
586 /// [`MAX`]: Self::MAX
587 #[inline]
588 #[doc(alias = "nextDown")]
589 #[unstable(feature = "f128", issue = "116909")]
590 pub const fn next_down(self) -> Self {
591 // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
592 // denormals to zero. This is in general unsound and unsupported, but here
593 // we do our best to still produce the correct result on such targets.
594 let bits = self.to_bits();
595 if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
596 return self;
597 }
598
599 let abs = bits & !Self::SIGN_MASK;
600 let next_bits = if abs == 0 {
601 Self::NEG_TINY_BITS
602 } else if bits == abs {
603 bits - 1
604 } else {
605 bits + 1
606 };
607 Self::from_bits(next_bits)
608 }
609
610 /// Takes the reciprocal (inverse) of a number, `1/x`.
611 ///
612 /// ```
613 /// #![feature(f128)]
614 /// # // FIXME(f16_f128): remove when `eqtf2` is available
615 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
616 ///
617 /// let x = 2.0_f128;
618 /// let abs_difference = (x.recip() - (1.0 / x)).abs();
619 ///
620 /// assert!(abs_difference <= f128::EPSILON);
621 /// # }
622 /// ```
623 #[inline]
624 #[unstable(feature = "f128", issue = "116909")]
625 #[must_use = "this returns the result of the operation, without modifying the original"]
626 pub const fn recip(self) -> Self {
627 1.0 / self
628 }
629
630 /// Converts radians to degrees.
631 ///
632 /// ```
633 /// #![feature(f128)]
634 /// # // FIXME(f16_f128): remove when `eqtf2` is available
635 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
636 ///
637 /// let angle = std::f128::consts::PI;
638 ///
639 /// let abs_difference = (angle.to_degrees() - 180.0).abs();
640 /// assert!(abs_difference <= f128::EPSILON);
641 /// # }
642 /// ```
643 #[inline]
644 #[unstable(feature = "f128", issue = "116909")]
645 #[must_use = "this returns the result of the operation, without modifying the original"]
646 pub const fn to_degrees(self) -> Self {
647 // Use a literal for better precision.
648 const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
649 self * PIS_IN_180
650 }
651
652 /// Converts degrees to radians.
653 ///
654 /// ```
655 /// #![feature(f128)]
656 /// # // FIXME(f16_f128): remove when `eqtf2` is available
657 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
658 ///
659 /// let angle = 180.0f128;
660 ///
661 /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
662 ///
663 /// assert!(abs_difference <= 1e-30);
664 /// # }
665 /// ```
666 #[inline]
667 #[unstable(feature = "f128", issue = "116909")]
668 #[must_use = "this returns the result of the operation, without modifying the original"]
669 pub const fn to_radians(self) -> f128 {
670 // Use a literal for better precision.
671 const RADS_PER_DEG: f128 =
672 0.0174532925199432957692369076848861271344287188854172545609719_f128;
673 self * RADS_PER_DEG
674 }
675
676 /// Returns the maximum of the two numbers, ignoring NaN.
677 ///
678 /// If one of the arguments is NaN, then the other argument is returned.
679 /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
680 /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
681 /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
682 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
683 ///
684 /// ```
685 /// #![feature(f128)]
686 /// # // Using aarch64 because `reliable_f128_math` is needed
687 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
688 ///
689 /// let x = 1.0f128;
690 /// let y = 2.0f128;
691 ///
692 /// assert_eq!(x.max(y), y);
693 /// # }
694 /// ```
695 #[inline]
696 #[unstable(feature = "f128", issue = "116909")]
697 #[rustc_const_unstable(feature = "f128", issue = "116909")]
698 #[must_use = "this returns the result of the comparison, without modifying either input"]
699 pub const fn max(self, other: f128) -> f128 {
700 intrinsics::maxnumf128(self, other)
701 }
702
703 /// Returns the minimum of the two numbers, ignoring NaN.
704 ///
705 /// If one of the arguments is NaN, then the other argument is returned.
