core/intrinsics/mod.rs
1//! Compiler intrinsics.
2//!
3//! The corresponding definitions are in <https://github.com/rust-lang/rust/blob/master/compiler/rustc_codegen_llvm/src/intrinsic.rs>.
4//! The corresponding const implementations are in <https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/intrinsics.rs>.
5//!
6//! # Const intrinsics
7//!
8//! In order to make an intrinsic unstable usable at compile-time, copy the implementation from
9//! <https://github.com/rust-lang/miri/blob/master/src/intrinsics> to
10//! <https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/intrinsics.rs>
11//! and make the intrinsic declaration below a `const fn`. This should be done in coordination with
12//! wg-const-eval.
13//!
14//! If an intrinsic is supposed to be used from a `const fn` with a `rustc_const_stable` attribute,
15//! `#[rustc_intrinsic_const_stable_indirect]` needs to be added to the intrinsic. Such a change requires
16//! T-lang approval, because it may bake a feature into the language that cannot be replicated in
17//! user code without compiler support.
18//!
19//! # Volatiles
20//!
21//! The volatile intrinsics provide operations intended to act on I/O
22//! memory, which are guaranteed to not be reordered by the compiler
23//! across other volatile intrinsics. See the LLVM documentation on
24//! [[volatile]].
25//!
26//! [volatile]: https://llvm.org/docs/LangRef.html#volatile-memory-accesses
27//!
28//! # Atomics
29//!
30//! The atomic intrinsics provide common atomic operations on machine
31//! words, with multiple possible memory orderings. They obey the same
32//! semantics as C++11. See the LLVM documentation on [[atomics]].
33//!
34//! [atomics]: https://llvm.org/docs/Atomics.html
35//!
36//! A quick refresher on memory ordering:
37//!
38//! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
39//! take place after the barrier.
40//! * Release - a barrier for releasing a lock. Preceding reads and writes
41//! take place before the barrier.
42//! * Sequentially consistent - sequentially consistent operations are
43//! guaranteed to happen in order. This is the standard mode for working
44//! with atomic types and is equivalent to Java's `volatile`.
45//!
46//! # Unwinding
47//!
48//! Rust intrinsics may, in general, unwind. If an intrinsic can never unwind, add the
49//! `#[rustc_nounwind]` attribute so that the compiler can make use of this fact.
50//!
51//! However, even for intrinsics that may unwind, rustc assumes that a Rust intrinsics will never
52//! initiate a foreign (non-Rust) unwind, and thus for panic=abort we can always assume that these
53//! intrinsics cannot unwind.
54
55#![unstable(
56 feature = "core_intrinsics",
57 reason = "intrinsics are unlikely to ever be stabilized, instead \
58 they should be used through stabilized interfaces \
59 in the rest of the standard library",
60 issue = "none"
61)]
62#![allow(missing_docs)]
63
64use crate::marker::{DiscriminantKind, Tuple};
65use crate::mem::SizedTypeProperties;
66use crate::{ptr, ub_checks};
67
68pub mod fallback;
69pub mod mir;
70pub mod simd;
71
72// These imports are used for simplifying intra-doc links
73#[allow(unused_imports)]
74#[cfg(all(target_has_atomic = "8", target_has_atomic = "32", target_has_atomic = "ptr"))]
75use crate::sync::atomic::{self, AtomicBool, AtomicI32, AtomicIsize, AtomicU32, Ordering};
76
77#[stable(feature = "drop_in_place", since = "1.8.0")]
78#[rustc_allowed_through_unstable_modules = "import this function via `std::ptr` instead"]
79#[deprecated(note = "no longer an intrinsic - use `ptr::drop_in_place` directly", since = "1.52.0")]
80#[inline]
81pub unsafe fn drop_in_place<T: ?Sized>(to_drop: *mut T) {
82 // SAFETY: see `ptr::drop_in_place`
83 unsafe { crate::ptr::drop_in_place(to_drop) }
84}
85
86// N.B., these intrinsics take raw pointers because they mutate aliased
87// memory, which is not valid for either `&` or `&mut`.
88
89/// Stores a value if the current value is the same as the `old` value.
90/// `T` must be an integer or pointer type.
91///
92/// The stabilized version of this intrinsic is available on the
93/// [`atomic`] types via the `compare_exchange` method by passing
94/// [`Ordering::Relaxed`] as both the success and failure parameters.
95/// For example, [`AtomicBool::compare_exchange`].
96#[rustc_intrinsic]
97#[rustc_nounwind]
98pub unsafe fn atomic_cxchg_relaxed_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
99/// Stores a value if the current value is the same as the `old` value.
100/// `T` must be an integer or pointer type.
101///
102/// The stabilized version of this intrinsic is available on the
103/// [`atomic`] types via the `compare_exchange` method by passing
104/// [`Ordering::Relaxed`] and [`Ordering::Acquire`] as the success and failure parameters.
105/// For example, [`AtomicBool::compare_exchange`].
106#[rustc_intrinsic]
107#[rustc_nounwind]
108pub unsafe fn atomic_cxchg_relaxed_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
109/// Stores a value if the current value is the same as the `old` value.
110/// `T` must be an integer or pointer type.
111///
112/// The stabilized version of this intrinsic is available on the
113/// [`atomic`] types via the `compare_exchange` method by passing
114/// [`Ordering::Relaxed`] and [`Ordering::SeqCst`] as the success and failure parameters.
115/// For example, [`AtomicBool::compare_exchange`].
116#[rustc_intrinsic]
117#[rustc_nounwind]
118pub unsafe fn atomic_cxchg_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
119/// Stores a value if the current value is the same as the `old` value.
120/// `T` must be an integer or pointer type.
121///
122/// The stabilized version of this intrinsic is available on the
123/// [`atomic`] types via the `compare_exchange` method by passing
124/// [`Ordering::Acquire`] and [`Ordering::Relaxed`] as the success and failure parameters.
125/// For example, [`AtomicBool::compare_exchange`].
126#[rustc_intrinsic]
127#[rustc_nounwind]
128pub unsafe fn atomic_cxchg_acquire_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
129/// Stores a value if the current value is the same as the `old` value.
130/// `T` must be an integer or pointer type.
131///
132/// The stabilized version of this intrinsic is available on the
133/// [`atomic`] types via the `compare_exchange` method by passing
134/// [`Ordering::Acquire`] as both the success and failure parameters.
135/// For example, [`AtomicBool::compare_exchange`].
136#[rustc_intrinsic]
137#[rustc_nounwind]
138pub unsafe fn atomic_cxchg_acquire_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
139/// Stores a value if the current value is the same as the `old` value.
140/// `T` must be an integer or pointer type.
141///
142/// The stabilized version of this intrinsic is available on the
143/// [`atomic`] types via the `compare_exchange` method by passing
144/// [`Ordering::Acquire`] and [`Ordering::SeqCst`] as the success and failure parameters.
145/// For example, [`AtomicBool::compare_exchange`].
146#[rustc_intrinsic]
147#[rustc_nounwind]
148pub unsafe fn atomic_cxchg_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
149/// Stores a value if the current value is the same as the `old` value.
150/// `T` must be an integer or pointer type.
151///
152/// The stabilized version of this intrinsic is available on the
153/// [`atomic`] types via the `compare_exchange` method by passing
154/// [`Ordering::Release`] and [`Ordering::Relaxed`] as the success and failure parameters.
155/// For example, [`AtomicBool::compare_exchange`].
156#[rustc_intrinsic]
157#[rustc_nounwind]
158pub unsafe fn atomic_cxchg_release_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
159/// Stores a value if the current value is the same as the `old` value.
160/// `T` must be an integer or pointer type.
161///
162/// The stabilized version of this intrinsic is available on the
163/// [`atomic`] types via the `compare_exchange` method by passing
164/// [`Ordering::Release`] and [`Ordering::Acquire`] as the success and failure parameters.
165/// For example, [`AtomicBool::compare_exchange`].
166#[rustc_intrinsic]
167#[rustc_nounwind]
168pub unsafe fn atomic_cxchg_release_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
169/// Stores a value if the current value is the same as the `old` value.
170/// `T` must be an integer or pointer type.
171///
172/// The stabilized version of this intrinsic is available on the
173/// [`atomic`] types via the `compare_exchange` method by passing
174/// [`Ordering::Release`] and [`Ordering::SeqCst`] as the success and failure parameters.
175/// For example, [`AtomicBool::compare_exchange`].
176#[rustc_intrinsic]
177#[rustc_nounwind]
178pub unsafe fn atomic_cxchg_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
179/// Stores a value if the current value is the same as the `old` value.
180/// `T` must be an integer or pointer type.
181///
182/// The stabilized version of this intrinsic is available on the
183/// [`atomic`] types via the `compare_exchange` method by passing
184/// [`Ordering::AcqRel`] and [`Ordering::Relaxed`] as the success and failure parameters.
185/// For example, [`AtomicBool::compare_exchange`].
186#[rustc_intrinsic]
187#[rustc_nounwind]
188pub unsafe fn atomic_cxchg_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
189/// Stores a value if the current value is the same as the `old` value.
190/// `T` must be an integer or pointer type.
191///
192/// The stabilized version of this intrinsic is available on the
193/// [`atomic`] types via the `compare_exchange` method by passing
194/// [`Ordering::AcqRel`] and [`Ordering::Acquire`] as the success and failure parameters.
195/// For example, [`AtomicBool::compare_exchange`].
196#[rustc_intrinsic]
197#[rustc_nounwind]
198pub unsafe fn atomic_cxchg_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
199/// Stores a value if the current value is the same as the `old` value.
200/// `T` must be an integer or pointer type.
201///
202/// The stabilized version of this intrinsic is available on the
203/// [`atomic`] types via the `compare_exchange` method by passing
204/// [`Ordering::AcqRel`] and [`Ordering::SeqCst`] as the success and failure parameters.
205/// For example, [`AtomicBool::compare_exchange`].
206#[rustc_intrinsic]
207#[rustc_nounwind]
208pub unsafe fn atomic_cxchg_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
209/// Stores a value if the current value is the same as the `old` value.
210/// `T` must be an integer or pointer type.
211///
212/// The stabilized version of this intrinsic is available on the
213/// [`atomic`] types via the `compare_exchange` method by passing
214/// [`Ordering::SeqCst`] and [`Ordering::Relaxed`] as the success and failure parameters.
215/// For example, [`AtomicBool::compare_exchange`].
216#[rustc_intrinsic]
217#[rustc_nounwind]
218pub unsafe fn atomic_cxchg_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
219/// Stores a value if the current value is the same as the `old` value.
220/// `T` must be an integer or pointer type.
221///
222/// The stabilized version of this intrinsic is available on the
223/// [`atomic`] types via the `compare_exchange` method by passing
224/// [`Ordering::SeqCst`] and [`Ordering::Acquire`] as the success and failure parameters.
225/// For example, [`AtomicBool::compare_exchange`].
226#[rustc_intrinsic]
227#[rustc_nounwind]
228pub unsafe fn atomic_cxchg_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
229/// Stores a value if the current value is the same as the `old` value.
230/// `T` must be an integer or pointer type.
231///
232/// The stabilized version of this intrinsic is available on the
233/// [`atomic`] types via the `compare_exchange` method by passing
234/// [`Ordering::SeqCst`] as both the success and failure parameters.
235/// For example, [`AtomicBool::compare_exchange`].
236#[rustc_intrinsic]
237#[rustc_nounwind]
238pub unsafe fn atomic_cxchg_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
239
240/// Stores a value if the current value is the same as the `old` value.
241/// `T` must be an integer or pointer type.
242///
243/// The stabilized version of this intrinsic is available on the
244/// [`atomic`] types via the `compare_exchange_weak` method by passing
245/// [`Ordering::Relaxed`] as both the success and failure parameters.
246/// For example, [`AtomicBool::compare_exchange_weak`].
247#[rustc_intrinsic]
248#[rustc_nounwind]
249pub unsafe fn atomic_cxchgweak_relaxed_relaxed<T: Copy>(
250 _dst: *mut T,
251 _old: T,
252 _src: T,
253) -> (T, bool);
254/// Stores a value if the current value is the same as the `old` value.
255/// `T` must be an integer or pointer type.
256///
257/// The stabilized version of this intrinsic is available on the
258/// [`atomic`] types via the `compare_exchange_weak` method by passing
259/// [`Ordering::Relaxed`] and [`Ordering::Acquire`] as the success and failure parameters.
260/// For example, [`AtomicBool::compare_exchange_weak`].
261#[rustc_intrinsic]
262#[rustc_nounwind]
263pub unsafe fn atomic_cxchgweak_relaxed_acquire<T: Copy>(
264 _dst: *mut T,
265 _old: T,
266 _src: T,
267) -> (T, bool);
268/// Stores a value if the current value is the same as the `old` value.
269/// `T` must be an integer or pointer type.
270///
271/// The stabilized version of this intrinsic is available on the
272/// [`atomic`] types via the `compare_exchange_weak` method by passing
273/// [`Ordering::Relaxed`] and [`Ordering::SeqCst`] as the success and failure parameters.
274/// For example, [`AtomicBool::compare_exchange_weak`].
275#[rustc_intrinsic]
276#[rustc_nounwind]
277pub unsafe fn atomic_cxchgweak_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
278/// Stores a value if the current value is the same as the `old` value.
279/// `T` must be an integer or pointer type.
280///
281/// The stabilized version of this intrinsic is available on the
282/// [`atomic`] types via the `compare_exchange_weak` method by passing
283/// [`Ordering::Acquire`] and [`Ordering::Relaxed`] as the success and failure parameters.
284/// For example, [`AtomicBool::compare_exchange_weak`].
285#[rustc_intrinsic]
286#[rustc_nounwind]
287pub unsafe fn atomic_cxchgweak_acquire_relaxed<T: Copy>(
288 _dst: *mut T,
289 _old: T,
290 _src: T,
291) -> (T, bool);
292/// Stores a value if the current value is the same as the `old` value.
293/// `T` must be an integer or pointer type.
294///
295/// The stabilized version of this intrinsic is available on the
296/// [`atomic`] types via the `compare_exchange_weak` method by passing
297/// [`Ordering::Acquire`] as both the success and failure parameters.
298/// For example, [`AtomicBool::compare_exchange_weak`].
299#[rustc_intrinsic]
300#[rustc_nounwind]
301pub unsafe fn atomic_cxchgweak_acquire_acquire<T: Copy>(
302 _dst: *mut T,
303 _old: T,
304 _src: T,
305) -> (T, bool);
306/// Stores a value if the current value is the same as the `old` value.
307/// `T` must be an integer or pointer type.
308///
309/// The stabilized version of this intrinsic is available on the
310/// [`atomic`] types via the `compare_exchange_weak` method by passing
311/// [`Ordering::Acquire`] and [`Ordering::SeqCst`] as the success and failure parameters.
312/// For example, [`AtomicBool::compare_exchange_weak`].
313#[rustc_intrinsic]
314#[rustc_nounwind]
315pub unsafe fn atomic_cxchgweak_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
316/// Stores a value if the current value is the same as the `old` value.
317/// `T` must be an integer or pointer type.
318///
319/// The stabilized version of this intrinsic is available on the
320/// [`atomic`] types via the `compare_exchange_weak` method by passing
321/// [`Ordering::Release`] and [`Ordering::Relaxed`] as the success and failure parameters.
322/// For example, [`AtomicBool::compare_exchange_weak`].
323#[rustc_intrinsic]
324#[rustc_nounwind]
325pub unsafe fn atomic_cxchgweak_release_relaxed<T: Copy>(
326 _dst: *mut T,
327 _old: T,
328 _src: T,
329) -> (T, bool);
330/// Stores a value if the current value is the same as the `old` value.
331/// `T` must be an integer or pointer type.
332///
333/// The stabilized version of this intrinsic is available on the
334/// [`atomic`] types via the `compare_exchange_weak` method by passing
335/// [`Ordering::Release`] and [`Ordering::Acquire`] as the success and failure parameters.
336/// For example, [`AtomicBool::compare_exchange_weak`].
337#[rustc_intrinsic]
338#[rustc_nounwind]
339pub unsafe fn atomic_cxchgweak_release_acquire<T: Copy>(
340 _dst: *mut T,
341 _old: T,
342 _src: T,
343) -> (T, bool);
344/// Stores a value if the current value is the same as the `old` value.
345/// `T` must be an integer or pointer type.
346///
347/// The stabilized version of this intrinsic is available on the
348/// [`atomic`] types via the `compare_exchange_weak` method by passing
349/// [`Ordering::Release`] and [`Ordering::SeqCst`] as the success and failure parameters.
350/// For example, [`AtomicBool::compare_exchange_weak`].
351#[rustc_intrinsic]
352#[rustc_nounwind]
353pub unsafe fn atomic_cxchgweak_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
354/// Stores a value if the current value is the same as the `old` value.
355/// `T` must be an integer or pointer type.
356///
357/// The stabilized version of this intrinsic is available on the
358/// [`atomic`] types via the `compare_exchange_weak` method by passing
359/// [`Ordering::AcqRel`] and [`Ordering::Relaxed`] as the success and failure parameters.
360/// For example, [`AtomicBool::compare_exchange_weak`].
361#[rustc_intrinsic]
362#[rustc_nounwind]
363pub unsafe fn atomic_cxchgweak_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
364/// Stores a value if the current value is the same as the `old` value.
365/// `T` must be an integer or pointer type.
366///
367/// The stabilized version of this intrinsic is available on the
368/// [`atomic`] types via the `compare_exchange_weak` method by passing
369/// [`Ordering::AcqRel`] and [`Ordering::Acquire`] as the success and failure parameters.
370/// For example, [`AtomicBool::compare_exchange_weak`].
371#[rustc_intrinsic]
372#[rustc_nounwind]
373pub unsafe fn atomic_cxchgweak_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
374/// Stores a value if the current value is the same as the `old` value.
375/// `T` must be an integer or pointer type.
376///
377/// The stabilized version of this intrinsic is available on the
378/// [`atomic`] types via the `compare_exchange_weak` method by passing
379/// [`Ordering::AcqRel`] and [`Ordering::SeqCst`] as the success and failure parameters.
380/// For example, [`AtomicBool::compare_exchange_weak`].
381#[rustc_intrinsic]
382#[rustc_nounwind]
383pub unsafe fn atomic_cxchgweak_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
384/// Stores a value if the current value is the same as the `old` value.
385/// `T` must be an integer or pointer type.
386///
387/// The stabilized version of this intrinsic is available on the
388/// [`atomic`] types via the `compare_exchange_weak` method by passing
389/// [`Ordering::SeqCst`] and [`Ordering::Relaxed`] as the success and failure parameters.
390/// For example, [`AtomicBool::compare_exchange_weak`].