706 /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
707 /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
708 /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
709 /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
710 ///
711 /// ```
712 /// #![feature(f128)]
713 /// # // Using aarch64 because `reliable_f128_math` is needed
714 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
715 ///
716 /// let x = 1.0f128;
717 /// let y = 2.0f128;
718 ///
719 /// assert_eq!(x.min(y), x);
720 /// # }
721 /// ```
722 #[inline]
723 #[unstable(feature = "f128", issue = "116909")]
724 #[rustc_const_unstable(feature = "f128", issue = "116909")]
725 #[must_use = "this returns the result of the comparison, without modifying either input"]
726 pub const fn min(self, other: f128) -> f128 {
727 intrinsics::minnumf128(self, other)
728 }
729
730 /// Returns the maximum of the two numbers, propagating NaN.
731 ///
732 /// This returns NaN when *either* argument is NaN, as opposed to
733 /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
734 ///
735 /// ```
736 /// #![feature(f128)]
737 /// #![feature(float_minimum_maximum)]
738 /// # // Using aarch64 because `reliable_f128_math` is needed
739 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
740 ///
741 /// let x = 1.0f128;
742 /// let y = 2.0f128;
743 ///
744 /// assert_eq!(x.maximum(y), y);
745 /// assert!(x.maximum(f128::NAN).is_nan());
746 /// # }
747 /// ```
748 ///
749 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
750 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
751 /// Note that this follows the semantics specified in IEEE 754-2019.
752 ///
753 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
754 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
755 #[inline]
756 #[unstable(feature = "f128", issue = "116909")]
757 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
758 #[must_use = "this returns the result of the comparison, without modifying either input"]
759 pub const fn maximum(self, other: f128) -> f128 {
760 if self > other {
761 self
762 } else if other > self {
763 other
764 } else if self == other {
765 if self.is_sign_positive() && other.is_sign_negative() { self } else { other }
766 } else {
767 self + other
768 }
769 }
770
771 /// Returns the minimum of the two numbers, propagating NaN.
772 ///
773 /// This returns NaN when *either* argument is NaN, as opposed to
774 /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
775 ///
776 /// ```
777 /// #![feature(f128)]
778 /// #![feature(float_minimum_maximum)]
779 /// # // Using aarch64 because `reliable_f128_math` is needed
780 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
781 ///
782 /// let x = 1.0f128;
783 /// let y = 2.0f128;
784 ///
785 /// assert_eq!(x.minimum(y), x);
786 /// assert!(x.minimum(f128::NAN).is_nan());
787 /// # }
788 /// ```
789 ///
790 /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
791 /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
792 /// Note that this follows the semantics specified in IEEE 754-2019.
793 ///
794 /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
795 /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
796 #[inline]
797 #[unstable(feature = "f128", issue = "116909")]
798 // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
799 #[must_use = "this returns the result of the comparison, without modifying either input"]
800 pub const fn minimum(self, other: f128) -> f128 {
801 if self < other {
802 self
803 } else if other < self {
804 other
805 } else if self == other {
806 if self.is_sign_negative() && other.is_sign_positive() { self } else { other }
807 } else {
808 // At least one input is NaN. Use `+` to perform NaN propagation and quieting.
809 self + other
810 }
811 }
812
813 /// Calculates the midpoint (average) between `self` and `rhs`.
814 ///
815 /// This returns NaN when *either* argument is NaN or if a combination of
816 /// +inf and -inf is provided as arguments.
817 ///
818 /// # Examples
819 ///
820 /// ```
821 /// #![feature(f128)]
822 /// # // Using aarch64 because `reliable_f128_math` is needed
823 /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
824 ///
825 /// assert_eq!(1f128.midpoint(4.0), 2.5);
826 /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
827 /// # }
828 /// ```
829 #[inline]
830 #[doc(alias = "average")]
831 #[unstable(feature = "f128", issue = "116909")]
832 #[rustc_const_unstable(feature = "f128", issue = "116909")]
833 pub const fn midpoint(self, other: f128) -> f128 {
834 const LO: f128 = f128::MIN_POSITIVE * 2.;
835 const HI: f128 = f128::MAX / 2.;
836
837 let (a, b) = (self, other);
838 let abs_a = a.abs();
839 let abs_b = b.abs();
840
841 if abs_a <= HI && abs_b <= HI {
842 // Overflow is impossible
843 (a + b) / 2.
844 } else if abs_a < LO {
845 // Not safe to halve `a` (would underflow)
846 a + (b / 2.)
847 } else if abs_b < LO {
848 // Not safe to halve `b` (would underflow)
849 (a / 2.) + b
850 } else {
851 // Safe to halve `a` and `b`
852 (a / 2.) + (b / 2.)
853 }
854 }
855
856 /// Rounds toward zero and converts to any primitive integer type,
857 /// assuming that the value is finite and fits in that type.
858 ///
859 /// ```
860 /// #![feature(f128)]
861 /// # // FIXME(f16_f128): remove when `float*itf` is available
862 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
863 ///
864 /// let value = 4.6_f128;
865 /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
866 /// assert_eq!(rounded, 4);
867 ///
868 /// let value = -128.9_f128;
869 /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
870 /// assert_eq!(rounded, i8::MIN);
871 /// # }
872 /// ```
873 ///
874 /// # Safety
875 ///
876 /// The value must:
877 ///
878 /// * Not be `NaN`
879 /// * Not be infinite
880 /// * Be representable in the return type `Int`, after truncating off its fractional part
881 #[inline]
882 #[unstable(feature = "f128", issue = "116909")]
883 #[must_use = "this returns the result of the operation, without modifying the original"]
884 pub unsafe fn to_int_unchecked<Int>(self) -> Int
885 where
886 Self: FloatToInt<Int>,
887 {
888 // SAFETY: the caller must uphold the safety contract for
889 // `FloatToInt::to_int_unchecked`.
890 unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
891 }
892
893 /// Raw transmutation to `u128`.
894 ///
895 /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
896 ///
897 /// See [`from_bits`](#method.from_bits) for some discussion of the
898 /// portability of this operation (there are almost no issues).
899 ///
900 /// Note that this function is distinct from `as` casting, which attempts to
901 /// preserve the *numeric* value, and not the bitwise value.
902 ///
903 /// ```
904 /// #![feature(f128)]
905 ///
906 /// # // FIXME(f16_f128): enable this once const casting works
907 /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
908 /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
909 /// ```
910 #[inline]
911 #[unstable(feature = "f128", issue = "116909")]
912 #[must_use = "this returns the result of the operation, without modifying the original"]
913 #[cfg_attr(not(bootstrap), allow(unnecessary_transmutes))]
914 pub const fn to_bits(self) -> u128 {
915 // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
916 unsafe { mem::transmute(self) }
917 }
918
919 /// Raw transmutation from `u128`.
920 ///
921 /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
922 /// It turns out this is incredibly portable, for two reasons:
923 ///
924 /// * Floats and Ints have the same endianness on all supported platforms.
925 /// * IEEE 754 very precisely specifies the bit layout of floats.
926 ///
927 /// However there is one caveat: prior to the 2008 version of IEEE 754, how
928 /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
929 /// (notably x86 and ARM) picked the interpretation that was ultimately
930 /// standardized in 2008, but some didn't (notably MIPS). As a result, all
931 /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
932 ///
933 /// Rather than trying to preserve signaling-ness cross-platform, this
934 /// implementation favors preserving the exact bits. This means that
935 /// any payloads encoded in NaNs will be preserved even if the result of
936 /// this method is sent over the network from an x86 machine to a MIPS one.
937 ///
938 /// If the results of this method are only manipulated by the same
939 /// architecture that produced them, then there is no portability concern.
940 ///
941 /// If the input isn't NaN, then there is no portability concern.
942 ///
943 /// If you don't care about signalingness (very likely), then there is no
944 /// portability concern.
945 ///
946 /// Note that this function is distinct from `as` casting, which attempts to
947 /// preserve the *numeric* value, and not the bitwise value.