391#[rustc_intrinsic]
392#[rustc_nounwind]
393pub unsafe fn atomic_cxchgweak_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
394/// Stores a value if the current value is the same as the `old` value.
395/// `T` must be an integer or pointer type.
396///
397/// The stabilized version of this intrinsic is available on the
398/// [`atomic`] types via the `compare_exchange_weak` method by passing
399/// [`Ordering::SeqCst`] and [`Ordering::Acquire`] as the success and failure parameters.
400/// For example, [`AtomicBool::compare_exchange_weak`].
401#[rustc_intrinsic]
402#[rustc_nounwind]
403pub unsafe fn atomic_cxchgweak_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
404/// Stores a value if the current value is the same as the `old` value.
405/// `T` must be an integer or pointer type.
406///
407/// The stabilized version of this intrinsic is available on the
408/// [`atomic`] types via the `compare_exchange_weak` method by passing
409/// [`Ordering::SeqCst`] as both the success and failure parameters.
410/// For example, [`AtomicBool::compare_exchange_weak`].
411#[rustc_intrinsic]
412#[rustc_nounwind]
413pub unsafe fn atomic_cxchgweak_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
414
415/// Loads the current value of the pointer.
416/// `T` must be an integer or pointer type.
417///
418/// The stabilized version of this intrinsic is available on the
419/// [`atomic`] types via the `load` method by passing
420/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::load`].
421#[rustc_intrinsic]
422#[rustc_nounwind]
423pub unsafe fn atomic_load_seqcst<T: Copy>(src: *const T) -> T;
424/// Loads the current value of the pointer.
425/// `T` must be an integer or pointer type.
426///
427/// The stabilized version of this intrinsic is available on the
428/// [`atomic`] types via the `load` method by passing
429/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::load`].
430#[rustc_intrinsic]
431#[rustc_nounwind]
432pub unsafe fn atomic_load_acquire<T: Copy>(src: *const T) -> T;
433/// Loads the current value of the pointer.
434/// `T` must be an integer or pointer type.
435///
436/// The stabilized version of this intrinsic is available on the
437/// [`atomic`] types via the `load` method by passing
438/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::load`].
439#[rustc_intrinsic]
440#[rustc_nounwind]
441pub unsafe fn atomic_load_relaxed<T: Copy>(src: *const T) -> T;
442/// Do NOT use this intrinsic; "unordered" operations do not exist in our memory model!
443/// In terms of the Rust Abstract Machine, this operation is equivalent to `src.read()`,
444/// i.e., it performs a non-atomic read.
445#[rustc_intrinsic]
446#[rustc_nounwind]
447pub unsafe fn atomic_load_unordered<T: Copy>(src: *const T) -> T;
448
449/// Stores the value at the specified memory location.
450/// `T` must be an integer or pointer type.
451///
452/// The stabilized version of this intrinsic is available on the
453/// [`atomic`] types via the `store` method by passing
454/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::store`].
455#[rustc_intrinsic]
456#[rustc_nounwind]
457pub unsafe fn atomic_store_seqcst<T: Copy>(dst: *mut T, val: T);
458/// Stores the value at the specified memory location.
459/// `T` must be an integer or pointer type.
460///
461/// The stabilized version of this intrinsic is available on the
462/// [`atomic`] types via the `store` method by passing
463/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::store`].
464#[rustc_intrinsic]
465#[rustc_nounwind]
466pub unsafe fn atomic_store_release<T: Copy>(dst: *mut T, val: T);
467/// Stores the value at the specified memory location.
468/// `T` must be an integer or pointer type.
469///
470/// The stabilized version of this intrinsic is available on the
471/// [`atomic`] types via the `store` method by passing
472/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::store`].
473#[rustc_intrinsic]
474#[rustc_nounwind]
475pub unsafe fn atomic_store_relaxed<T: Copy>(dst: *mut T, val: T);
476/// Do NOT use this intrinsic; "unordered" operations do not exist in our memory model!
477/// In terms of the Rust Abstract Machine, this operation is equivalent to `dst.write(val)`,
478/// i.e., it performs a non-atomic write.
479#[rustc_intrinsic]
480#[rustc_nounwind]
481pub unsafe fn atomic_store_unordered<T: Copy>(dst: *mut T, val: T);
482
483/// Stores the value at the specified memory location, returning the old value.
484/// `T` must be an integer or pointer type.
485///
486/// The stabilized version of this intrinsic is available on the
487/// [`atomic`] types via the `swap` method by passing
488/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::swap`].
489#[rustc_intrinsic]
490#[rustc_nounwind]
491pub unsafe fn atomic_xchg_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
492/// Stores the value at the specified memory location, returning the old value.
493/// `T` must be an integer or pointer type.
494///
495/// The stabilized version of this intrinsic is available on the
496/// [`atomic`] types via the `swap` method by passing
497/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::swap`].
498#[rustc_intrinsic]
499#[rustc_nounwind]
500pub unsafe fn atomic_xchg_acquire<T: Copy>(dst: *mut T, src: T) -> T;
501/// Stores the value at the specified memory location, returning the old value.
502/// `T` must be an integer or pointer type.
503///
504/// The stabilized version of this intrinsic is available on the
505/// [`atomic`] types via the `swap` method by passing
506/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::swap`].
507#[rustc_intrinsic]
508#[rustc_nounwind]
509pub unsafe fn atomic_xchg_release<T: Copy>(dst: *mut T, src: T) -> T;
510/// Stores the value at the specified memory location, returning the old value.
511/// `T` must be an integer or pointer type.
512///
513/// The stabilized version of this intrinsic is available on the
514/// [`atomic`] types via the `swap` method by passing
515/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::swap`].
516#[rustc_intrinsic]
517#[rustc_nounwind]
518pub unsafe fn atomic_xchg_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
519/// Stores the value at the specified memory location, returning the old value.
520/// `T` must be an integer or pointer type.
521///
522/// The stabilized version of this intrinsic is available on the
523/// [`atomic`] types via the `swap` method by passing
524/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::swap`].
525#[rustc_intrinsic]
526#[rustc_nounwind]
527pub unsafe fn atomic_xchg_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
528
529/// Adds to the current value, returning the previous value.
530/// `T` must be an integer or pointer type.
531/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
532/// value stored at `*dst` will have the provenance of the old value stored there.
533///
534/// The stabilized version of this intrinsic is available on the
535/// [`atomic`] types via the `fetch_add` method by passing
536/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_add`].
537#[rustc_intrinsic]
538#[rustc_nounwind]
539pub unsafe fn atomic_xadd_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
540/// Adds to the current value, returning the previous value.
541/// `T` must be an integer or pointer type.
542/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
543/// value stored at `*dst` will have the provenance of the old value stored there.
544///
545/// The stabilized version of this intrinsic is available on the
546/// [`atomic`] types via the `fetch_add` method by passing
547/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_add`].
548#[rustc_intrinsic]
549#[rustc_nounwind]
550pub unsafe fn atomic_xadd_acquire<T: Copy>(dst: *mut T, src: T) -> T;
551/// Adds to the current value, returning the previous value.
552/// `T` must be an integer or pointer type.
553/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
554/// value stored at `*dst` will have the provenance of the old value stored there.
555///
556/// The stabilized version of this intrinsic is available on the
557/// [`atomic`] types via the `fetch_add` method by passing
558/// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_add`].
559#[rustc_intrinsic]
560#[rustc_nounwind]
561pub unsafe fn atomic_xadd_release<T: Copy>(dst: *mut T, src: T) -> T;
562/// Adds to the current value, returning the previous value.
563/// `T` must be an integer or pointer type.
564/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
565/// value stored at `*dst` will have the provenance of the old value stored there.
566///
567/// The stabilized version of this intrinsic is available on the
568/// [`atomic`] types via the `fetch_add` method by passing
569/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_add`].
570#[rustc_intrinsic]
571#[rustc_nounwind]
572pub unsafe fn atomic_xadd_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
573/// Adds to the current value, returning the previous value.
574/// `T` must be an integer or pointer type.
575/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
576/// value stored at `*dst` will have the provenance of the old value stored there.
577///
578/// The stabilized version of this intrinsic is available on the
579/// [`atomic`] types via the `fetch_add` method by passing
580/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_add`].
581#[rustc_intrinsic]
582#[rustc_nounwind]
583pub unsafe fn atomic_xadd_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
584
585/// Subtract from the current value, returning the previous value.
586/// `T` must be an integer or pointer type.
587/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
588/// value stored at `*dst` will have the provenance of the old value stored there.
589///
590/// The stabilized version of this intrinsic is available on the
591/// [`atomic`] types via the `fetch_sub` method by passing
592/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
593#[rustc_intrinsic]
594#[rustc_nounwind]
595pub unsafe fn atomic_xsub_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
596/// Subtract from the current value, returning the previous value.
597/// `T` must be an integer or pointer type.
598/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
599/// value stored at `*dst` will have the provenance of the old value stored there.
600///
601/// The stabilized version of this intrinsic is available on the
602/// [`atomic`] types via the `fetch_sub` method by passing
603/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
604#[rustc_intrinsic]
605#[rustc_nounwind]
606pub unsafe fn atomic_xsub_acquire<T: Copy>(dst: *mut T, src: T) -> T;
607/// Subtract from the current value, returning the previous value.
608/// `T` must be an integer or pointer type.
609/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
610/// value stored at `*dst` will have the provenance of the old value stored there.
611///
612/// The stabilized version of this intrinsic is available on the
613/// [`atomic`] types via the `fetch_sub` method by passing
614/// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
615#[rustc_intrinsic]
616#[rustc_nounwind]
617pub unsafe fn atomic_xsub_release<T: Copy>(dst: *mut T, src: T) -> T;
618/// Subtract from the current value, returning the previous value.
619/// `T` must be an integer or pointer type.
620/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
621/// value stored at `*dst` will have the provenance of the old value stored there.
622///
623/// The stabilized version of this intrinsic is available on the
624/// [`atomic`] types via the `fetch_sub` method by passing
625/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
626#[rustc_intrinsic]
627#[rustc_nounwind]
628pub unsafe fn atomic_xsub_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
629/// Subtract from the current value, returning the previous value.
630/// `T` must be an integer or pointer type.
631/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
632/// value stored at `*dst` will have the provenance of the old value stored there.
633///
634/// The stabilized version of this intrinsic is available on the
635/// [`atomic`] types via the `fetch_sub` method by passing
636/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
637#[rustc_intrinsic]
638#[rustc_nounwind]
639pub unsafe fn atomic_xsub_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
640
641/// Bitwise and with the current value, returning the previous value.
642/// `T` must be an integer or pointer type.
643/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
644/// value stored at `*dst` will have the provenance of the old value stored there.
645///
646/// The stabilized version of this intrinsic is available on the
647/// [`atomic`] types via the `fetch_and` method by passing
648/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_and`].
649#[rustc_intrinsic]
650#[rustc_nounwind]
651pub unsafe fn atomic_and_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
652/// Bitwise and with the current value, returning the previous value.
653/// `T` must be an integer or pointer type.
654/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
655/// value stored at `*dst` will have the provenance of the old value stored there.
656///
657/// The stabilized version of this intrinsic is available on the
658/// [`atomic`] types via the `fetch_and` method by passing
659/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_and`].
660#[rustc_intrinsic]
661#[rustc_nounwind]
662pub unsafe fn atomic_and_acquire<T: Copy>(dst: *mut T, src: T) -> T;
663/// Bitwise and with the current value, returning the previous value.
664/// `T` must be an integer or pointer type.
665/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
666/// value stored at `*dst` will have the provenance of the old value stored there.
667///
668/// The stabilized version of this intrinsic is available on the
669/// [`atomic`] types via the `fetch_and` method by passing
670/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_and`].
671#[rustc_intrinsic]
672#[rustc_nounwind]
673pub unsafe fn atomic_and_release<T: Copy>(dst: *mut T, src: T) -> T;
674/// Bitwise and with the current value, returning the previous value.
675/// `T` must be an integer or pointer type.
676/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
677/// value stored at `*dst` will have the provenance of the old value stored there.
678///
679/// The stabilized version of this intrinsic is available on the
680/// [`atomic`] types via the `fetch_and` method by passing
681/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_and`].
682#[rustc_intrinsic]
683#[rustc_nounwind]
684pub unsafe fn atomic_and_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
685/// Bitwise and with the current value, returning the previous value.
686/// `T` must be an integer or pointer type.
687/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
688/// value stored at `*dst` will have the provenance of the old value stored there.
689///
690/// The stabilized version of this intrinsic is available on the
691/// [`atomic`] types via the `fetch_and` method by passing
692/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_and`].
693#[rustc_intrinsic]
694#[rustc_nounwind]
695pub unsafe fn atomic_and_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
696
697/// Bitwise nand with the current value, returning the previous value.
698/// `T` must be an integer or pointer type.
699/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
700/// value stored at `*dst` will have the provenance of the old value stored there.
701///
702/// The stabilized version of this intrinsic is available on the
703/// [`AtomicBool`] type via the `fetch_nand` method by passing
704/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_nand`].
705#[rustc_intrinsic]
706#[rustc_nounwind]
707pub unsafe fn atomic_nand_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
708/// Bitwise nand with the current value, returning the previous value.
709/// `T` must be an integer or pointer type.
710/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
711/// value stored at `*dst` will have the provenance of the old value stored there.
712///
713/// The stabilized version of this intrinsic is available on the
714/// [`AtomicBool`] type via the `fetch_nand` method by passing
715/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_nand`].
716#[rustc_intrinsic]
717#[rustc_nounwind]
718pub unsafe fn atomic_nand_acquire<T: Copy>(dst: *mut T, src: T) -> T;
719/// Bitwise nand with the current value, returning the previous value.
720/// `T` must be an integer or pointer type.
721/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
722/// value stored at `*dst` will have the provenance of the old value stored there.
723///
724/// The stabilized version of this intrinsic is available on the
725/// [`AtomicBool`] type via the `fetch_nand` method by passing
726/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_nand`].
727#[rustc_intrinsic]
728#[rustc_nounwind]
729pub unsafe fn atomic_nand_release<T: Copy>(dst: *mut T, src: T) -> T;
730/// Bitwise nand with the current value, returning the previous value.
731/// `T` must be an integer or pointer type.
732/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
733/// value stored at `*dst` will have the provenance of the old value stored there.
734///
735/// The stabilized version of this intrinsic is available on the
736/// [`AtomicBool`] type via the `fetch_nand` method by passing
737/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_nand`].
738#[rustc_intrinsic]
739#[rustc_nounwind]
740pub unsafe fn atomic_nand_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
741/// Bitwise nand with the current value, returning the previous value.
742/// `T` must be an integer or pointer type.
743/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
744/// value stored at `*dst` will have the provenance of the old value stored there.
745///
746/// The stabilized version of this intrinsic is available on the
747/// [`AtomicBool`] type via the `fetch_nand` method by passing
748/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_nand`].
749#[rustc_intrinsic]
750#[rustc_nounwind]
751pub unsafe fn atomic_nand_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
752
753/// Bitwise or with the current value, returning the previous value.
754/// `T` must be an integer or pointer type.
755/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
756/// value stored at `*dst` will have the provenance of the old value stored there.
757///
758/// The stabilized version of this intrinsic is available on the
759/// [`atomic`] types via the `fetch_or` method by passing
760/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_or`].
761#[rustc_intrinsic]
762#[rustc_nounwind]
763pub unsafe fn atomic_or_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
764/// Bitwise or with the current value, returning the previous value.
765/// `T` must be an integer or pointer type.
766/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
767/// value stored at `*dst` will have the provenance of the old value stored there.
768///
769/// The stabilized version of this intrinsic is available on the
770/// [`atomic`] types via the `fetch_or` method by passing
771/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_or`].
772#[rustc_intrinsic]
773#[rustc_nounwind]
774pub unsafe fn atomic_or_acquire<T: Copy>(dst: *mut T, src: T) -> T;
775/// Bitwise or with the current value, returning the previous value.
776/// `T` must be an integer or pointer type.
777/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
778/// value stored at `*dst` will have the provenance of the old value stored there.
779///
780/// The stabilized version of this intrinsic is available on the
781/// [`atomic`] types via the `fetch_or` method by passing
782/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_or`].
783#[rustc_intrinsic]
784#[rustc_nounwind]
785pub unsafe fn atomic_or_release<T: Copy>(dst: *mut T, src: T) -> T;
786/// Bitwise or with the current value, returning the previous value.
787/// `T` must be an integer or pointer type.
788/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
789/// value stored at `*dst` will have the provenance of the old value stored there.
790///
791/// The stabilized version of this intrinsic is available on the
792/// [`atomic`] types via the `fetch_or` method by passing
793/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_or`].
794#[rustc_intrinsic]
795#[rustc_nounwind]
796pub unsafe fn atomic_or_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
797/// Bitwise or with the current value, returning the previous value.
798/// `T` must be an integer or pointer type.
799/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
800/// value stored at `*dst` will have the provenance of the old value stored there.
801///
802/// The stabilized version of this intrinsic is available on the
803/// [`atomic`] types via the `fetch_or` method by passing
804/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_or`].
805#[rustc_intrinsic]
806#[rustc_nounwind]
807pub unsafe fn atomic_or_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
808
809/// Bitwise xor with the current value, returning the previous value.
810/// `T` must be an integer or pointer type.
811/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
812/// value stored at `*dst` will have the provenance of the old value stored there.
813///
814/// The stabilized version of this intrinsic is available on the
815/// [`atomic`] types via the `fetch_xor` method by passing
816/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_xor`].
817#[rustc_intrinsic]
818#[rustc_nounwind]
819pub unsafe fn atomic_xor_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
820/// Bitwise xor with the current value, returning the previous value.
821/// `T` must be an integer or pointer type.
822/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
823/// value stored at `*dst` will have the provenance of the old value stored there.
824///
825/// The stabilized version of this intrinsic is available on the
826/// [`atomic`] types via the `fetch_xor` method by passing
827/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_xor`].
828#[rustc_intrinsic]
829#[rustc_nounwind]
830pub unsafe fn atomic_xor_acquire<T: Copy>(dst: *mut T, src: T) -> T;
831/// Bitwise xor with the current value, returning the previous value.
832/// `T` must be an integer or pointer type.
833/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
834/// value stored at `*dst` will have the provenance of the old value stored there.
835///
836/// The stabilized version of this intrinsic is available on the
837/// [`atomic`] types via the `fetch_xor` method by passing
838/// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_xor`].
839#[rustc_intrinsic]
840#[rustc_nounwind]
841pub unsafe fn atomic_xor_release<T: Copy>(dst: *mut T, src: T) -> T;
842/// Bitwise xor with the current value, returning the previous value.
843/// `T` must be an integer or pointer type.
844/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
845/// value stored at `*dst` will have the provenance of the old value stored there.