948 ///
949 /// ```
950 /// #![feature(f128)]
951 /// # // FIXME(f16_f128): remove when `eqtf2` is available
952 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
953 ///
954 /// let v = f128::from_bits(0x40029000000000000000000000000000);
955 /// assert_eq!(v, 12.5);
956 /// # }
957 /// ```
958 #[inline]
959 #[must_use]
960 #[unstable(feature = "f128", issue = "116909")]
961 #[cfg_attr(not(bootstrap), allow(unnecessary_transmutes))]
962 pub const fn from_bits(v: u128) -> Self {
963 // It turns out the safety issues with sNaN were overblown! Hooray!
964 // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
965 unsafe { mem::transmute(v) }
966 }
967
968 /// Returns the memory representation of this floating point number as a byte array in
969 /// big-endian (network) byte order.
970 ///
971 /// See [`from_bits`](Self::from_bits) for some discussion of the
972 /// portability of this operation (there are almost no issues).
973 ///
974 /// # Examples
975 ///
976 /// ```
977 /// #![feature(f128)]
978 ///
979 /// let bytes = 12.5f128.to_be_bytes();
980 /// assert_eq!(
981 /// bytes,
982 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
983 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
984 /// );
985 /// ```
986 #[inline]
987 #[unstable(feature = "f128", issue = "116909")]
988 #[must_use = "this returns the result of the operation, without modifying the original"]
989 pub const fn to_be_bytes(self) -> [u8; 16] {
990 self.to_bits().to_be_bytes()
991 }
992
993 /// Returns the memory representation of this floating point number as a byte array in
994 /// little-endian byte order.
995 ///
996 /// See [`from_bits`](Self::from_bits) for some discussion of the
997 /// portability of this operation (there are almost no issues).
998 ///
999 /// # Examples
1000 ///
1001 /// ```
1002 /// #![feature(f128)]
1003 ///
1004 /// let bytes = 12.5f128.to_le_bytes();
1005 /// assert_eq!(
1006 /// bytes,
1007 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1008 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1009 /// );
1010 /// ```
1011 #[inline]
1012 #[unstable(feature = "f128", issue = "116909")]
1013 #[must_use = "this returns the result of the operation, without modifying the original"]
1014 pub const fn to_le_bytes(self) -> [u8; 16] {
1015 self.to_bits().to_le_bytes()
1016 }
1017
1018 /// Returns the memory representation of this floating point number as a byte array in
1019 /// native byte order.
1020 ///
1021 /// As the target platform's native endianness is used, portable code
1022 /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1023 ///
1024 /// [`to_be_bytes`]: f128::to_be_bytes
1025 /// [`to_le_bytes`]: f128::to_le_bytes
1026 ///
1027 /// See [`from_bits`](Self::from_bits) for some discussion of the
1028 /// portability of this operation (there are almost no issues).
1029 ///
1030 /// # Examples
1031 ///
1032 /// ```
1033 /// #![feature(f128)]
1034 ///
1035 /// let bytes = 12.5f128.to_ne_bytes();
1036 /// assert_eq!(
1037 /// bytes,
1038 /// if cfg!(target_endian = "big") {
1039 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1040 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1041 /// } else {
1042 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1043 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1044 /// }
1045 /// );
1046 /// ```
1047 #[inline]
1048 #[unstable(feature = "f128", issue = "116909")]
1049 #[must_use = "this returns the result of the operation, without modifying the original"]
1050 pub const fn to_ne_bytes(self) -> [u8; 16] {
1051 self.to_bits().to_ne_bytes()
1052 }
1053
1054 /// Creates a floating point value from its representation as a byte array in big endian.
1055 ///
1056 /// See [`from_bits`](Self::from_bits) for some discussion of the
1057 /// portability of this operation (there are almost no issues).