846///
847/// The stabilized version of this intrinsic is available on the
848/// [`atomic`] types via the `fetch_xor` method by passing
849/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_xor`].
850#[rustc_intrinsic]
851#[rustc_nounwind]
852pub unsafe fn atomic_xor_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
853/// Bitwise xor with the current value, returning the previous value.
854/// `T` must be an integer or pointer type.
855/// If `T` is a pointer type, the provenance of `src` is ignored: both the return value and the new
856/// value stored at `*dst` will have the provenance of the old value stored there.
857///
858/// The stabilized version of this intrinsic is available on the
859/// [`atomic`] types via the `fetch_xor` method by passing
860/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_xor`].
861#[rustc_intrinsic]
862#[rustc_nounwind]
863pub unsafe fn atomic_xor_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
864
865/// Maximum with the current value using a signed comparison.
866/// `T` must be a signed integer type.
867///
868/// The stabilized version of this intrinsic is available on the
869/// [`atomic`] signed integer types via the `fetch_max` method by passing
870/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_max`].
871#[rustc_intrinsic]
872#[rustc_nounwind]
873pub unsafe fn atomic_max_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
874/// Maximum with the current value using a signed comparison.
875/// `T` must be a signed integer type.
876///
877/// The stabilized version of this intrinsic is available on the
878/// [`atomic`] signed integer types via the `fetch_max` method by passing
879/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_max`].
880#[rustc_intrinsic]
881#[rustc_nounwind]
882pub unsafe fn atomic_max_acquire<T: Copy>(dst: *mut T, src: T) -> T;
883/// Maximum with the current value using a signed comparison.
884/// `T` must be a signed integer type.
885///
886/// The stabilized version of this intrinsic is available on the
887/// [`atomic`] signed integer types via the `fetch_max` method by passing
888/// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_max`].
889#[rustc_intrinsic]
890#[rustc_nounwind]
891pub unsafe fn atomic_max_release<T: Copy>(dst: *mut T, src: T) -> T;
892/// Maximum with the current value using a signed comparison.
893/// `T` must be a signed integer type.
894///
895/// The stabilized version of this intrinsic is available on the
896/// [`atomic`] signed integer types via the `fetch_max` method by passing
897/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_max`].
898#[rustc_intrinsic]
899#[rustc_nounwind]
900pub unsafe fn atomic_max_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
901/// Maximum with the current value using a signed comparison.
902/// `T` must be a signed integer type.
903///
904/// The stabilized version of this intrinsic is available on the
905/// [`atomic`] signed integer types via the `fetch_max` method by passing
906/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_max`].
907#[rustc_intrinsic]
908#[rustc_nounwind]
909pub unsafe fn atomic_max_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
910
911/// Minimum with the current value using a signed comparison.
912/// `T` must be a signed integer type.
913///
914/// The stabilized version of this intrinsic is available on the
915/// [`atomic`] signed integer types via the `fetch_min` method by passing
916/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_min`].
917#[rustc_intrinsic]
918#[rustc_nounwind]
919pub unsafe fn atomic_min_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
920/// Minimum with the current value using a signed comparison.
921/// `T` must be a signed integer type.
922///
923/// The stabilized version of this intrinsic is available on the
924/// [`atomic`] signed integer types via the `fetch_min` method by passing
925/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_min`].
926#[rustc_intrinsic]
927#[rustc_nounwind]
928pub unsafe fn atomic_min_acquire<T: Copy>(dst: *mut T, src: T) -> T;
929/// Minimum with the current value using a signed comparison.
930/// `T` must be a signed integer type.
931///
932/// The stabilized version of this intrinsic is available on the
933/// [`atomic`] signed integer types via the `fetch_min` method by passing
934/// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_min`].
935#[rustc_intrinsic]
936#[rustc_nounwind]
937pub unsafe fn atomic_min_release<T: Copy>(dst: *mut T, src: T) -> T;
938/// Minimum with the current value using a signed comparison.
939/// `T` must be a signed integer type.
940///
941/// The stabilized version of this intrinsic is available on the
942/// [`atomic`] signed integer types via the `fetch_min` method by passing
943/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_min`].
944#[rustc_intrinsic]
945#[rustc_nounwind]
946pub unsafe fn atomic_min_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
947/// Minimum with the current value using a signed comparison.
948/// `T` must be a signed integer type.
949///
950/// The stabilized version of this intrinsic is available on the
951/// [`atomic`] signed integer types via the `fetch_min` method by passing
952/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_min`].
953#[rustc_intrinsic]
954#[rustc_nounwind]
955pub unsafe fn atomic_min_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
956
957/// Minimum with the current value using an unsigned comparison.
958/// `T` must be an unsigned integer type.
959///
960/// The stabilized version of this intrinsic is available on the
961/// [`atomic`] unsigned integer types via the `fetch_min` method by passing
962/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_min`].
963#[rustc_intrinsic]
964#[rustc_nounwind]
965pub unsafe fn atomic_umin_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
966/// Minimum with the current value using an unsigned comparison.
967/// `T` must be an unsigned integer type.
968///
969/// The stabilized version of this intrinsic is available on the
970/// [`atomic`] unsigned integer types via the `fetch_min` method by passing
971/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_min`].
972#[rustc_intrinsic]
973#[rustc_nounwind]
974pub unsafe fn atomic_umin_acquire<T: Copy>(dst: *mut T, src: T) -> T;
975/// Minimum with the current value using an unsigned comparison.
976/// `T` must be an unsigned integer type.
977///
978/// The stabilized version of this intrinsic is available on the
979/// [`atomic`] unsigned integer types via the `fetch_min` method by passing
980/// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_min`].
981#[rustc_intrinsic]
982#[rustc_nounwind]
983pub unsafe fn atomic_umin_release<T: Copy>(dst: *mut T, src: T) -> T;
984/// Minimum with the current value using an unsigned comparison.
985/// `T` must be an unsigned integer type.
986///
987/// The stabilized version of this intrinsic is available on the
988/// [`atomic`] unsigned integer types via the `fetch_min` method by passing
989/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_min`].
990#[rustc_intrinsic]
991#[rustc_nounwind]
992pub unsafe fn atomic_umin_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
993/// Minimum with the current value using an unsigned comparison.
994/// `T` must be an unsigned integer type.
995///
996/// The stabilized version of this intrinsic is available on the
997/// [`atomic`] unsigned integer types via the `fetch_min` method by passing
998/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_min`].
999#[rustc_intrinsic]
1000#[rustc_nounwind]
1001pub unsafe fn atomic_umin_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
1002
1003/// Maximum with the current value using an unsigned comparison.
1004/// `T` must be an unsigned integer type.
1005///
1006/// The stabilized version of this intrinsic is available on the
1007/// [`atomic`] unsigned integer types via the `fetch_max` method by passing
1008/// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_max`].
1009#[rustc_intrinsic]
1010#[rustc_nounwind]
1011pub unsafe fn atomic_umax_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
1012/// Maximum with the current value using an unsigned comparison.
1013/// `T` must be an unsigned integer type.
1014///
1015/// The stabilized version of this intrinsic is available on the
1016/// [`atomic`] unsigned integer types via the `fetch_max` method by passing
1017/// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_max`].
1018#[rustc_intrinsic]
1019#[rustc_nounwind]
1020pub unsafe fn atomic_umax_acquire<T: Copy>(dst: *mut T, src: T) -> T;
1021/// Maximum with the current value using an unsigned comparison.
1022/// `T` must be an unsigned integer type.
1023///
1024/// The stabilized version of this intrinsic is available on the
1025/// [`atomic`] unsigned integer types via the `fetch_max` method by passing
1026/// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_max`].
1027#[rustc_intrinsic]
1028#[rustc_nounwind]
1029pub unsafe fn atomic_umax_release<T: Copy>(dst: *mut T, src: T) -> T;
1030/// Maximum with the current value using an unsigned comparison.
1031/// `T` must be an unsigned integer type.
1032///
1033/// The stabilized version of this intrinsic is available on the
1034/// [`atomic`] unsigned integer types via the `fetch_max` method by passing
1035/// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_max`].
1036#[rustc_intrinsic]
1037#[rustc_nounwind]
1038pub unsafe fn atomic_umax_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
1039/// Maximum with the current value using an unsigned comparison.
1040/// `T` must be an unsigned integer type.
1041///
1042/// The stabilized version of this intrinsic is available on the
1043/// [`atomic`] unsigned integer types via the `fetch_max` method by passing
1044/// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_max`].
1045#[rustc_intrinsic]
1046#[rustc_nounwind]
1047pub unsafe fn atomic_umax_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
1048
1049/// An atomic fence.
1050///
1051/// The stabilized version of this intrinsic is available in
1052/// [`atomic::fence`] by passing [`Ordering::SeqCst`]
1053/// as the `order`.
1054#[rustc_intrinsic]
1055#[rustc_nounwind]
1056pub unsafe fn atomic_fence_seqcst();
1057/// An atomic fence.
1058///
1059/// The stabilized version of this intrinsic is available in
1060/// [`atomic::fence`] by passing [`Ordering::Acquire`]
1061/// as the `order`.
1062#[rustc_intrinsic]
1063#[rustc_nounwind]
1064pub unsafe fn atomic_fence_acquire();
1065/// An atomic fence.
1066///
1067/// The stabilized version of this intrinsic is available in
1068/// [`atomic::fence`] by passing [`Ordering::Release`]
1069/// as the `order`.
1070#[rustc_intrinsic]
1071#[rustc_nounwind]
1072pub unsafe fn atomic_fence_release();
1073/// An atomic fence.
1074///
1075/// The stabilized version of this intrinsic is available in
1076/// [`atomic::fence`] by passing [`Ordering::AcqRel`]
1077/// as the `order`.
1078#[rustc_intrinsic]
1079#[rustc_nounwind]
1080pub unsafe fn atomic_fence_acqrel();
1081
1082/// A compiler-only memory barrier.
1083///
1084/// Memory accesses will never be reordered across this barrier by the
1085/// compiler, but no instructions will be emitted for it. This is
1086/// appropriate for operations on the same thread that may be preempted,
1087/// such as when interacting with signal handlers.
1088///
1089/// The stabilized version of this intrinsic is available in
1090/// [`atomic::compiler_fence`] by passing [`Ordering::SeqCst`]
1091/// as the `order`.
1092#[rustc_intrinsic]
1093#[rustc_nounwind]
1094pub unsafe fn atomic_singlethreadfence_seqcst();
1095/// A compiler-only memory barrier.
1096///
1097/// Memory accesses will never be reordered across this barrier by the
1098/// compiler, but no instructions will be emitted for it. This is
1099/// appropriate for operations on the same thread that may be preempted,
1100/// such as when interacting with signal handlers.
1101///
1102/// The stabilized version of this intrinsic is available in
1103/// [`atomic::compiler_fence`] by passing [`Ordering::Acquire`]
1104/// as the `order`.
1105#[rustc_intrinsic]
1106#[rustc_nounwind]
1107pub unsafe fn atomic_singlethreadfence_acquire();
1108/// A compiler-only memory barrier.
1109///
1110/// Memory accesses will never be reordered across this barrier by the
1111/// compiler, but no instructions will be emitted for it. This is
1112/// appropriate for operations on the same thread that may be preempted,
1113/// such as when interacting with signal handlers.
1114///
1115/// The stabilized version of this intrinsic is available in
1116/// [`atomic::compiler_fence`] by passing [`Ordering::Release`]
1117/// as the `order`.
1118#[rustc_intrinsic]
1119#[rustc_nounwind]
1120pub unsafe fn atomic_singlethreadfence_release();
1121/// A compiler-only memory barrier.
1122///
1123/// Memory accesses will never be reordered across this barrier by the
1124/// compiler, but no instructions will be emitted for it. This is
1125/// appropriate for operations on the same thread that may be preempted,
1126/// such as when interacting with signal handlers.
1127///
1128/// The stabilized version of this intrinsic is available in
1129/// [`atomic::compiler_fence`] by passing [`Ordering::AcqRel`]
1130/// as the `order`.
1131#[rustc_intrinsic]
1132#[rustc_nounwind]
1133pub unsafe fn atomic_singlethreadfence_acqrel();
1134
1135/// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
1136/// if supported; otherwise, it is a no-op.
1137/// Prefetches have no effect on the behavior of the program but can change its performance
1138/// characteristics.
1139///
1140/// The `locality` argument must be a constant integer and is a temporal locality specifier
1141/// ranging from (0) - no locality, to (3) - extremely local keep in cache.
1142///
1143/// This intrinsic does not have a stable counterpart.
1144#[rustc_intrinsic]
1145#[rustc_nounwind]
1146pub unsafe fn prefetch_read_data<T>(data: *const T, locality: i32);
1147/// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
1148/// if supported; otherwise, it is a no-op.
1149/// Prefetches have no effect on the behavior of the program but can change its performance
1150/// characteristics.
1151///
1152/// The `locality` argument must be a constant integer and is a temporal locality specifier
1153/// ranging from (0) - no locality, to (3) - extremely local keep in cache.
1154///
1155/// This intrinsic does not have a stable counterpart.
1156#[rustc_intrinsic]
1157#[rustc_nounwind]
1158pub unsafe fn prefetch_write_data<T>(data: *const T, locality: i32);
1159/// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
1160/// if supported; otherwise, it is a no-op.
1161/// Prefetches have no effect on the behavior of the program but can change its performance
1162/// characteristics.
1163///
1164/// The `locality` argument must be a constant integer and is a temporal locality specifier
1165/// ranging from (0) - no locality, to (3) - extremely local keep in cache.
1166///
1167/// This intrinsic does not have a stable counterpart.
1168#[rustc_intrinsic]
1169#[rustc_nounwind]
1170pub unsafe fn prefetch_read_instruction<T>(data: *const T, locality: i32);
1171/// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
1172/// if supported; otherwise, it is a no-op.
1173/// Prefetches have no effect on the behavior of the program but can change its performance
1174/// characteristics.
1175///
1176/// The `locality` argument must be a constant integer and is a temporal locality specifier
1177/// ranging from (0) - no locality, to (3) - extremely local keep in cache.
1178///
1179/// This intrinsic does not have a stable counterpart.
1180#[rustc_intrinsic]
1181#[rustc_nounwind]
1182pub unsafe fn prefetch_write_instruction<T>(data: *const T, locality: i32);
1183
1184/// Executes a breakpoint trap, for inspection by a debugger.
1185///
1186/// This intrinsic does not have a stable counterpart.
1187#[rustc_intrinsic]
1188#[rustc_nounwind]
1189pub fn breakpoint();
1190
1191/// Magic intrinsic that derives its meaning from attributes
1192/// attached to the function.
1193///
1194/// For example, dataflow uses this to inject static assertions so
1195/// that `rustc_peek(potentially_uninitialized)` would actually
1196/// double-check that dataflow did indeed compute that it is
1197/// uninitialized at that point in the control flow.
1198///
1199/// This intrinsic should not be used outside of the compiler.
1200#[rustc_nounwind]
1201#[rustc_intrinsic]
1202pub fn rustc_peek<T>(_: T) -> T;
1203
1204/// Aborts the execution of the process.
1205///
1206/// Note that, unlike most intrinsics, this is safe to call;
1207/// it does not require an `unsafe` block.
1208/// Therefore, implementations must not require the user to uphold
1209/// any safety invariants.
1210///
1211/// [`std::process::abort`](../../std/process/fn.abort.html) is to be preferred if possible,
1212/// as its behavior is more user-friendly and more stable.
1213///
1214/// The current implementation of `intrinsics::abort` is to invoke an invalid instruction,
1215/// on most platforms.
1216/// On Unix, the
1217/// process will probably terminate with a signal like `SIGABRT`, `SIGILL`, `SIGTRAP`, `SIGSEGV` or
1218/// `SIGBUS`. The precise behavior is not guaranteed and not stable.
1219#[rustc_nounwind]
1220#[rustc_intrinsic]
1221pub fn abort() -> !;
1222
1223/// Informs the optimizer that this point in the code is not reachable,
1224/// enabling further optimizations.
1225///
1226/// N.B., this is very different from the `unreachable!()` macro: Unlike the
1227/// macro, which panics when it is executed, it is *undefined behavior* to
1228/// reach code marked with this function.
1229///
1230/// The stabilized version of this intrinsic is [`core::hint::unreachable_unchecked`].
1231#[rustc_intrinsic_const_stable_indirect]
1232#[rustc_nounwind]
1233#[rustc_intrinsic]
1234pub const unsafe fn unreachable() -> !;
1235
1236/// Informs the optimizer that a condition is always true.
1237/// If the condition is false, the behavior is undefined.
1238///
1239/// No code is generated for this intrinsic, but the optimizer will try
1240/// to preserve it (and its condition) between passes, which may interfere
1241/// with optimization of surrounding code and reduce performance. It should
1242/// not be used if the invariant can be discovered by the optimizer on its
1243/// own, or if it does not enable any significant optimizations.
1244///
1245/// The stabilized version of this intrinsic is [`core::hint::assert_unchecked`].
1246#[rustc_intrinsic_const_stable_indirect]
1247#[rustc_nounwind]
1248#[unstable(feature = "core_intrinsics", issue = "none")]
1249#[rustc_intrinsic]
1250pub const unsafe fn assume(b: bool) {
1251 if !b {
1252 // SAFETY: the caller must guarantee the argument is never `false`
1253 unsafe { unreachable() }
1254 }
1255}
1256
1257/// Hints to the compiler that current code path is cold.
1258///
1259/// Note that, unlike most intrinsics, this is safe to call;
1260/// it does not require an `unsafe` block.
1261/// Therefore, implementations must not require the user to uphold
1262/// any safety invariants.
1263///
1264/// This intrinsic does not have a stable counterpart.
1265#[unstable(feature = "core_intrinsics", issue = "none")]
1266#[rustc_intrinsic]
1267#[rustc_nounwind]
1268#[miri::intrinsic_fallback_is_spec]
1269#[cold]
1270pub const fn cold_path() {}
1271
1272/// Hints to the compiler that branch condition is likely to be true.
1273/// Returns the value passed to it.
1274///
1275/// Any use other than with `if` statements will probably not have an effect.
1276///
1277/// Note that, unlike most intrinsics, this is safe to call;
1278/// it does not require an `unsafe` block.
1279/// Therefore, implementations must not require the user to uphold
1280/// any safety invariants.
1281///
1282/// This intrinsic does not have a stable counterpart.
1283#[unstable(feature = "core_intrinsics", issue = "none")]
1284#[rustc_nounwind]
1285#[inline(always)]
1286pub const fn likely(b: bool) -> bool {
1287 if b {
1288 true
1289 } else {
1290 cold_path();
1291 false
1292 }
1293}
1294
1295/// Hints to the compiler that branch condition is likely to be false.
1296/// Returns the value passed to it.