1058 ///
1059 /// # Examples
1060 ///
1061 /// ```
1062 /// #![feature(f128)]
1063 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1064 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1065 ///
1066 /// let value = f128::from_be_bytes(
1067 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1068 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1069 /// );
1070 /// assert_eq!(value, 12.5);
1071 /// # }
1072 /// ```
1073 #[inline]
1074 #[must_use]
1075 #[unstable(feature = "f128", issue = "116909")]
1076 pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1077 Self::from_bits(u128::from_be_bytes(bytes))
1078 }
1079
1080 /// Creates a floating point value from its representation as a byte array in little endian.
1081 ///
1082 /// See [`from_bits`](Self::from_bits) for some discussion of the
1083 /// portability of this operation (there are almost no issues).
1084 ///
1085 /// # Examples
1086 ///
1087 /// ```
1088 /// #![feature(f128)]
1089 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1090 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1091 ///
1092 /// let value = f128::from_le_bytes(
1093 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1094 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1095 /// );
1096 /// assert_eq!(value, 12.5);
1097 /// # }
1098 /// ```
1099 #[inline]
1100 #[must_use]
1101 #[unstable(feature = "f128", issue = "116909")]
1102 pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1103 Self::from_bits(u128::from_le_bytes(bytes))
1104 }
1105
1106 /// Creates a floating point value from its representation as a byte array in native endian.
1107 ///
1108 /// As the target platform's native endianness is used, portable code
1109 /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1110 /// appropriate instead.
1111 ///
1112 /// [`from_be_bytes`]: f128::from_be_bytes
1113 /// [`from_le_bytes`]: f128::from_le_bytes
1114 ///
1115 /// See [`from_bits`](Self::from_bits) for some discussion of the
1116 /// portability of this operation (there are almost no issues).
1117 ///
1118 /// # Examples
1119 ///
1120 /// ```
1121 /// #![feature(f128)]
1122 /// # // FIXME(f16_f128): remove when `eqtf2` is available
1123 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1124 ///
1125 /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1126 /// [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1127 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1128 /// } else {
1129 /// [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1130 /// 0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1131 /// });
1132 /// assert_eq!(value, 12.5);
1133 /// # }
1134 /// ```
1135 #[inline]
1136 #[must_use]
1137 #[unstable(feature = "f128", issue = "116909")]
1138 pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1139 Self::from_bits(u128::from_ne_bytes(bytes))
1140 }
1141
1142 /// Returns the ordering between `self` and `other`.
1143 ///
1144 /// Unlike the standard partial comparison between floating point numbers,
1145 /// this comparison always produces an ordering in accordance to
1146 /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1147 /// floating point standard. The values are ordered in the following sequence:
1148 ///
1149 /// - negative quiet NaN
1150 /// - negative signaling NaN
1151 /// - negative infinity
1152 /// - negative numbers
1153 /// - negative subnormal numbers
1154 /// - negative zero
1155 /// - positive zero
1156 /// - positive subnormal numbers
1157 /// - positive numbers
1158 /// - positive infinity
1159 /// - positive signaling NaN
1160 /// - positive quiet NaN.
1161 ///
1162 /// The ordering established by this function does not always agree with the
1163 /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1164 /// they consider negative and positive zero equal, while `total_cmp`
1165 /// doesn't.
1166 ///
1167 /// The interpretation of the signaling NaN bit follows the definition in
1168 /// the IEEE 754 standard, which may not match the interpretation by some of
1169 /// the older, non-conformant (e.g. MIPS) hardware implementations.