1297///
1298/// Any use other than with `if` statements will probably not have an effect.
1299///
1300/// Note that, unlike most intrinsics, this is safe to call;
1301/// it does not require an `unsafe` block.
1302/// Therefore, implementations must not require the user to uphold
1303/// any safety invariants.
1304///
1305/// This intrinsic does not have a stable counterpart.
1306#[unstable(feature = "core_intrinsics", issue = "none")]
1307#[rustc_nounwind]
1308#[inline(always)]
1309pub const fn unlikely(b: bool) -> bool {
1310 if b {
1311 cold_path();
1312 true
1313 } else {
1314 false
1315 }
1316}
1317
1318/// Returns either `true_val` or `false_val` depending on condition `b` with a
1319/// hint to the compiler that this condition is unlikely to be correctly
1320/// predicted by a CPU's branch predictor (e.g. a binary search).
1321///
1322/// This is otherwise functionally equivalent to `if b { true_val } else { false_val }`.
1323///
1324/// Note that, unlike most intrinsics, this is safe to call;
1325/// it does not require an `unsafe` block.
1326/// Therefore, implementations must not require the user to uphold
1327/// any safety invariants.
1328///
1329/// The public form of this instrinsic is [`core::hint::select_unpredictable`].
1330/// However unlike the public form, the intrinsic will not drop the value that
1331/// is not selected.
1332#[unstable(feature = "core_intrinsics", issue = "none")]
1333#[rustc_intrinsic]
1334#[rustc_nounwind]
1335#[miri::intrinsic_fallback_is_spec]
1336#[inline]
1337pub fn select_unpredictable<T>(b: bool, true_val: T, false_val: T) -> T {
1338 if b { true_val } else { false_val }
1339}
1340
1341/// A guard for unsafe functions that cannot ever be executed if `T` is uninhabited:
1342/// This will statically either panic, or do nothing.
1343///
1344/// This intrinsic does not have a stable counterpart.
1345#[rustc_intrinsic_const_stable_indirect]
1346#[rustc_nounwind]
1347#[rustc_intrinsic]
1348pub const fn assert_inhabited<T>();
1349
1350/// A guard for unsafe functions that cannot ever be executed if `T` does not permit
1351/// zero-initialization: This will statically either panic, or do nothing.
1352///
1353/// This intrinsic does not have a stable counterpart.
1354#[rustc_intrinsic_const_stable_indirect]
1355#[rustc_nounwind]
1356#[rustc_intrinsic]
1357pub const fn assert_zero_valid<T>();
1358
1359/// A guard for `std::mem::uninitialized`. This will statically either panic, or do nothing.
1360///
1361/// This intrinsic does not have a stable counterpart.
1362#[rustc_intrinsic_const_stable_indirect]
1363#[rustc_nounwind]
1364#[rustc_intrinsic]
1365pub const fn assert_mem_uninitialized_valid<T>();
1366
1367/// Gets a reference to a static `Location` indicating where it was called.
1368///
1369/// Note that, unlike most intrinsics, this is safe to call;
1370/// it does not require an `unsafe` block.
1371/// Therefore, implementations must not require the user to uphold
1372/// any safety invariants.
1373///
1374/// Consider using [`core::panic::Location::caller`] instead.
1375#[rustc_intrinsic_const_stable_indirect]
1376#[rustc_nounwind]
1377#[rustc_intrinsic]
1378pub const fn caller_location() -> &'static crate::panic::Location<'static>;
1379
1380/// Moves a value out of scope without running drop glue.
1381///
1382/// This exists solely for [`crate::mem::forget_unsized`]; normal `forget` uses
1383/// `ManuallyDrop` instead.
1384///
1385/// Note that, unlike most intrinsics, this is safe to call;
1386/// it does not require an `unsafe` block.
1387/// Therefore, implementations must not require the user to uphold
1388/// any safety invariants.
1389#[rustc_intrinsic_const_stable_indirect]
1390#[rustc_nounwind]
1391#[rustc_intrinsic]
1392pub const fn forget<T: ?Sized>(_: T);
1393
1394/// Reinterprets the bits of a value of one type as another type.
1395///
1396/// Both types must have the same size. Compilation will fail if this is not guaranteed.
1397///
1398/// `transmute` is semantically equivalent to a bitwise move of one type
1399/// into another. It copies the bits from the source value into the
1400/// destination value, then forgets the original. Note that source and destination
1401/// are passed by-value, which means if `Src` or `Dst` contain padding, that padding
1402/// is *not* guaranteed to be preserved by `transmute`.
1403///
1404/// Both the argument and the result must be [valid](../../nomicon/what-unsafe-does.html) at
1405/// their given type. Violating this condition leads to [undefined behavior][ub]. The compiler
1406/// will generate code *assuming that you, the programmer, ensure that there will never be
1407/// undefined behavior*. It is therefore your responsibility to guarantee that every value
1408/// passed to `transmute` is valid at both types `Src` and `Dst`. Failing to uphold this condition
1409/// may lead to unexpected and unstable compilation results. This makes `transmute` **incredibly
1410/// unsafe**. `transmute` should be the absolute last resort.
1411///
1412/// Because `transmute` is a by-value operation, alignment of the *transmuted values
1413/// themselves* is not a concern. As with any other function, the compiler already ensures
1414/// both `Src` and `Dst` are properly aligned. However, when transmuting values that *point
1415/// elsewhere* (such as pointers, references, boxes…), the caller has to ensure proper
1416/// alignment of the pointed-to values.
1417///
1418/// The [nomicon](../../nomicon/transmutes.html) has additional documentation.
1419///
1420/// [ub]: ../../reference/behavior-considered-undefined.html
1421///
1422/// # Transmutation between pointers and integers
1423///
1424/// Special care has to be taken when transmuting between pointers and integers, e.g.
1425/// transmuting between `*const ()` and `usize`.
1426///
1427/// Transmuting *pointers to integers* in a `const` context is [undefined behavior][ub], unless
1428/// the pointer was originally created *from* an integer. (That includes this function
1429/// specifically, integer-to-pointer casts, and helpers like [`dangling`][crate::ptr::dangling],
1430/// but also semantically-equivalent conversions such as punning through `repr(C)` union
1431/// fields.) Any attempt to use the resulting value for integer operations will abort
1432/// const-evaluation. (And even outside `const`, such transmutation is touching on many
1433/// unspecified aspects of the Rust memory model and should be avoided. See below for
1434/// alternatives.)
1435///
1436/// Transmuting *integers to pointers* is a largely unspecified operation. It is likely *not*
1437/// equivalent to an `as` cast. Doing non-zero-sized memory accesses with a pointer constructed
1438/// this way is currently considered undefined behavior.
1439///
1440/// All this also applies when the integer is nested inside an array, tuple, struct, or enum.
1441/// However, `MaybeUninit<usize>` is not considered an integer type for the purpose of this
1442/// section. Transmuting `*const ()` to `MaybeUninit<usize>` is fine---but then calling
1443/// `assume_init()` on that result is considered as completing the pointer-to-integer transmute
1444/// and thus runs into the issues discussed above.
1445///
1446/// In particular, doing a pointer-to-integer-to-pointer roundtrip via `transmute` is *not* a
1447/// lossless process. If you want to round-trip a pointer through an integer in a way that you
1448/// can get back the original pointer, you need to use `as` casts, or replace the integer type
1449/// by `MaybeUninit<$int>` (and never call `assume_init()`). If you are looking for a way to
1450/// store data of arbitrary type, also use `MaybeUninit<T>` (that will also handle uninitialized
1451/// memory due to padding). If you specifically need to store something that is "either an
1452/// integer or a pointer", use `*mut ()`: integers can be converted to pointers and back without
1453/// any loss (via `as` casts or via `transmute`).
1454///
1455/// # Examples
1456///
1457/// There are a few things that `transmute` is really useful for.
1458///
1459/// Turning a pointer into a function pointer. This is *not* portable to
1460/// machines where function pointers and data pointers have different sizes.
1461///
1462/// ```
1463/// fn foo() -> i32 {
1464/// 0
1465/// }
1466/// // Crucially, we `as`-cast to a raw pointer before `transmute`ing to a function pointer.
1467/// // This avoids an integer-to-pointer `transmute`, which can be problematic.
1468/// // Transmuting between raw pointers and function pointers (i.e., two pointer types) is fine.
1469/// let pointer = foo as *const ();
1470/// let function = unsafe {
1471/// std::mem::transmute::<*const (), fn() -> i32>(pointer)
1472/// };
1473/// assert_eq!(function(), 0);
1474/// ```
1475///
1476/// Extending a lifetime, or shortening an invariant lifetime. This is
1477/// advanced, very unsafe Rust!
1478///
1479/// ```
1480/// struct R<'a>(&'a i32);
1481/// unsafe fn extend_lifetime<'b>(r: R<'b>) -> R<'static> {
1482/// unsafe { std::mem::transmute::<R<'b>, R<'static>>(r) }
1483/// }
1484///
1485/// unsafe fn shorten_invariant_lifetime<'b, 'c>(r: &'b mut R<'static>)
1486/// -> &'b mut R<'c> {
1487/// unsafe { std::mem::transmute::<&'b mut R<'static>, &'b mut R<'c>>(r) }
1488/// }
1489/// ```
1490///
1491/// # Alternatives
1492///
1493/// Don't despair: many uses of `transmute` can be achieved through other means.
1494/// Below are common applications of `transmute` which can be replaced with safer
1495/// constructs.
1496///
1497/// Turning raw bytes (`[u8; SZ]`) into `u32`, `f64`, etc.:
1498///
1499/// ```
1500/// # #![cfg_attr(not(bootstrap), allow(unnecessary_transmutes))]
1501/// let raw_bytes = [0x78, 0x56, 0x34, 0x12];
1502///
1503/// let num = unsafe {
1504/// std::mem::transmute::<[u8; 4], u32>(raw_bytes)
1505/// };
1506///
1507/// // use `u32::from_ne_bytes` instead
1508/// let num = u32::from_ne_bytes(raw_bytes);
1509/// // or use `u32::from_le_bytes` or `u32::from_be_bytes` to specify the endianness
1510/// let num = u32::from_le_bytes(raw_bytes);
1511/// assert_eq!(num, 0x12345678);
1512/// let num = u32::from_be_bytes(raw_bytes);
1513/// assert_eq!(num, 0x78563412);
1514/// ```
1515///
1516/// Turning a pointer into a `usize`:
1517///
1518/// ```no_run
1519/// let ptr = &0;
1520/// let ptr_num_transmute = unsafe {
1521/// std::mem::transmute::<&i32, usize>(ptr)
1522/// };
1523///
1524/// // Use an `as` cast instead
1525/// let ptr_num_cast = ptr as *const i32 as usize;
1526/// ```
1527///
1528/// Note that using `transmute` to turn a pointer to a `usize` is (as noted above) [undefined
1529/// behavior][ub] in `const` contexts. Also outside of consts, this operation might not behave
1530/// as expected -- this is touching on many unspecified aspects of the Rust memory model.
1531/// Depending on what the code is doing, the following alternatives are preferable to
1532/// pointer-to-integer transmutation:
1533/// - If the code just wants to store data of arbitrary type in some buffer and needs to pick a
1534/// type for that buffer, it can use [`MaybeUninit`][crate::mem::MaybeUninit].
1535/// - If the code actually wants to work on the address the pointer points to, it can use `as`
1536/// casts or [`ptr.addr()`][pointer::addr].
1537///
1538/// Turning a `*mut T` into a `&mut T`:
1539///
1540/// ```
1541/// let ptr: *mut i32 = &mut 0;
1542/// let ref_transmuted = unsafe {
1543/// std::mem::transmute::<*mut i32, &mut i32>(ptr)
1544/// };
1545///
1546/// // Use a reborrow instead
1547/// let ref_casted = unsafe { &mut *ptr };
1548/// ```
1549///
1550/// Turning a `&mut T` into a `&mut U`:
1551///
1552/// ```
1553/// let ptr = &mut 0;
1554/// let val_transmuted = unsafe {
1555/// std::mem::transmute::<&mut i32, &mut u32>(ptr)
1556/// };
1557///
1558/// // Now, put together `as` and reborrowing - note the chaining of `as`
1559/// // `as` is not transitive
1560/// let val_casts = unsafe { &mut *(ptr as *mut i32 as *mut u32) };
1561/// ```
1562///
1563/// Turning a `&str` into a `&[u8]`:
1564///
1565/// ```
1566/// // this is not a good way to do this.
1567/// let slice = unsafe { std::mem::transmute::<&str, &[u8]>("Rust") };
1568/// assert_eq!(slice, &[82, 117, 115, 116]);
1569///
1570/// // You could use `str::as_bytes`
1571/// let slice = "Rust".as_bytes();
1572/// assert_eq!(slice, &[82, 117, 115, 116]);
1573///
1574/// // Or, just use a byte string, if you have control over the string
1575/// // literal
1576/// assert_eq!(b"Rust", &[82, 117, 115, 116]);
1577/// ```
1578///
1579/// Turning a `Vec<&T>` into a `Vec<Option<&T>>`.
1580///
1581/// To transmute the inner type of the contents of a container, you must make sure to not
1582/// violate any of the container's invariants. For `Vec`, this means that both the size
1583/// *and alignment* of the inner types have to match. Other containers might rely on the
1584/// size of the type, alignment, or even the `TypeId`, in which case transmuting wouldn't
1585/// be possible at all without violating the container invariants.
1586///
1587/// ```
1588/// let store = [0, 1, 2, 3];
1589/// let v_orig = store.iter().collect::<Vec<&i32>>();
1590///
1591/// // clone the vector as we will reuse them later
1592/// let v_clone = v_orig.clone();
1593///
1594/// // Using transmute: this relies on the unspecified data layout of `Vec`, which is a
1595/// // bad idea and could cause Undefined Behavior.
1596/// // However, it is no-copy.
1597/// let v_transmuted = unsafe {
1598/// std::mem::transmute::<Vec<&i32>, Vec<Option<&i32>>>(v_clone)
1599/// };
1600///
1601/// let v_clone = v_orig.clone();
1602///
1603/// // This is the suggested, safe way.
1604/// // It may copy the entire vector into a new one though, but also may not.
1605/// let v_collected = v_clone.into_iter()
1606/// .map(Some)
1607/// .collect::<Vec<Option<&i32>>>();
1608///
1609/// let v_clone = v_orig.clone();
1610///
1611/// // This is the proper no-copy, unsafe way of "transmuting" a `Vec`, without relying on the
1612/// // data layout. Instead of literally calling `transmute`, we perform a pointer cast, but
1613/// // in terms of converting the original inner type (`&i32`) to the new one (`Option<&i32>`),
1614/// // this has all the same caveats. Besides the information provided above, also consult the
1615/// // [`from_raw_parts`] documentation.
1616/// let v_from_raw = unsafe {
1617// FIXME Update this when vec_into_raw_parts is stabilized
1618/// // Ensure the original vector is not dropped.
1619/// let mut v_clone = std::mem::ManuallyDrop::new(v_clone);
1620/// Vec::from_raw_parts(v_clone.as_mut_ptr() as *mut Option<&i32>,
1621/// v_clone.len(),
1622/// v_clone.capacity())
1623/// };
1624/// ```
1625///
1626/// [`from_raw_parts`]: ../../std/vec/struct.Vec.html#method.from_raw_parts
1627///
1628/// Implementing `split_at_mut`:
1629///
1630/// ```
1631/// use std::{slice, mem};
1632///
1633/// // There are multiple ways to do this, and there are multiple problems
1634/// // with the following (transmute) way.
1635/// fn split_at_mut_transmute<T>(slice: &mut [T], mid: usize)
1636/// -> (&mut [T], &mut [T]) {
1637/// let len = slice.len();
1638/// assert!(mid <= len);
1639/// unsafe {
1640/// let slice2 = mem::transmute::<&mut [T], &mut [T]>(slice);
1641/// // first: transmute is not type safe; all it checks is that T and
1642/// // U are of the same size. Second, right here, you have two
1643/// // mutable references pointing to the same memory.
1644/// (&mut slice[0..mid], &mut slice2[mid..len])
1645/// }
1646/// }
1647///
1648/// // This gets rid of the type safety problems; `&mut *` will *only* give
1649/// // you a `&mut T` from a `&mut T` or `*mut T`.
1650/// fn split_at_mut_casts<T>(slice: &mut [T], mid: usize)
1651/// -> (&mut [T], &mut [T]) {
1652/// let len = slice.len();
1653/// assert!(mid <= len);
1654/// unsafe {
1655/// let slice2 = &mut *(slice as *mut [T]);
1656/// // however, you still have two mutable references pointing to
1657/// // the same memory.
1658/// (&mut slice[0..mid], &mut slice2[mid..len])
1659/// }
1660/// }
1661///
1662/// // This is how the standard library does it. This is the best method, if
1663/// // you need to do something like this
1664/// fn split_at_stdlib<T>(slice: &mut [T], mid: usize)
1665/// -> (&mut [T], &mut [T]) {
1666/// let len = slice.len();
1667/// assert!(mid <= len);
1668/// unsafe {
1669/// let ptr = slice.as_mut_ptr();
1670/// // This now has three mutable references pointing at the same
1671/// // memory. `slice`, the rvalue ret.0, and the rvalue ret.1.
1672/// // `slice` is never used after `let ptr = ...`, and so one can
1673/// // treat it as "dead", and therefore, you only have two real
1674/// // mutable slices.
1675/// (slice::from_raw_parts_mut(ptr, mid),
1676/// slice::from_raw_parts_mut(ptr.add(mid), len - mid))
1677/// }
1678/// }
1679/// ```
1680#[stable(feature = "rust1", since = "1.0.0")]
1681#[rustc_allowed_through_unstable_modules = "import this function via `std::mem` instead"]
1682#[rustc_const_stable(feature = "const_transmute", since = "1.56.0")]
1683#[rustc_diagnostic_item = "transmute"]
1684#[rustc_nounwind]
1685#[rustc_intrinsic]
1686pub const unsafe fn transmute<Src, Dst>(src: Src) -> Dst;
1687
1688/// Like [`transmute`], but even less checked at compile-time: rather than
1689/// giving an error for `size_of::<Src>() != size_of::<Dst>()`, it's
1690/// **Undefined Behavior** at runtime.
1691///
1692/// Prefer normal `transmute` where possible, for the extra checking, since
1693/// both do exactly the same thing at runtime, if they both compile.
1694///
1695/// This is not expected to ever be exposed directly to users, rather it
1696/// may eventually be exposed through some more-constrained API.
1697#[rustc_intrinsic_const_stable_indirect]
1698#[rustc_nounwind]
1699#[rustc_intrinsic]
1700pub const unsafe fn transmute_unchecked<Src, Dst>(src: Src) -> Dst;
1701
1702/// Returns `true` if the actual type given as `T` requires drop
1703/// glue; returns `false` if the actual type provided for `T`
1704/// implements `Copy`.
1705///
1706/// If the actual type neither requires drop glue nor implements
1707/// `Copy`, then the return value of this function is unspecified.
1708///
1709/// Note that, unlike most intrinsics, this is safe to call;
1710/// it does not require an `unsafe` block.
1711/// Therefore, implementations must not require the user to uphold
1712/// any safety invariants.
1713///
1714/// The stabilized version of this intrinsic is [`mem::needs_drop`](crate::mem::needs_drop).
1715#[rustc_intrinsic_const_stable_indirect]
1716#[rustc_nounwind]
1717#[rustc_intrinsic]
1718pub const fn needs_drop<T: ?Sized>() -> bool;
1719
1720/// Calculates the offset from a pointer.
1721///
1722/// This is implemented as an intrinsic to avoid converting to and from an
1723/// integer, since the conversion would throw away aliasing information.
1724///
1725/// This can only be used with `Ptr` as a raw pointer type (`*mut` or `*const`)
1726/// to a `Sized` pointee and with `Delta` as `usize` or `isize`. Any other
1727/// instantiations may arbitrarily misbehave, and that's *not* a compiler bug.
1728///
1729/// # Safety
1730///
1731/// If the computed offset is non-zero, then both the starting and resulting pointer must be
1732/// either in bounds or at the end of an allocated object. If either pointer is out
1733/// of bounds or arithmetic overflow occurs then this operation is undefined behavior.
1734///
1735/// The stabilized version of this intrinsic is [`pointer::offset`].
1736#[must_use = "returns a new pointer rather than modifying its argument"]
1737#[rustc_intrinsic_const_stable_indirect]
1738#[rustc_nounwind]
1739#[rustc_intrinsic]
1740pub const unsafe fn offset<Ptr, Delta>(dst: Ptr, offset: Delta) -> Ptr;
1741
1742/// Calculates the offset from a pointer, potentially wrapping.
1743///
1744/// This is implemented as an intrinsic to avoid converting to and from an
1745/// integer, since the conversion inhibits certain optimizations.
1746///
1747/// # Safety
1748///
1749/// Unlike the `offset` intrinsic, this intrinsic does not restrict the
1750/// resulting pointer to point into or at the end of an allocated
1751/// object, and it wraps with two's complement arithmetic. The resulting
1752/// value is not necessarily valid to be used to actually access memory.
1753///
1754/// The stabilized version of this intrinsic is [`pointer::wrapping_offset`].
1755#[must_use = "returns a new pointer rather than modifying its argument"]
1756#[rustc_intrinsic_const_stable_indirect]
1757#[rustc_nounwind]
1758#[rustc_intrinsic]
1759pub const unsafe fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
1760
1761/// Masks out bits of the pointer according to a mask.
1762///
1763/// Note that, unlike most intrinsics, this is safe to call;
1764/// it does not require an `unsafe` block.
1765/// Therefore, implementations must not require the user to uphold
1766/// any safety invariants.
1767///
1768/// Consider using [`pointer::mask`] instead.
1769#[rustc_nounwind]
1770#[rustc_intrinsic]
1771pub fn ptr_mask<T>(ptr: *const T, mask: usize) -> *const T;
1772
1773/// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
1774/// a size of `count` * `size_of::<T>()` and an alignment of
1775/// `min_align_of::<T>()`
1776///
1777/// This intrinsic does not have a stable counterpart.
1778/// # Safety
1779///
1780/// The safety requirements are consistent with [`copy_nonoverlapping`]
1781/// while the read and write behaviors are volatile,
1782/// which means it will not be optimized out unless `_count` or `size_of::<T>()` is equal to zero.
1783///
1784/// [`copy_nonoverlapping`]: ptr::copy_nonoverlapping
1785#[rustc_intrinsic]
1786#[rustc_nounwind]
1787pub unsafe fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize);
1788/// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
1789/// a size of `count * size_of::<T>()` and an alignment of
1790/// `min_align_of::<T>()`
1791///
1792/// The volatile parameter is set to `true`, so it will not be optimized out
1793/// unless size is equal to zero.
1794///
1795/// This intrinsic does not have a stable counterpart.
1796#[rustc_intrinsic]
1797#[rustc_nounwind]
1798pub unsafe fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
1799/// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
1800/// size of `count * size_of::<T>()` and an alignment of
1801/// `min_align_of::<T>()`.
1802///
1803/// This intrinsic does not have a stable counterpart.
1804/// # Safety
1805///
1806/// The safety requirements are consistent with [`write_bytes`] while the write behavior is volatile,
1807/// which means it will not be optimized out unless `_count` or `size_of::<T>()` is equal to zero.
1808///
1809/// [`write_bytes`]: ptr::write_bytes
1810#[rustc_intrinsic]
1811#[rustc_nounwind]
1812pub unsafe fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
1813
1814/// Performs a volatile load from the `src` pointer.
1815///
1816/// The stabilized version of this intrinsic is [`core::ptr::read_volatile`].
1817#[rustc_intrinsic]
1818#[rustc_nounwind]
1819pub unsafe fn volatile_load<T>(src: *const T) -> T;
1820/// Performs a volatile store to the `dst` pointer.
1821///
1822/// The stabilized version of this intrinsic is [`core::ptr::write_volatile`].
1823#[rustc_intrinsic]
1824#[rustc_nounwind]
1825pub unsafe fn volatile_store<T>(dst: *mut T, val: T);
1826
1827/// Performs a volatile load from the `src` pointer
1828/// The pointer is not required to be aligned.
1829///
1830/// This intrinsic does not have a stable counterpart.
1831#[rustc_intrinsic]
1832#[rustc_nounwind]
1833#[rustc_diagnostic_item = "intrinsics_unaligned_volatile_load"]
1834pub unsafe fn unaligned_volatile_load<T>(src: *const T) -> T;
1835/// Performs a volatile store to the `dst` pointer.
1836/// The pointer is not required to be aligned.
1837///
1838/// This intrinsic does not have a stable counterpart.
1839#[rustc_intrinsic]
1840#[rustc_nounwind]
1841#[rustc_diagnostic_item = "intrinsics_unaligned_volatile_store"]
1842pub unsafe fn unaligned_volatile_store<T>(dst: *mut T, val: T);
1843
1844/// Returns the square root of an `f16`
1845///
1846/// The stabilized version of this intrinsic is
1847/// [`f16::sqrt`](../../std/primitive.f16.html#method.sqrt)
1848#[rustc_intrinsic]
1849#[rustc_nounwind]
1850pub unsafe fn sqrtf16(x: f16) -> f16;
1851/// Returns the square root of an `f32`
1852///
1853/// The stabilized version of this intrinsic is
1854/// [`f32::sqrt`](../../std/primitive.f32.html#method.sqrt)
1855#[rustc_intrinsic]
1856#[rustc_nounwind]
1857pub unsafe fn sqrtf32(x: f32) -> f32;
1858/// Returns the square root of an `f64`
1859///
1860/// The stabilized version of this intrinsic is
1861/// [`f64::sqrt`](../../std/primitive.f64.html#method.sqrt)
1862#[rustc_intrinsic]
1863#[rustc_nounwind]
1864pub unsafe fn sqrtf64(x: f64) -> f64;
1865/// Returns the square root of an `f128`
1866///
1867/// The stabilized version of this intrinsic is
1868/// [`f128::sqrt`](../../std/primitive.f128.html#method.sqrt)
1869#[rustc_intrinsic]
1870#[rustc_nounwind]
1871pub unsafe fn sqrtf128(x: f128) -> f128;
1872
1873/// Raises an `f16` to an integer power.
1874///
1875/// The stabilized version of this intrinsic is
1876/// [`f16::powi`](../../std/primitive.f16.html#method.powi)
1877#[rustc_intrinsic]
1878#[rustc_nounwind]
1879pub unsafe fn powif16(a: f16, x: i32) -> f16;
1880/// Raises an `f32` to an integer power.
1881///
1882/// The stabilized version of this intrinsic is
1883/// [`f32::powi`](../../std/primitive.f32.html#method.powi)
1884#[rustc_intrinsic]
1885#[rustc_nounwind]
1886pub unsafe fn powif32(a: f32, x: i32) -> f32;
1887/// Raises an `f64` to an integer power.
1888///
1889/// The stabilized version of this intrinsic is
1890/// [`f64::powi`](../../std/primitive.f64.html#method.powi)
1891#[rustc_intrinsic]
1892#[rustc_nounwind]
1893pub unsafe fn powif64(a: f64, x: i32) -> f64;
1894/// Raises an `f128` to an integer power.
1895///
1896/// The stabilized version of this intrinsic is
1897/// [`f128::powi`](../../std/primitive.f128.html#method.powi)
1898#[rustc_intrinsic]
1899#[rustc_nounwind]
1900pub unsafe fn powif128(a: f128, x: i32) -> f128;
1901
1902/// Returns the sine of an `f16`.
1903///
1904/// The stabilized version of this intrinsic is
1905/// [`f16::sin`](../../std/primitive.f16.html#method.sin)
1906#[rustc_intrinsic]
1907#[rustc_nounwind]
1908pub unsafe fn sinf16(x: f16) -> f16;
1909/// Returns the sine of an `f32`.
1910///
1911/// The stabilized version of this intrinsic is
1912/// [`f32::sin`](../../std/primitive.f32.html#method.sin)
1913#[rustc_intrinsic]
1914#[rustc_nounwind]
1915pub unsafe fn sinf32(x: f32) -> f32;
1916/// Returns the sine of an `f64`.
1917///
1918/// The stabilized version of this intrinsic is
1919/// [`f64::sin`](../../std/primitive.f64.html#method.sin)
1920#[rustc_intrinsic]
1921#[rustc_nounwind]
1922pub unsafe fn sinf64(x: f64) -> f64;
1923/// Returns the sine of an `f128`.
1924///
1925/// The stabilized version of this intrinsic is
1926/// [`f128::sin`](../../std/primitive.f128.html#method.sin)
1927#[rustc_intrinsic]
1928#[rustc_nounwind]
1929pub unsafe fn sinf128(x: f128) -> f128;
1930
1931/// Returns the cosine of an `f16`.
1932///
1933/// The stabilized version of this intrinsic is
1934/// [`f16::cos`](../../std/primitive.f16.html#method.cos)
1935#[rustc_intrinsic]
1936#[rustc_nounwind]
1937pub unsafe fn cosf16(x: f16) -> f16;
1938/// Returns the cosine of an `f32`.
1939///
1940/// The stabilized version of this intrinsic is
1941/// [`f32::cos`](../../std/primitive.f32.html#method.cos)
1942#[rustc_intrinsic]
1943#[rustc_nounwind]
1944pub unsafe fn cosf32(x: f32) -> f32;
1945/// Returns the cosine of an `f64`.
1946///
1947/// The stabilized version of this intrinsic is
1948/// [`f64::cos`](../../std/primitive.f64.html#method.cos)
1949#[rustc_intrinsic]
1950#[rustc_nounwind]
1951pub unsafe fn cosf64(x: f64) -> f64;
1952/// Returns the cosine of an `f128`.
1953///
1954/// The stabilized version of this intrinsic is
1955/// [`f128::cos`](../../std/primitive.f128.html#method.cos)
1956#[rustc_intrinsic]
1957#[rustc_nounwind]
1958pub unsafe fn cosf128(x: f128) -> f128;
1959
1960/// Raises an `f16` to an `f16` power.
1961///
1962/// The stabilized version of this intrinsic is
1963/// [`f16::powf`](../../std/primitive.f16.html#method.powf)
1964#[rustc_intrinsic]
1965#[rustc_nounwind]
1966pub unsafe fn powf16(a: f16, x: f16) -> f16;
1967/// Raises an `f32` to an `f32` power.
1968///
1969/// The stabilized version of this intrinsic is
1970/// [`f32::powf`](../../std/primitive.f32.html#method.powf)
1971#[rustc_intrinsic]
1972#[rustc_nounwind]
1973pub unsafe fn powf32(a: f32, x: f32) -> f32;
1974/// Raises an `f64` to an `f64` power.
1975///
1976/// The stabilized version of this intrinsic is
1977/// [`f64::powf`](../../std/primitive.f64.html#method.powf)
1978#[rustc_intrinsic]
1979#[rustc_nounwind]
1980pub unsafe fn powf64(a: f64, x: f64) -> f64;
1981/// Raises an `f128` to an `f128` power.
1982///
1983/// The stabilized version of this intrinsic is
1984/// [`f128::powf`](../../std/primitive.f128.html#method.powf)
1985#[rustc_intrinsic]
1986#[rustc_nounwind]
1987pub unsafe fn powf128(a: f128, x: f128) -> f128;
1988
1989/// Returns the exponential of an `f16`.
1990///
1991/// The stabilized version of this intrinsic is
1992/// [`f16::exp`](../../std/primitive.f16.html#method.exp)
1993#[rustc_intrinsic]
1994#[rustc_nounwind]
1995pub unsafe fn expf16(x: f16) -> f16;
1996/// Returns the exponential of an `f32`.
1997///
1998/// The stabilized version of this intrinsic is
1999/// [`f32::exp`](../../std/primitive.f32.html#method.exp)
2000#[rustc_intrinsic]
2001#[rustc_nounwind]
2002pub unsafe fn expf32(x: f32) -> f32;
2003/// Returns the exponential of an `f64`.
2004///
2005/// The stabilized version of this intrinsic is
2006/// [`f64::exp`](../../std/primitive.f64.html#method.exp)
2007#[rustc_intrinsic]
2008#[rustc_nounwind]
2009pub unsafe fn expf64(x: f64) -> f64;
2010/// Returns the exponential of an `f128`.
2011///
2012/// The stabilized version of this intrinsic is
2013/// [`f128::exp`](../../std/primitive.f128.html#method.exp)
2014#[rustc_intrinsic]
2015#[rustc_nounwind]
2016pub unsafe fn expf128(x: f128) -> f128;
2017
2018/// Returns 2 raised to the power of an `f16`.
2019///
2020/// The stabilized version of this intrinsic is
2021/// [`f16::exp2`](../../std/primitive.f16.html#method.exp2)
2022#[rustc_intrinsic]
2023#[rustc_nounwind]
2024pub unsafe fn exp2f16(x: f16) -> f16;
2025/// Returns 2 raised to the power of an `f32`.
2026///
2027/// The stabilized version of this intrinsic is
2028/// [`f32::exp2`](../../std/primitive.f32.html#method.exp2)
2029#[rustc_intrinsic]
2030#[rustc_nounwind]
2031pub unsafe fn exp2f32(x: f32) -> f32;
2032/// Returns 2 raised to the power of an `f64`.
2033///
2034/// The stabilized version of this intrinsic is
2035/// [`f64::exp2`](../../std/primitive.f64.html#method.exp2)
2036#[rustc_intrinsic]
2037#[rustc_nounwind]
2038pub unsafe fn exp2f64(x: f64) -> f64;
2039/// Returns 2 raised to the power of an `f128`.
2040///
2041/// The stabilized version of this intrinsic is
2042/// [`f128::exp2`](../../std/primitive.f128.html#method.exp2)
2043#[rustc_intrinsic]
2044#[rustc_nounwind]
2045pub unsafe fn exp2f128(x: f128) -> f128;
2046
2047/// Returns the natural logarithm of an `f16`.
2048///
2049/// The stabilized version of this intrinsic is
2050/// [`f16::ln`](../../std/primitive.f16.html#method.ln)
2051#[rustc_intrinsic]
2052#[rustc_nounwind]
2053pub unsafe fn logf16(x: f16) -> f16;
2054/// Returns the natural logarithm of an `f32`.
2055///
2056/// The stabilized version of this intrinsic is
2057/// [`f32::ln`](../../std/primitive.f32.html#method.ln)
2058#[rustc_intrinsic]
2059#[rustc_nounwind]
2060pub unsafe fn logf32(x: f32) -> f32;
2061/// Returns the natural logarithm of an `f64`.
2062///
2063/// The stabilized version of this intrinsic is
2064/// [`f64::ln`](../../std/primitive.f64.html#method.ln)
2065#[rustc_intrinsic]
2066#[rustc_nounwind]
2067pub unsafe fn logf64(x: f64) -> f64;
2068/// Returns the natural logarithm of an `f128`.
2069///
2070/// The stabilized version of this intrinsic is
2071/// [`f128::ln`](../../std/primitive.f128.html#method.ln)
2072#[rustc_intrinsic]
2073#[rustc_nounwind]
2074pub unsafe fn logf128(x: f128) -> f128;
2075
2076/// Returns the base 10 logarithm of an `f16`.
2077///
2078/// The stabilized version of this intrinsic is
2079/// [`f16::log10`](../../std/primitive.f16.html#method.log10)
2080#[rustc_intrinsic]
2081#[rustc_nounwind]
2082pub unsafe fn log10f16(x: f16) -> f16;
2083/// Returns the base 10 logarithm of an `f32`.
2084///
2085/// The stabilized version of this intrinsic is
2086/// [`f32::log10`](../../std/primitive.f32.html#method.log10)
2087#[rustc_intrinsic]
2088#[rustc_nounwind]
2089pub unsafe fn log10f32(x: f32) -> f32;
2090/// Returns the base 10 logarithm of an `f64`.
2091///
2092/// The stabilized version of this intrinsic is
2093/// [`f64::log10`](../../std/primitive.f64.html#method.log10)
2094#[rustc_intrinsic]
2095#[rustc_nounwind]
2096pub unsafe fn log10f64(x: f64) -> f64;
2097/// Returns the base 10 logarithm of an `f128`.
2098///
2099/// The stabilized version of this intrinsic is
2100/// [`f128::log10`](../../std/primitive.f128.html#method.log10)
2101#[rustc_intrinsic]
2102#[rustc_nounwind]
2103pub unsafe fn log10f128(x: f128) -> f128;
2104
2105/// Returns the base 2 logarithm of an `f16`.
2106///
2107/// The stabilized version of this intrinsic is
2108/// [`f16::log2`](../../std/primitive.f16.html#method.log2)
2109#[rustc_intrinsic]
2110#[rustc_nounwind]
2111pub unsafe fn log2f16(x: f16) -> f16;
2112/// Returns the base 2 logarithm of an `f32`.
2113///
2114/// The stabilized version of this intrinsic is
2115/// [`f32::log2`](../../std/primitive.f32.html#method.log2)
2116#[rustc_intrinsic]
2117#[rustc_nounwind]
2118pub unsafe fn log2f32(x: f32) -> f32;
2119/// Returns the base 2 logarithm of an `f64`.