1170 ///
1171 /// # Example
1172 ///
1173 /// ```
1174 /// #![feature(f128)]
1175 ///
1176 /// struct GoodBoy {
1177 /// name: &'static str,
1178 /// weight: f128,
1179 /// }
1180 ///
1181 /// let mut bois = vec![
1182 /// GoodBoy { name: "Pucci", weight: 0.1 },
1183 /// GoodBoy { name: "Woofer", weight: 99.0 },
1184 /// GoodBoy { name: "Yapper", weight: 10.0 },
1185 /// GoodBoy { name: "Chonk", weight: f128::INFINITY },
1186 /// GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1187 /// GoodBoy { name: "Floaty", weight: -5.0 },
1188 /// ];
1189 ///
1190 /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1191 ///
1192 /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1193 /// if f128::NAN.is_sign_negative() {
1194 /// bois.into_iter().map(|b| b.weight)
1195 /// .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1196 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1197 /// } else {
1198 /// bois.into_iter().map(|b| b.weight)
1199 /// .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1200 /// .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1201 /// }
1202 /// ```
1203 #[inline]
1204 #[must_use]
1205 #[unstable(feature = "f128", issue = "116909")]
1206 pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1207 let mut left = self.to_bits() as i128;
1208 let mut right = other.to_bits() as i128;
1209
1210 // In case of negatives, flip all the bits except the sign
1211 // to achieve a similar layout as two's complement integers
1212 //
1213 // Why does this work? IEEE 754 floats consist of three fields:
1214 // Sign bit, exponent and mantissa. The set of exponent and mantissa
1215 // fields as a whole have the property that their bitwise order is
1216 // equal to the numeric magnitude where the magnitude is defined.
1217 // The magnitude is not normally defined on NaN values, but
1218 // IEEE 754 totalOrder defines the NaN values also to follow the
1219 // bitwise order. This leads to order explained in the doc comment.
1220 // However, the representation of magnitude is the same for negative
1221 // and positive numbers – only the sign bit is different.
1222 // To easily compare the floats as signed integers, we need to
1223 // flip the exponent and mantissa bits in case of negative numbers.
1224 // We effectively convert the numbers to "two's complement" form.
1225 //
1226 // To do the flipping, we construct a mask and XOR against it.
1227 // We branchlessly calculate an "all-ones except for the sign bit"
1228 // mask from negative-signed values: right shifting sign-extends
1229 // the integer, so we "fill" the mask with sign bits, and then
1230 // convert to unsigned to push one more zero bit.
1231 // On positive values, the mask is all zeros, so it's a no-op.
1232 left ^= (((left >> 127) as u128) >> 1) as i128;
1233 right ^= (((right >> 127) as u128) >> 1) as i128;
1234
1235 left.cmp(&right)
1236 }
1237
1238 /// Restrict a value to a certain interval unless it is NaN.
1239 ///
1240 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1241 /// less than `min`. Otherwise this returns `self`.
1242 ///
1243 /// Note that this function returns NaN if the initial value was NaN as
1244 /// well.
1245 ///
1246 /// # Panics
1247 ///
1248 /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1249 ///
1250 /// # Examples
1251 ///
1252 /// ```
1253 /// #![feature(f128)]
1254 /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1255 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1256 ///
1257 /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1258 /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1259 /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1260 /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1261 /// # }
1262 /// ```
1263 #[inline]
1264 #[unstable(feature = "f128", issue = "116909")]
1265 #[must_use = "method returns a new number and does not mutate the original value"]
1266 pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1267 const_assert!(
1268 min <= max,
1269 "min > max, or either was NaN",
1270 "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1271 min: f128,
1272 max: f128,
1273 );
1274
1275 if self < min {
1276 self = min;
1277 }
1278 if self > max {
1279 self = max;
1280 }
1281 self
1282 }
1283
1284 /// Computes the absolute value of `self`.
1285 ///
1286 /// This function always returns the precise result.
1287 ///
1288 /// # Examples
1289 ///
1290 /// ```
1291 /// #![feature(f128)]
1292 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1293 ///
1294 /// let x = 3.5_f128;
1295 /// let y = -3.5_f128;
1296 ///
1297 /// assert_eq!(x.abs(), x);
1298 /// assert_eq!(y.abs(), -y);
1299 ///
1300 /// assert!(f128::NAN.abs().is_nan());
1301 /// # }
1302 /// ```
1303 #[inline]
1304 #[unstable(feature = "f128", issue = "116909")]
1305 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1306 #[must_use = "method returns a new number and does not mutate the original value"]
1307 pub const fn abs(self) -> Self {
1308 // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1309 // We don't do this now because LLVM has lowering bugs for f128 math.