2120///
2121/// The stabilized version of this intrinsic is
2122/// [`f64::log2`](../../std/primitive.f64.html#method.log2)
2123#[rustc_intrinsic]
2124#[rustc_nounwind]
2125pub unsafe fn log2f64(x: f64) -> f64;
2126/// Returns the base 2 logarithm of an `f128`.
2127///
2128/// The stabilized version of this intrinsic is
2129/// [`f128::log2`](../../std/primitive.f128.html#method.log2)
2130#[rustc_intrinsic]
2131#[rustc_nounwind]
2132pub unsafe fn log2f128(x: f128) -> f128;
2133
2134/// Returns `a * b + c` for `f16` values.
2135///
2136/// The stabilized version of this intrinsic is
2137/// [`f16::mul_add`](../../std/primitive.f16.html#method.mul_add)
2138#[rustc_intrinsic]
2139#[rustc_nounwind]
2140pub unsafe fn fmaf16(a: f16, b: f16, c: f16) -> f16;
2141/// Returns `a * b + c` for `f32` values.
2142///
2143/// The stabilized version of this intrinsic is
2144/// [`f32::mul_add`](../../std/primitive.f32.html#method.mul_add)
2145#[rustc_intrinsic]
2146#[rustc_nounwind]
2147pub unsafe fn fmaf32(a: f32, b: f32, c: f32) -> f32;
2148/// Returns `a * b + c` for `f64` values.
2149///
2150/// The stabilized version of this intrinsic is
2151/// [`f64::mul_add`](../../std/primitive.f64.html#method.mul_add)
2152#[rustc_intrinsic]
2153#[rustc_nounwind]
2154pub unsafe fn fmaf64(a: f64, b: f64, c: f64) -> f64;
2155/// Returns `a * b + c` for `f128` values.
2156///
2157/// The stabilized version of this intrinsic is
2158/// [`f128::mul_add`](../../std/primitive.f128.html#method.mul_add)
2159#[rustc_intrinsic]
2160#[rustc_nounwind]
2161pub unsafe fn fmaf128(a: f128, b: f128, c: f128) -> f128;
2162
2163/// Returns `a * b + c` for `f16` values, non-deterministically executing
2164/// either a fused multiply-add or two operations with rounding of the
2165/// intermediate result.
2166///
2167/// The operation is fused if the code generator determines that target
2168/// instruction set has support for a fused operation, and that the fused
2169/// operation is more efficient than the equivalent, separate pair of mul
2170/// and add instructions. It is unspecified whether or not a fused operation
2171/// is selected, and that may depend on optimization level and context, for
2172/// example.
2173#[rustc_intrinsic]
2174#[rustc_nounwind]
2175pub unsafe fn fmuladdf16(a: f16, b: f16, c: f16) -> f16;
2176/// Returns `a * b + c` for `f32` values, non-deterministically executing
2177/// either a fused multiply-add or two operations with rounding of the
2178/// intermediate result.
2179///
2180/// The operation is fused if the code generator determines that target
2181/// instruction set has support for a fused operation, and that the fused
2182/// operation is more efficient than the equivalent, separate pair of mul
2183/// and add instructions. It is unspecified whether or not a fused operation
2184/// is selected, and that may depend on optimization level and context, for
2185/// example.
2186#[rustc_intrinsic]
2187#[rustc_nounwind]
2188pub unsafe fn fmuladdf32(a: f32, b: f32, c: f32) -> f32;
2189/// Returns `a * b + c` for `f64` values, non-deterministically executing
2190/// either a fused multiply-add or two operations with rounding of the
2191/// intermediate result.
2192///
2193/// The operation is fused if the code generator determines that target
2194/// instruction set has support for a fused operation, and that the fused
2195/// operation is more efficient than the equivalent, separate pair of mul
2196/// and add instructions. It is unspecified whether or not a fused operation
2197/// is selected, and that may depend on optimization level and context, for
2198/// example.
2199#[rustc_intrinsic]
2200#[rustc_nounwind]
2201pub unsafe fn fmuladdf64(a: f64, b: f64, c: f64) -> f64;
2202/// Returns `a * b + c` for `f128` values, non-deterministically executing
2203/// either a fused multiply-add or two operations with rounding of the
2204/// intermediate result.
2205///
2206/// The operation is fused if the code generator determines that target
2207/// instruction set has support for a fused operation, and that the fused
2208/// operation is more efficient than the equivalent, separate pair of mul
2209/// and add instructions. It is unspecified whether or not a fused operation
2210/// is selected, and that may depend on optimization level and context, for
2211/// example.
2212#[rustc_intrinsic]
2213#[rustc_nounwind]
2214pub unsafe fn fmuladdf128(a: f128, b: f128, c: f128) -> f128;
2215
2216/// Returns the largest integer less than or equal to an `f16`.
2217///
2218/// The stabilized version of this intrinsic is
2219/// [`f16::floor`](../../std/primitive.f16.html#method.floor)
2220#[rustc_intrinsic]
2221#[rustc_nounwind]
2222pub unsafe fn floorf16(x: f16) -> f16;
2223/// Returns the largest integer less than or equal to an `f32`.
2224///
2225/// The stabilized version of this intrinsic is
2226/// [`f32::floor`](../../std/primitive.f32.html#method.floor)
2227#[rustc_intrinsic]
2228#[rustc_nounwind]
2229pub unsafe fn floorf32(x: f32) -> f32;
2230/// Returns the largest integer less than or equal to an `f64`.
2231///
2232/// The stabilized version of this intrinsic is
2233/// [`f64::floor`](../../std/primitive.f64.html#method.floor)
2234#[rustc_intrinsic]
2235#[rustc_nounwind]
2236pub unsafe fn floorf64(x: f64) -> f64;
2237/// Returns the largest integer less than or equal to an `f128`.
2238///
2239/// The stabilized version of this intrinsic is
2240/// [`f128::floor`](../../std/primitive.f128.html#method.floor)
2241#[rustc_intrinsic]
2242#[rustc_nounwind]
2243pub unsafe fn floorf128(x: f128) -> f128;
2244
2245/// Returns the smallest integer greater than or equal to an `f16`.
2246///
2247/// The stabilized version of this intrinsic is
2248/// [`f16::ceil`](../../std/primitive.f16.html#method.ceil)
2249#[rustc_intrinsic]
2250#[rustc_nounwind]
2251pub unsafe fn ceilf16(x: f16) -> f16;
2252/// Returns the smallest integer greater than or equal to an `f32`.
2253///
2254/// The stabilized version of this intrinsic is
2255/// [`f32::ceil`](../../std/primitive.f32.html#method.ceil)
2256#[rustc_intrinsic]
2257#[rustc_nounwind]
2258pub unsafe fn ceilf32(x: f32) -> f32;
2259/// Returns the smallest integer greater than or equal to an `f64`.
2260///
2261/// The stabilized version of this intrinsic is
2262/// [`f64::ceil`](../../std/primitive.f64.html#method.ceil)
2263#[rustc_intrinsic]
2264#[rustc_nounwind]
2265pub unsafe fn ceilf64(x: f64) -> f64;
2266/// Returns the smallest integer greater than or equal to an `f128`.
2267///
2268/// The stabilized version of this intrinsic is
2269/// [`f128::ceil`](../../std/primitive.f128.html#method.ceil)
2270#[rustc_intrinsic]
2271#[rustc_nounwind]
2272pub unsafe fn ceilf128(x: f128) -> f128;
2273
2274/// Returns the integer part of an `f16`.
2275///
2276/// The stabilized version of this intrinsic is
2277/// [`f16::trunc`](../../std/primitive.f16.html#method.trunc)
2278#[rustc_intrinsic]
2279#[rustc_nounwind]
2280pub unsafe fn truncf16(x: f16) -> f16;
2281/// Returns the integer part of an `f32`.
2282///
2283/// The stabilized version of this intrinsic is
2284/// [`f32::trunc`](../../std/primitive.f32.html#method.trunc)
2285#[rustc_intrinsic]
2286#[rustc_nounwind]
2287pub unsafe fn truncf32(x: f32) -> f32;
2288/// Returns the integer part of an `f64`.
2289///
2290/// The stabilized version of this intrinsic is
2291/// [`f64::trunc`](../../std/primitive.f64.html#method.trunc)
2292#[rustc_intrinsic]
2293#[rustc_nounwind]
2294pub unsafe fn truncf64(x: f64) -> f64;
2295/// Returns the integer part of an `f128`.
2296///
2297/// The stabilized version of this intrinsic is
2298/// [`f128::trunc`](../../std/primitive.f128.html#method.trunc)
2299#[rustc_intrinsic]
2300#[rustc_nounwind]
2301pub unsafe fn truncf128(x: f128) -> f128;
2302
2303/// Returns the nearest integer to an `f16`. Rounds half-way cases to the number with an even
2304/// least significant digit.
2305///
2306/// The stabilized version of this intrinsic is
2307/// [`f16::round_ties_even`](../../std/primitive.f16.html#method.round_ties_even)
2308#[rustc_intrinsic]
2309#[rustc_nounwind]
2310pub fn round_ties_even_f16(x: f16) -> f16;
2311
2312/// Returns the nearest integer to an `f32`. Rounds half-way cases to the number with an even
2313/// least significant digit.
2314///
2315/// The stabilized version of this intrinsic is
2316/// [`f32::round_ties_even`](../../std/primitive.f32.html#method.round_ties_even)
2317#[rustc_intrinsic]
2318#[rustc_nounwind]
2319pub fn round_ties_even_f32(x: f32) -> f32;
2320
2321/// Provided for compatibility with stdarch. DO NOT USE.
2322#[inline(always)]
2323pub unsafe fn rintf32(x: f32) -> f32 {
2324 round_ties_even_f32(x)
2325}
2326
2327/// Returns the nearest integer to an `f64`. Rounds half-way cases to the number with an even
2328/// least significant digit.
2329///
2330/// The stabilized version of this intrinsic is
2331/// [`f64::round_ties_even`](../../std/primitive.f64.html#method.round_ties_even)
2332#[rustc_intrinsic]
2333#[rustc_nounwind]
2334pub fn round_ties_even_f64(x: f64) -> f64;
2335
2336/// Provided for compatibility with stdarch. DO NOT USE.
2337#[inline(always)]
2338pub unsafe fn rintf64(x: f64) -> f64 {
2339 round_ties_even_f64(x)
2340}
2341
2342/// Returns the nearest integer to an `f128`. Rounds half-way cases to the number with an even
2343/// least significant digit.
2344///
2345/// The stabilized version of this intrinsic is
2346/// [`f128::round_ties_even`](../../std/primitive.f128.html#method.round_ties_even)
2347#[rustc_intrinsic]
2348#[rustc_nounwind]
2349pub fn round_ties_even_f128(x: f128) -> f128;
2350
2351/// Returns the nearest integer to an `f16`. Rounds half-way cases away from zero.
2352///
2353/// The stabilized version of this intrinsic is
2354/// [`f16::round`](../../std/primitive.f16.html#method.round)
2355#[rustc_intrinsic]
2356#[rustc_nounwind]
2357pub unsafe fn roundf16(x: f16) -> f16;
2358/// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
2359///
2360/// The stabilized version of this intrinsic is
2361/// [`f32::round`](../../std/primitive.f32.html#method.round)
2362#[rustc_intrinsic]
2363#[rustc_nounwind]
2364pub unsafe fn roundf32(x: f32) -> f32;
2365/// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
2366///
2367/// The stabilized version of this intrinsic is
2368/// [`f64::round`](../../std/primitive.f64.html#method.round)
2369#[rustc_intrinsic]
2370#[rustc_nounwind]
2371pub unsafe fn roundf64(x: f64) -> f64;
2372/// Returns the nearest integer to an `f128`. Rounds half-way cases away from zero.
2373///
2374/// The stabilized version of this intrinsic is
2375/// [`f128::round`](../../std/primitive.f128.html#method.round)
2376#[rustc_intrinsic]
2377#[rustc_nounwind]
2378pub unsafe fn roundf128(x: f128) -> f128;
2379
2380/// Float addition that allows optimizations based on algebraic rules.
2381/// May assume inputs are finite.
2382///
2383/// This intrinsic does not have a stable counterpart.
2384#[rustc_intrinsic]
2385#[rustc_nounwind]
2386pub unsafe fn fadd_fast<T: Copy>(a: T, b: T) -> T;
2387
2388/// Float subtraction that allows optimizations based on algebraic rules.
2389/// May assume inputs are finite.
2390///
2391/// This intrinsic does not have a stable counterpart.
2392#[rustc_intrinsic]
2393#[rustc_nounwind]
2394pub unsafe fn fsub_fast<T: Copy>(a: T, b: T) -> T;
2395
2396/// Float multiplication that allows optimizations based on algebraic rules.
2397/// May assume inputs are finite.
2398///
2399/// This intrinsic does not have a stable counterpart.
2400#[rustc_intrinsic]
2401#[rustc_nounwind]
2402pub unsafe fn fmul_fast<T: Copy>(a: T, b: T) -> T;
2403
2404/// Float division that allows optimizations based on algebraic rules.
2405/// May assume inputs are finite.
2406///
2407/// This intrinsic does not have a stable counterpart.
2408#[rustc_intrinsic]
2409#[rustc_nounwind]
2410pub unsafe fn fdiv_fast<T: Copy>(a: T, b: T) -> T;
2411
2412/// Float remainder that allows optimizations based on algebraic rules.
2413/// May assume inputs are finite.
2414///
2415/// This intrinsic does not have a stable counterpart.
2416#[rustc_intrinsic]
2417#[rustc_nounwind]
2418pub unsafe fn frem_fast<T: Copy>(a: T, b: T) -> T;
2419
2420/// Converts with LLVM’s fptoui/fptosi, which may return undef for values out of range
2421/// (<https://github.com/rust-lang/rust/issues/10184>)
2422///
2423/// Stabilized as [`f32::to_int_unchecked`] and [`f64::to_int_unchecked`].
2424#[rustc_intrinsic]
2425#[rustc_nounwind]
2426pub unsafe fn float_to_int_unchecked<Float: Copy, Int: Copy>(value: Float) -> Int;
2427
2428/// Float addition that allows optimizations based on algebraic rules.
2429///
2430/// Stabilized as [`f16::algebraic_add`], [`f32::algebraic_add`], [`f64::algebraic_add`] and [`f128::algebraic_add`].
2431#[rustc_nounwind]
2432#[rustc_intrinsic]
2433pub const fn fadd_algebraic<T: Copy>(a: T, b: T) -> T;
2434
2435/// Float subtraction that allows optimizations based on algebraic rules.
2436///
2437/// Stabilized as [`f16::algebraic_sub`], [`f32::algebraic_sub`], [`f64::algebraic_sub`] and [`f128::algebraic_sub`].
2438#[rustc_nounwind]
2439#[rustc_intrinsic]
2440pub const fn fsub_algebraic<T: Copy>(a: T, b: T) -> T;
2441
2442/// Float multiplication that allows optimizations based on algebraic rules.
2443///
2444/// Stabilized as [`f16::algebraic_mul`], [`f32::algebraic_mul`], [`f64::algebraic_mul`] and [`f128::algebraic_mul`].
2445#[rustc_nounwind]
2446#[rustc_intrinsic]
2447pub const fn fmul_algebraic<T: Copy>(a: T, b: T) -> T;
2448
2449/// Float division that allows optimizations based on algebraic rules.
2450///
2451/// Stabilized as [`f16::algebraic_div`], [`f32::algebraic_div`], [`f64::algebraic_div`] and [`f128::algebraic_div`].
2452#[rustc_nounwind]
2453#[rustc_intrinsic]
2454pub const fn fdiv_algebraic<T: Copy>(a: T, b: T) -> T;
2455
2456/// Float remainder that allows optimizations based on algebraic rules.
2457///
2458/// Stabilized as [`f16::algebraic_rem`], [`f32::algebraic_rem`], [`f64::algebraic_rem`] and [`f128::algebraic_rem`].
2459#[rustc_nounwind]
2460#[rustc_intrinsic]
2461pub const fn frem_algebraic<T: Copy>(a: T, b: T) -> T;
2462
2463/// Returns the number of bits set in an integer type `T`
2464///
2465/// Note that, unlike most intrinsics, this is safe to call;
2466/// it does not require an `unsafe` block.
2467/// Therefore, implementations must not require the user to uphold
2468/// any safety invariants.
2469///
2470/// The stabilized versions of this intrinsic are available on the integer
2471/// primitives via the `count_ones` method. For example,
2472/// [`u32::count_ones`]
2473#[rustc_intrinsic_const_stable_indirect]
2474#[rustc_nounwind]
2475#[rustc_intrinsic]
2476pub const fn ctpop<T: Copy>(x: T) -> u32;
2477
2478/// Returns the number of leading unset bits (zeroes) in an integer type `T`.
2479///
2480/// Note that, unlike most intrinsics, this is safe to call;
2481/// it does not require an `unsafe` block.
2482/// Therefore, implementations must not require the user to uphold
2483/// any safety invariants.
2484///
2485/// The stabilized versions of this intrinsic are available on the integer
2486/// primitives via the `leading_zeros` method. For example,
2487/// [`u32::leading_zeros`]
2488///
2489/// # Examples
2490///
2491/// ```
2492/// #![feature(core_intrinsics)]
2493/// # #![allow(internal_features)]
2494///
2495/// use std::intrinsics::ctlz;
2496///
2497/// let x = 0b0001_1100_u8;
2498/// let num_leading = ctlz(x);
2499/// assert_eq!(num_leading, 3);
2500/// ```
2501///
2502/// An `x` with value `0` will return the bit width of `T`.
2503///
2504/// ```
2505/// #![feature(core_intrinsics)]
2506/// # #![allow(internal_features)]
2507///
2508/// use std::intrinsics::ctlz;
2509///
2510/// let x = 0u16;
2511/// let num_leading = ctlz(x);
2512/// assert_eq!(num_leading, 16);
2513/// ```
2514#[rustc_intrinsic_const_stable_indirect]
2515#[rustc_nounwind]
2516#[rustc_intrinsic]
2517pub const fn ctlz<T: Copy>(x: T) -> u32;
2518
2519/// Like `ctlz`, but extra-unsafe as it returns `undef` when
2520/// given an `x` with value `0`.
2521///
2522/// This intrinsic does not have a stable counterpart.
2523///
2524/// # Examples
2525///
2526/// ```
2527/// #![feature(core_intrinsics)]
2528/// # #![allow(internal_features)]
2529///
2530/// use std::intrinsics::ctlz_nonzero;
2531///
2532/// let x = 0b0001_1100_u8;
2533/// let num_leading = unsafe { ctlz_nonzero(x) };
2534/// assert_eq!(num_leading, 3);
2535/// ```
2536#[rustc_intrinsic_const_stable_indirect]
2537#[rustc_nounwind]
2538#[rustc_intrinsic]
2539pub const unsafe fn ctlz_nonzero<T: Copy>(x: T) -> u32;
2540
2541/// Returns the number of trailing unset bits (zeroes) in an integer type `T`.
2542///
2543/// Note that, unlike most intrinsics, this is safe to call;
2544/// it does not require an `unsafe` block.
2545/// Therefore, implementations must not require the user to uphold
2546/// any safety invariants.
2547///
2548/// The stabilized versions of this intrinsic are available on the integer
2549/// primitives via the `trailing_zeros` method. For example,
2550/// [`u32::trailing_zeros`]
2551///
2552/// # Examples
2553///
2554/// ```
2555/// #![feature(core_intrinsics)]
2556/// # #![allow(internal_features)]
2557///
2558/// use std::intrinsics::cttz;
2559///
2560/// let x = 0b0011_1000_u8;
2561/// let num_trailing = cttz(x);
2562/// assert_eq!(num_trailing, 3);
2563/// ```
2564///
2565/// An `x` with value `0` will return the bit width of `T`:
2566///
2567/// ```
2568/// #![feature(core_intrinsics)]
2569/// # #![allow(internal_features)]
2570///
2571/// use std::intrinsics::cttz;
2572///
2573/// let x = 0u16;
2574/// let num_trailing = cttz(x);
2575/// assert_eq!(num_trailing, 16);
2576/// ```
2577#[rustc_intrinsic_const_stable_indirect]
2578#[rustc_nounwind]
2579#[rustc_intrinsic]
2580pub const fn cttz<T: Copy>(x: T) -> u32;
2581
2582/// Like `cttz`, but extra-unsafe as it returns `undef` when
2583/// given an `x` with value `0`.
2584///
2585/// This intrinsic does not have a stable counterpart.
2586///
2587/// # Examples
2588///
2589/// ```
2590/// #![feature(core_intrinsics)]
2591/// # #![allow(internal_features)]
2592///
2593/// use std::intrinsics::cttz_nonzero;
2594///
2595/// let x = 0b0011_1000_u8;
2596/// let num_trailing = unsafe { cttz_nonzero(x) };
2597/// assert_eq!(num_trailing, 3);
2598/// ```
2599#[rustc_intrinsic_const_stable_indirect]
2600#[rustc_nounwind]
2601#[rustc_intrinsic]
2602pub const unsafe fn cttz_nonzero<T: Copy>(x: T) -> u32;
2603
2604/// Reverses the bytes in an integer type `T`.
2605///
2606/// Note that, unlike most intrinsics, this is safe to call;
2607/// it does not require an `unsafe` block.
2608/// Therefore, implementations must not require the user to uphold
2609/// any safety invariants.
2610///
2611/// The stabilized versions of this intrinsic are available on the integer
2612/// primitives via the `swap_bytes` method. For example,
2613/// [`u32::swap_bytes`]
2614#[rustc_intrinsic_const_stable_indirect]
2615#[rustc_nounwind]
2616#[rustc_intrinsic]
2617pub const fn bswap<T: Copy>(x: T) -> T;
2618
2619/// Reverses the bits in an integer type `T`.
2620///
2621/// Note that, unlike most intrinsics, this is safe to call;
2622/// it does not require an `unsafe` block.
2623/// Therefore, implementations must not require the user to uphold
2624/// any safety invariants.
2625///
2626/// The stabilized versions of this intrinsic are available on the integer
2627/// primitives via the `reverse_bits` method. For example,
2628/// [`u32::reverse_bits`]
2629#[rustc_intrinsic_const_stable_indirect]
2630#[rustc_nounwind]
2631#[rustc_intrinsic]
2632pub const fn bitreverse<T: Copy>(x: T) -> T;
2633
2634/// Does a three-way comparison between the two arguments,
2635/// which must be of character or integer (signed or unsigned) type.
2636///
2637/// This was originally added because it greatly simplified the MIR in `cmp`
2638/// implementations, and then LLVM 20 added a backend intrinsic for it too.
2639///
2640/// The stabilized version of this intrinsic is [`Ord::cmp`].
2641#[rustc_intrinsic_const_stable_indirect]
2642#[rustc_nounwind]
2643#[rustc_intrinsic]
2644pub const fn three_way_compare<T: Copy>(lhs: T, rhss: T) -> crate::cmp::Ordering;
2645
2646/// Combine two values which have no bits in common.
2647///
2648/// This allows the backend to implement it as `a + b` *or* `a | b`,
2649/// depending which is easier to implement on a specific target.
2650///
2651/// # Safety
2652///
2653/// Requires that `(a & b) == 0`, or equivalently that `(a | b) == (a + b)`.
2654///
2655/// Otherwise it's immediate UB.
2656#[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
2657#[rustc_nounwind]
2658#[rustc_intrinsic]
2659#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2660#[miri::intrinsic_fallback_is_spec] // the fallbacks all `assume` to tell Miri
2661pub const unsafe fn disjoint_bitor<T: ~const fallback::DisjointBitOr>(a: T, b: T) -> T {
2662 // SAFETY: same preconditions as this function.
2663 unsafe { fallback::DisjointBitOr::disjoint_bitor(a, b) }
2664}
2665
2666/// Performs checked integer addition.
2667///
2668/// Note that, unlike most intrinsics, this is safe to call;
2669/// it does not require an `unsafe` block.
2670/// Therefore, implementations must not require the user to uphold
2671/// any safety invariants.
2672///
2673/// The stabilized versions of this intrinsic are available on the integer
2674/// primitives via the `overflowing_add` method. For example,
2675/// [`u32::overflowing_add`]
2676#[rustc_intrinsic_const_stable_indirect]
2677#[rustc_nounwind]
2678#[rustc_intrinsic]
2679pub const fn add_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2680
2681/// Performs checked integer subtraction
2682///
2683/// Note that, unlike most intrinsics, this is safe to call;
2684/// it does not require an `unsafe` block.
2685/// Therefore, implementations must not require the user to uphold
2686/// any safety invariants.
2687///
2688/// The stabilized versions of this intrinsic are available on the integer
2689/// primitives via the `overflowing_sub` method. For example,
2690/// [`u32::overflowing_sub`]
2691#[rustc_intrinsic_const_stable_indirect]
2692#[rustc_nounwind]
2693#[rustc_intrinsic]
2694pub const fn sub_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2695
2696/// Performs checked integer multiplication
2697///
2698/// Note that, unlike most intrinsics, this is safe to call;
2699/// it does not require an `unsafe` block.
2700/// Therefore, implementations must not require the user to uphold
2701/// any safety invariants.
2702///
2703/// The stabilized versions of this intrinsic are available on the integer
2704/// primitives via the `overflowing_mul` method. For example,
2705/// [`u32::overflowing_mul`]
2706#[rustc_intrinsic_const_stable_indirect]
2707#[rustc_nounwind]
2708#[rustc_intrinsic]
2709pub const fn mul_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2710
2711/// Performs full-width multiplication and addition with a carry:
2712/// `multiplier * multiplicand + addend + carry`.
2713///
2714/// This is possible without any overflow. For `uN`:
2715/// MAX * MAX + MAX + MAX
2716/// => (2ⁿ-1) × (2ⁿ-1) + (2ⁿ-1) + (2ⁿ-1)
2717/// => (2²ⁿ - 2ⁿ⁺¹ + 1) + (2ⁿ⁺¹ - 2)
2718/// => 2²ⁿ - 1
2719///
2720/// For `iN`, the upper bound is MIN * MIN + MAX + MAX => 2²ⁿ⁻² + 2ⁿ - 2,
2721/// and the lower bound is MAX * MIN + MIN + MIN => -2²ⁿ⁻² - 2ⁿ + 2ⁿ⁺¹.
2722///
2723/// This currently supports unsigned integers *only*, no signed ones.
2724/// The stabilized versions of this intrinsic are available on integers.
2725#[unstable(feature = "core_intrinsics", issue = "none")]
2726#[rustc_const_unstable(feature = "const_carrying_mul_add", issue = "85532")]
2727#[rustc_nounwind]
2728#[rustc_intrinsic]
2729#[miri::intrinsic_fallback_is_spec]
2730pub const fn carrying_mul_add<T: ~const fallback::CarryingMulAdd<Unsigned = U>, U>(
2731 multiplier: T,
2732 multiplicand: T,
2733 addend: T,
2734 carry: T,
2735) -> (U, T) {
2736 multiplier.carrying_mul_add(multiplicand, addend, carry)
2737}
2738
2739/// Performs an exact division, resulting in undefined behavior where
2740/// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`
2741///
2742/// This intrinsic does not have a stable counterpart.
2743#[rustc_intrinsic_const_stable_indirect]
2744#[rustc_nounwind]
2745#[rustc_intrinsic]
2746pub const unsafe fn exact_div<T: Copy>(x: T, y: T) -> T;
2747
2748/// Performs an unchecked division, resulting in undefined behavior
2749/// where `y == 0` or `x == T::MIN && y == -1`
2750///
2751/// Safe wrappers for this intrinsic are available on the integer
2752/// primitives via the `checked_div` method. For example,
2753/// [`u32::checked_div`]
2754#[rustc_intrinsic_const_stable_indirect]
2755#[rustc_nounwind]
2756#[rustc_intrinsic]
2757pub const unsafe fn unchecked_div<T: Copy>(x: T, y: T) -> T;
2758/// Returns the remainder of an unchecked division, resulting in
2759/// undefined behavior when `y == 0` or `x == T::MIN && y == -1`
2760///
2761/// Safe wrappers for this intrinsic are available on the integer
2762/// primitives via the `checked_rem` method. For example,
2763/// [`u32::checked_rem`]
2764#[rustc_intrinsic_const_stable_indirect]
2765#[rustc_nounwind]
2766#[rustc_intrinsic]
2767pub const unsafe fn unchecked_rem<T: Copy>(x: T, y: T) -> T;
2768
2769/// Performs an unchecked left shift, resulting in undefined behavior when
2770/// `y < 0` or `y >= N`, where N is the width of T in bits.
2771///
2772/// Safe wrappers for this intrinsic are available on the integer
2773/// primitives via the `checked_shl` method. For example,
2774/// [`u32::checked_shl`]
2775#[rustc_intrinsic_const_stable_indirect]
2776#[rustc_nounwind]
2777#[rustc_intrinsic]
2778pub const unsafe fn unchecked_shl<T: Copy, U: Copy>(x: T, y: U) -> T;
2779/// Performs an unchecked right shift, resulting in undefined behavior when
2780/// `y < 0` or `y >= N`, where N is the width of T in bits.
2781///
2782/// Safe wrappers for this intrinsic are available on the integer
2783/// primitives via the `checked_shr` method. For example,
2784/// [`u32::checked_shr`]
2785#[rustc_intrinsic_const_stable_indirect]
2786#[rustc_nounwind]
2787#[rustc_intrinsic]
2788pub const unsafe fn unchecked_shr<T: Copy, U: Copy>(x: T, y: U) -> T;
2789
2790/// Returns the result of an unchecked addition, resulting in
2791/// undefined behavior when `x + y > T::MAX` or `x + y < T::MIN`.
2792///
2793/// The stable counterpart of this intrinsic is `unchecked_add` on the various
2794/// integer types, such as [`u16::unchecked_add`] and [`i64::unchecked_add`].
2795#[rustc_intrinsic_const_stable_indirect]
2796#[rustc_nounwind]
2797#[rustc_intrinsic]
2798pub const unsafe fn unchecked_add<T: Copy>(x: T, y: T) -> T;
2799
2800/// Returns the result of an unchecked subtraction, resulting in
2801/// undefined behavior when `x - y > T::MAX` or `x - y < T::MIN`.
2802///
2803/// The stable counterpart of this intrinsic is `unchecked_sub` on the various
2804/// integer types, such as [`u16::unchecked_sub`] and [`i64::unchecked_sub`].
2805#[rustc_intrinsic_const_stable_indirect]
2806#[rustc_nounwind]
2807#[rustc_intrinsic]
2808pub const unsafe fn unchecked_sub<T: Copy>(x: T, y: T) -> T;
2809
2810/// Returns the result of an unchecked multiplication, resulting in
2811/// undefined behavior when `x * y > T::MAX` or `x * y < T::MIN`.
2812///
2813/// The stable counterpart of this intrinsic is `unchecked_mul` on the various
2814/// integer types, such as [`u16::unchecked_mul`] and [`i64::unchecked_mul`].
2815#[rustc_intrinsic_const_stable_indirect]
2816#[rustc_nounwind]
2817#[rustc_intrinsic]
2818pub const unsafe fn unchecked_mul<T: Copy>(x: T, y: T) -> T;
2819
2820/// Performs rotate left.
2821///
2822/// Note that, unlike most intrinsics, this is safe to call;
2823/// it does not require an `unsafe` block.
2824/// Therefore, implementations must not require the user to uphold
2825/// any safety invariants.
2826///
2827/// The stabilized versions of this intrinsic are available on the integer
2828/// primitives via the `rotate_left` method. For example,
2829/// [`u32::rotate_left`]
2830#[rustc_intrinsic_const_stable_indirect]
2831#[rustc_nounwind]
2832#[rustc_intrinsic]
2833pub const fn rotate_left<T: Copy>(x: T, shift: u32) -> T;
2834
2835/// Performs rotate right.
2836///
2837/// Note that, unlike most intrinsics, this is safe to call;
2838/// it does not require an `unsafe` block.
2839/// Therefore, implementations must not require the user to uphold
2840/// any safety invariants.
2841///
2842/// The stabilized versions of this intrinsic are available on the integer
2843/// primitives via the `rotate_right` method. For example,
2844/// [`u32::rotate_right`]
2845#[rustc_intrinsic_const_stable_indirect]
2846#[rustc_nounwind]
2847#[rustc_intrinsic]
2848pub const fn rotate_right<T: Copy>(x: T, shift: u32) -> T;
2849
2850/// Returns (a + b) mod 2<sup>N</sup>, where N is the width of T in bits.
2851///
2852/// Note that, unlike most intrinsics, this is safe to call;
2853/// it does not require an `unsafe` block.
2854/// Therefore, implementations must not require the user to uphold
2855/// any safety invariants.
2856///
2857/// The stabilized versions of this intrinsic are available on the integer
2858/// primitives via the `wrapping_add` method. For example,
2859/// [`u32::wrapping_add`]
2860#[rustc_intrinsic_const_stable_indirect]
2861#[rustc_nounwind]
2862#[rustc_intrinsic]
2863pub const fn wrapping_add<T: Copy>(a: T, b: T) -> T;
2864/// Returns (a - b) mod 2<sup>N</sup>, where N is the width of T in bits.
2865///
2866/// Note that, unlike most intrinsics, this is safe to call;
2867/// it does not require an `unsafe` block.
2868/// Therefore, implementations must not require the user to uphold
2869/// any safety invariants.
2870///
2871/// The stabilized versions of this intrinsic are available on the integer
2872/// primitives via the `wrapping_sub` method. For example,
2873/// [`u32::wrapping_sub`]
2874#[rustc_intrinsic_const_stable_indirect]
2875#[rustc_nounwind]
2876#[rustc_intrinsic]
2877pub const fn wrapping_sub<T: Copy>(a: T, b: T) -> T;
2878/// Returns (a * b) mod 2<sup>N</sup>, where N is the width of T in bits.
2879///
2880/// Note that, unlike most intrinsics, this is safe to call;
2881/// it does not require an `unsafe` block.
2882/// Therefore, implementations must not require the user to uphold
2883/// any safety invariants.
2884///
2885/// The stabilized versions of this intrinsic are available on the integer
2886/// primitives via the `wrapping_mul` method. For example,
2887/// [`u32::wrapping_mul`]
2888#[rustc_intrinsic_const_stable_indirect]
2889#[rustc_nounwind]
2890#[rustc_intrinsic]
2891pub const fn wrapping_mul<T: Copy>(a: T, b: T) -> T;
2892
2893/// Computes `a + b`, saturating at numeric bounds.
2894///
2895/// Note that, unlike most intrinsics, this is safe to call;
2896/// it does not require an `unsafe` block.
2897/// Therefore, implementations must not require the user to uphold
2898/// any safety invariants.
2899///
2900/// The stabilized versions of this intrinsic are available on the integer
2901/// primitives via the `saturating_add` method. For example,
2902/// [`u32::saturating_add`]
2903#[rustc_intrinsic_const_stable_indirect]
2904#[rustc_nounwind]
2905#[rustc_intrinsic]
2906pub const fn saturating_add<T: Copy>(a: T, b: T) -> T;
2907/// Computes `a - b`, saturating at numeric bounds.
2908///
2909/// Note that, unlike most intrinsics, this is safe to call;
2910/// it does not require an `unsafe` block.
2911/// Therefore, implementations must not require the user to uphold
2912/// any safety invariants.
2913///
2914/// The stabilized versions of this intrinsic are available on the integer
2915/// primitives via the `saturating_sub` method. For example,
2916/// [`u32::saturating_sub`]
2917#[rustc_intrinsic_const_stable_indirect]
2918#[rustc_nounwind]
2919#[rustc_intrinsic]
2920pub const fn saturating_sub<T: Copy>(a: T, b: T) -> T;
2921
2922/// This is an implementation detail of [`crate::ptr::read`] and should
2923/// not be used anywhere else. See its comments for why this exists.
2924///
2925/// This intrinsic can *only* be called where the pointer is a local without
2926/// projections (`read_via_copy(ptr)`, not `read_via_copy(*ptr)`) so that it
2927/// trivially obeys runtime-MIR rules about derefs in operands.
2928#[rustc_intrinsic_const_stable_indirect]
2929#[rustc_nounwind]
2930#[rustc_intrinsic]
2931pub const unsafe fn read_via_copy<T>(ptr: *const T) -> T;
2932
2933/// This is an implementation detail of [`crate::ptr::write`] and should
2934/// not be used anywhere else. See its comments for why this exists.
2935///
2936/// This intrinsic can *only* be called where the pointer is a local without
2937/// projections (`write_via_move(ptr, x)`, not `write_via_move(*ptr, x)`) so
2938/// that it trivially obeys runtime-MIR rules about derefs in operands.
2939#[rustc_intrinsic_const_stable_indirect]
2940#[rustc_nounwind]
2941#[rustc_intrinsic]
2942pub const unsafe fn write_via_move<T>(ptr: *mut T, value: T);
2943
2944/// Returns the value of the discriminant for the variant in 'v';
2945/// if `T` has no discriminant, returns `0`.
2946///
2947/// Note that, unlike most intrinsics, this is safe to call;
2948/// it does not require an `unsafe` block.
2949/// Therefore, implementations must not require the user to uphold
2950/// any safety invariants.
2951///
2952/// The stabilized version of this intrinsic is [`core::mem::discriminant`].