1310 Self::from_bits(self.to_bits() & !(1 << 127))
1311 }
1312
1313 /// Returns a number that represents the sign of `self`.
1314 ///
1315 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1316 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1317 /// - NaN if the number is NaN
1318 ///
1319 /// # Examples
1320 ///
1321 /// ```
1322 /// #![feature(f128)]
1323 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1324 ///
1325 /// let f = 3.5_f128;
1326 ///
1327 /// assert_eq!(f.signum(), 1.0);
1328 /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1329 ///
1330 /// assert!(f128::NAN.signum().is_nan());
1331 /// # }
1332 /// ```
1333 #[inline]
1334 #[unstable(feature = "f128", issue = "116909")]
1335 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1336 #[must_use = "method returns a new number and does not mutate the original value"]
1337 pub const fn signum(self) -> f128 {
1338 if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1339 }
1340
1341 /// Returns a number composed of the magnitude of `self` and the sign of
1342 /// `sign`.
1343 ///
1344 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1345 /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1346 /// returned.
1347 ///
1348 /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1349 /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1350 /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1351 /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1352 /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1353 /// info.
1354 ///
1355 /// # Examples
1356 ///
1357 /// ```
1358 /// #![feature(f128)]
1359 /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1360 ///
1361 /// let f = 3.5_f128;
1362 ///
1363 /// assert_eq!(f.copysign(0.42), 3.5_f128);
1364 /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1365 /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1366 /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1367 ///
1368 /// assert!(f128::NAN.copysign(1.0).is_nan());
1369 /// # }
1370 /// ```
1371 #[inline]
1372 #[unstable(feature = "f128", issue = "116909")]
1373 #[rustc_const_unstable(feature = "f128", issue = "116909")]
1374 #[must_use = "method returns a new number and does not mutate the original value"]
1375 pub const fn copysign(self, sign: f128) -> f128 {
1376 // SAFETY: this is actually a safe intrinsic
1377 unsafe { intrinsics::copysignf128(self, sign) }
1378 }
1379
1380 /// Float addition that allows optimizations based on algebraic rules.
1381 ///
1382 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1383 #[must_use = "method returns a new number and does not mutate the original value"]
1384 #[unstable(feature = "float_algebraic", issue = "136469")]
1385 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1386 #[inline]
1387 pub const fn algebraic_add(self, rhs: f128) -> f128 {
1388 intrinsics::fadd_algebraic(self, rhs)
1389 }
1390
1391 /// Float subtraction that allows optimizations based on algebraic rules.
1392 ///
1393 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1394 #[must_use = "method returns a new number and does not mutate the original value"]
1395 #[unstable(feature = "float_algebraic", issue = "136469")]
1396 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1397 #[inline]
1398 pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1399 intrinsics::fsub_algebraic(self, rhs)
1400 }
1401
1402 /// Float multiplication that allows optimizations based on algebraic rules.
1403 ///
1404 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1405 #[must_use = "method returns a new number and does not mutate the original value"]
1406 #[unstable(feature = "float_algebraic", issue = "136469")]
1407 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1408 #[inline]
1409 pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1410 intrinsics::fmul_algebraic(self, rhs)
1411 }
1412
1413 /// Float division that allows optimizations based on algebraic rules.
1414 ///
1415 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1416 #[must_use = "method returns a new number and does not mutate the original value"]
1417 #[unstable(feature = "float_algebraic", issue = "136469")]
1418 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1419 #[inline]
1420 pub const fn algebraic_div(self, rhs: f128) -> f128 {
1421 intrinsics::fdiv_algebraic(self, rhs)
1422 }
1423
1424 /// Float remainder that allows optimizations based on algebraic rules.
1425 ///
1426 /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1427 #[must_use = "method returns a new number and does not mutate the original value"]
1428 #[unstable(feature = "float_algebraic", issue = "136469")]
1429 #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1430 #[inline]
1431 pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1432 intrinsics::frem_algebraic(self, rhs)
1433 }
1434}