2953#[rustc_intrinsic_const_stable_indirect]
2954#[rustc_nounwind]
2955#[rustc_intrinsic]
2956pub const fn discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant;
2957
2958/// Rust's "try catch" construct for unwinding. Invokes the function pointer `try_fn` with the
2959/// data pointer `data`, and calls `catch_fn` if unwinding occurs while `try_fn` runs.
2960/// Returns `1` if unwinding occurred and `catch_fn` was called; returns `0` otherwise.
2961///
2962/// `catch_fn` must not unwind.
2963///
2964/// The third argument is a function called if an unwind occurs (both Rust `panic` and foreign
2965/// unwinds). This function takes the data pointer and a pointer to the target- and
2966/// runtime-specific exception object that was caught.
2967///
2968/// Note that in the case of a foreign unwinding operation, the exception object data may not be
2969/// safely usable from Rust, and should not be directly exposed via the standard library. To
2970/// prevent unsafe access, the library implementation may either abort the process or present an
2971/// opaque error type to the user.
2972///
2973/// For more information, see the compiler's source, as well as the documentation for the stable
2974/// version of this intrinsic, `std::panic::catch_unwind`.
2975#[rustc_intrinsic]
2976#[rustc_nounwind]
2977pub unsafe fn catch_unwind(
2978 _try_fn: fn(*mut u8),
2979 _data: *mut u8,
2980 _catch_fn: fn(*mut u8, *mut u8),
2981) -> i32;
2982
2983/// Emits a `nontemporal` store, which gives a hint to the CPU that the data should not be held
2984/// in cache. Except for performance, this is fully equivalent to `ptr.write(val)`.
2985///
2986/// Not all architectures provide such an operation. For instance, x86 does not: while `MOVNT`
2987/// exists, that operation is *not* equivalent to `ptr.write(val)` (`MOVNT` writes can be reordered
2988/// in ways that are not allowed for regular writes).
2989#[rustc_intrinsic]
2990#[rustc_nounwind]
2991pub unsafe fn nontemporal_store<T>(ptr: *mut T, val: T);
2992
2993/// See documentation of `<*const T>::offset_from` for details.
2994#[rustc_intrinsic_const_stable_indirect]
2995#[rustc_nounwind]
2996#[rustc_intrinsic]
2997pub const unsafe fn ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize;
2998
2999/// See documentation of `<*const T>::offset_from_unsigned` for details.
3000#[rustc_nounwind]
3001#[rustc_intrinsic]
3002#[rustc_intrinsic_const_stable_indirect]
3003pub const unsafe fn ptr_offset_from_unsigned<T>(ptr: *const T, base: *const T) -> usize;
3004
3005/// See documentation of `<*const T>::guaranteed_eq` for details.
3006/// Returns `2` if the result is unknown.
3007/// Returns `1` if the pointers are guaranteed equal.
3008/// Returns `0` if the pointers are guaranteed inequal.
3009#[rustc_intrinsic]
3010#[rustc_nounwind]
3011#[rustc_do_not_const_check]
3012#[inline]
3013#[miri::intrinsic_fallback_is_spec]
3014pub const fn ptr_guaranteed_cmp<T>(ptr: *const T, other: *const T) -> u8 {
3015 (ptr == other) as u8
3016}
3017
3018/// Determines whether the raw bytes of the two values are equal.
3019///
3020/// This is particularly handy for arrays, since it allows things like just
3021/// comparing `i96`s instead of forcing `alloca`s for `[6 x i16]`.
3022///
3023/// Above some backend-decided threshold this will emit calls to `memcmp`,
3024/// like slice equality does, instead of causing massive code size.
3025///
3026/// Since this works by comparing the underlying bytes, the actual `T` is
3027/// not particularly important. It will be used for its size and alignment,
3028/// but any validity restrictions will be ignored, not enforced.
3029///
3030/// # Safety
3031///
3032/// It's UB to call this if any of the *bytes* in `*a` or `*b` are uninitialized.
3033/// Note that this is a stricter criterion than just the *values* being
3034/// fully-initialized: if `T` has padding, it's UB to call this intrinsic.
3035///
3036/// At compile-time, it is furthermore UB to call this if any of the bytes
3037/// in `*a` or `*b` have provenance.
3038///
3039/// (The implementation is allowed to branch on the results of comparisons,
3040/// which is UB if any of their inputs are `undef`.)
3041#[rustc_nounwind]
3042#[rustc_intrinsic]
3043pub const unsafe fn raw_eq<T>(a: &T, b: &T) -> bool;
3044
3045/// Lexicographically compare `[left, left + bytes)` and `[right, right + bytes)`
3046/// as unsigned bytes, returning negative if `left` is less, zero if all the
3047/// bytes match, or positive if `left` is greater.
3048///
3049/// This underlies things like `<[u8]>::cmp`, and will usually lower to `memcmp`.
3050///
3051/// # Safety
3052///
3053/// `left` and `right` must each be [valid] for reads of `bytes` bytes.
3054///
3055/// Note that this applies to the whole range, not just until the first byte
3056/// that differs. That allows optimizations that can read in large chunks.
3057///
3058/// [valid]: crate::ptr#safety
3059#[rustc_nounwind]
3060#[rustc_intrinsic]
3061pub const unsafe fn compare_bytes(left: *const u8, right: *const u8, bytes: usize) -> i32;
3062
3063/// See documentation of [`std::hint::black_box`] for details.
3064///
3065/// [`std::hint::black_box`]: crate::hint::black_box
3066#[rustc_nounwind]
3067#[rustc_intrinsic]
3068#[rustc_intrinsic_const_stable_indirect]
3069pub const fn black_box<T>(dummy: T) -> T;
3070
3071/// Selects which function to call depending on the context.
3072///
3073/// If this function is evaluated at compile-time, then a call to this
3074/// intrinsic will be replaced with a call to `called_in_const`. It gets
3075/// replaced with a call to `called_at_rt` otherwise.
3076///
3077/// This function is safe to call, but note the stability concerns below.
3078///
3079/// # Type Requirements
3080///
3081/// The two functions must be both function items. They cannot be function
3082/// pointers or closures. The first function must be a `const fn`.
3083///
3084/// `arg` will be the tupled arguments that will be passed to either one of
3085/// the two functions, therefore, both functions must accept the same type of
3086/// arguments. Both functions must return RET.
3087///
3088/// # Stability concerns
3089///
3090/// Rust has not yet decided that `const fn` are allowed to tell whether
3091/// they run at compile-time or at runtime. Therefore, when using this
3092/// intrinsic anywhere that can be reached from stable, it is crucial that
3093/// the end-to-end behavior of the stable `const fn` is the same for both
3094/// modes of execution. (Here, Undefined Behavior is considered "the same"
3095/// as any other behavior, so if the function exhibits UB at runtime then
3096/// it may do whatever it wants at compile-time.)
3097///
3098/// Here is an example of how this could cause a problem:
3099/// ```no_run
3100/// #![feature(const_eval_select)]
3101/// #![feature(core_intrinsics)]
3102/// # #![allow(internal_features)]
3103/// use std::intrinsics::const_eval_select;
3104///
3105/// // Standard library
3106/// pub const fn inconsistent() -> i32 {
3107/// fn runtime() -> i32 { 1 }
3108/// const fn compiletime() -> i32 { 2 }
3109///
3110/// // ⚠ This code violates the required equivalence of `compiletime`
3111/// // and `runtime`.
3112/// const_eval_select((), compiletime, runtime)
3113/// }
3114///
3115/// // User Crate
3116/// const X: i32 = inconsistent();
3117/// let x = inconsistent();
3118/// assert_eq!(x, X);
3119/// ```
3120///
3121/// Currently such an assertion would always succeed; until Rust decides
3122/// otherwise, that principle should not be violated.
3123#[rustc_const_unstable(feature = "const_eval_select", issue = "124625")]
3124#[rustc_intrinsic]
3125pub const fn const_eval_select<ARG: Tuple, F, G, RET>(
3126 _arg: ARG,
3127 _called_in_const: F,
3128 _called_at_rt: G,
3129) -> RET
3130where
3131 G: FnOnce<ARG, Output = RET>,
3132 F: FnOnce<ARG, Output = RET>;
3133
3134/// A macro to make it easier to invoke const_eval_select. Use as follows:
3135/// ```rust,ignore (just a macro example)
3136/// const_eval_select!(
3137/// @capture { arg1: i32 = some_expr, arg2: T = other_expr } -> U:
3138/// if const #[attributes_for_const_arm] {
3139/// // Compile-time code goes here.
3140/// } else #[attributes_for_runtime_arm] {
3141/// // Run-time code goes here.
3142/// }
3143/// )
3144/// ```
3145/// The `@capture` block declares which surrounding variables / expressions can be
3146/// used inside the `if const`.
3147/// Note that the two arms of this `if` really each become their own function, which is why the
3148/// macro supports setting attributes for those functions. The runtime function is always
3149/// markes as `#[inline]`.
3150///
3151/// See [`const_eval_select()`] for the rules and requirements around that intrinsic.
3152pub(crate) macro const_eval_select {
3153 (
3154 @capture$([$($binders:tt)*])? { $($arg:ident : $ty:ty = $val:expr),* $(,)? } $( -> $ret:ty )? :
3155 if const
3156 $(#[$compiletime_attr:meta])* $compiletime:block
3157 else
3158 $(#[$runtime_attr:meta])* $runtime:block
3159 ) => {
3160 // Use the `noinline` arm, after adding explicit `inline` attributes
3161 $crate::intrinsics::const_eval_select!(
3162 @capture$([$($binders)*])? { $($arg : $ty = $val),* } $(-> $ret)? :
3163 #[noinline]
3164 if const
3165 #[inline] // prevent codegen on this function
3166 $(#[$compiletime_attr])*
3167 $compiletime
3168 else
3169 #[inline] // avoid the overhead of an extra fn call
3170 $(#[$runtime_attr])*
3171 $runtime
3172 )
3173 },
3174 // With a leading #[noinline], we don't add inline attributes
3175 (
3176 @capture$([$($binders:tt)*])? { $($arg:ident : $ty:ty = $val:expr),* $(,)? } $( -> $ret:ty )? :
3177 #[noinline]
3178 if const
3179 $(#[$compiletime_attr:meta])* $compiletime:block
3180 else
3181 $(#[$runtime_attr:meta])* $runtime:block
3182 ) => {{
3183 $(#[$runtime_attr])*
3184 fn runtime$(<$($binders)*>)?($($arg: $ty),*) $( -> $ret )? {
3185 $runtime
3186 }
3187
3188 $(#[$compiletime_attr])*
3189 const fn compiletime$(<$($binders)*>)?($($arg: $ty),*) $( -> $ret )? {
3190 // Don't warn if one of the arguments is unused.
3191 $(let _ = $arg;)*
3192
3193 $compiletime
3194 }
3195
3196 const_eval_select(($($val,)*), compiletime, runtime)
3197 }},
3198 // We support leaving away the `val` expressions for *all* arguments
3199 // (but not for *some* arguments, that's too tricky).
3200 (
3201 @capture$([$($binders:tt)*])? { $($arg:ident : $ty:ty),* $(,)? } $( -> $ret:ty )? :
3202 if const
3203 $(#[$compiletime_attr:meta])* $compiletime:block
3204 else
3205 $(#[$runtime_attr:meta])* $runtime:block
3206 ) => {
3207 $crate::intrinsics::const_eval_select!(
3208 @capture$([$($binders)*])? { $($arg : $ty = $arg),* } $(-> $ret)? :
3209 if const
3210 $(#[$compiletime_attr])* $compiletime
3211 else
3212 $(#[$runtime_attr])* $runtime
3213 )
3214 },
3215}
3216
3217/// Returns whether the argument's value is statically known at
3218/// compile-time.
3219///
3220/// This is useful when there is a way of writing the code that will
3221/// be *faster* when some variables have known values, but *slower*
3222/// in the general case: an `if is_val_statically_known(var)` can be used
3223/// to select between these two variants. The `if` will be optimized away
3224/// and only the desired branch remains.
3225///
3226/// Formally speaking, this function non-deterministically returns `true`
3227/// or `false`, and the caller has to ensure sound behavior for both cases.
3228/// In other words, the following code has *Undefined Behavior*:
3229///
3230/// ```no_run
3231/// #![feature(core_intrinsics)]
3232/// # #![allow(internal_features)]
3233/// use std::hint::unreachable_unchecked;
3234/// use std::intrinsics::is_val_statically_known;
3235///
3236/// if !is_val_statically_known(0) { unsafe { unreachable_unchecked(); } }
3237/// ```
3238///
3239/// This also means that the following code's behavior is unspecified; it
3240/// may panic, or it may not:
3241///
3242/// ```no_run
3243/// #![feature(core_intrinsics)]
3244/// # #![allow(internal_features)]
3245/// use std::intrinsics::is_val_statically_known;
3246///
3247/// assert_eq!(is_val_statically_known(0), is_val_statically_known(0));
3248/// ```
3249///
3250/// Unsafe code may not rely on `is_val_statically_known` returning any
3251/// particular value, ever. However, the compiler will generally make it
3252/// return `true` only if the value of the argument is actually known.
3253///
3254/// # Stability concerns
3255///
3256/// While it is safe to call, this intrinsic may behave differently in
3257/// a `const` context than otherwise. See the [`const_eval_select()`]
3258/// documentation for an explanation of the issues this can cause. Unlike
3259/// `const_eval_select`, this intrinsic isn't guaranteed to behave
3260/// deterministically even in a `const` context.
3261///
3262/// # Type Requirements
3263///
3264/// `T` must be either a `bool`, a `char`, a primitive numeric type (e.g. `f32`,
3265/// but not `NonZeroISize`), or any thin pointer (e.g. `*mut String`).
3266/// Any other argument types *may* cause a compiler error.
3267///
3268/// ## Pointers
3269///
3270/// When the input is a pointer, only the pointer itself is
3271/// ever considered. The pointee has no effect. Currently, these functions
3272/// behave identically:
3273///
3274/// ```
3275/// #![feature(core_intrinsics)]
3276/// # #![allow(internal_features)]
3277/// use std::intrinsics::is_val_statically_known;
3278///
3279/// fn foo(x: &i32) -> bool {
3280/// is_val_statically_known(x)
3281/// }
3282///
3283/// fn bar(x: &i32) -> bool {
3284/// is_val_statically_known(
3285/// (x as *const i32).addr()
3286/// )
3287/// }
3288/// # _ = foo(&5_i32);
3289/// # _ = bar(&5_i32);
3290/// ```
3291#[rustc_const_stable_indirect]
3292#[rustc_nounwind]
3293#[unstable(feature = "core_intrinsics", issue = "none")]
3294#[rustc_intrinsic]
3295pub const fn is_val_statically_known<T: Copy>(_arg: T) -> bool {
3296 false
3297}
3298
3299/// Non-overlapping *typed* swap of a single value.
3300///
3301/// The codegen backends will replace this with a better implementation when
3302/// `T` is a simple type that can be loaded and stored as an immediate.
3303///
3304/// The stabilized form of this intrinsic is [`crate::mem::swap`].
3305///
3306/// # Safety
3307/// Behavior is undefined if any of the following conditions are violated:
3308///
3309/// * Both `x` and `y` must be [valid] for both reads and writes.
3310///
3311/// * Both `x` and `y` must be properly aligned.
3312///
3313/// * The region of memory beginning at `x` must *not* overlap with the region of memory
3314/// beginning at `y`.
3315///
3316/// * The memory pointed by `x` and `y` must both contain values of type `T`.
3317///
3318/// [valid]: crate::ptr#safety
3319#[rustc_nounwind]
3320#[inline]
3321#[rustc_intrinsic]
3322#[rustc_intrinsic_const_stable_indirect]
3323#[rustc_allow_const_fn_unstable(const_swap_nonoverlapping)] // this is anyway not called since CTFE implements the intrinsic
3324pub const unsafe fn typed_swap_nonoverlapping<T>(x: *mut T, y: *mut T) {
3325 // SAFETY: The caller provided single non-overlapping items behind
3326 // pointers, so swapping them with `count: 1` is fine.
3327 unsafe { ptr::swap_nonoverlapping(x, y, 1) };
3328}
3329
3330/// Returns whether we should perform some UB-checking at runtime. This eventually evaluates to
3331/// `cfg!(ub_checks)`, but behaves different from `cfg!` when mixing crates built with different
3332/// flags: if the crate has UB checks enabled or carries the `#[rustc_preserve_ub_checks]`
3333/// attribute, evaluation is delayed until monomorphization (or until the call gets inlined into
3334/// a crate that does not delay evaluation further); otherwise it can happen any time.
3335///
3336/// The common case here is a user program built with ub_checks linked against the distributed
3337/// sysroot which is built without ub_checks but with `#[rustc_preserve_ub_checks]`.
3338/// For code that gets monomorphized in the user crate (i.e., generic functions and functions with
3339/// `#[inline]`), gating assertions on `ub_checks()` rather than `cfg!(ub_checks)` means that
3340/// assertions are enabled whenever the *user crate* has UB checks enabled. However, if the
3341/// user has UB checks disabled, the checks will still get optimized out. This intrinsic is
3342/// primarily used by [`ub_checks::assert_unsafe_precondition`].
3343#[rustc_intrinsic_const_stable_indirect] // just for UB checks
3344#[inline(always)]
3345#[rustc_intrinsic]
3346pub const fn ub_checks() -> bool {
3347 cfg!(ub_checks)
3348}
3349
3350/// Allocates a block of memory at compile time.
3351/// At runtime, just returns a null pointer.
3352///
3353/// # Safety
3354///
3355/// - The `align` argument must be a power of two.
3356/// - At compile time, a compile error occurs if this constraint is violated.
3357/// - At runtime, it is not checked.
3358#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
3359#[rustc_nounwind]
3360#[rustc_intrinsic]
3361#[miri::intrinsic_fallback_is_spec]
3362pub const unsafe fn const_allocate(_size: usize, _align: usize) -> *mut u8 {
3363 // const eval overrides this function, but runtime code for now just returns null pointers.
3364 // See <https://github.com/rust-lang/rust/issues/93935>.
3365 crate::ptr::null_mut()
3366}
3367
3368/// Deallocates a memory which allocated by `intrinsics::const_allocate` at compile time.
3369/// At runtime, does nothing.
3370///
3371/// # Safety
3372///
3373/// - The `align` argument must be a power of two.
3374/// - At compile time, a compile error occurs if this constraint is violated.
3375/// - At runtime, it is not checked.
3376/// - If the `ptr` is created in an another const, this intrinsic doesn't deallocate it.
3377/// - If the `ptr` is pointing to a local variable, this intrinsic doesn't deallocate it.
3378#[rustc_const_unstable(feature = "const_heap", issue = "79597")]
3379#[unstable(feature = "core_intrinsics", issue = "none")]
3380#[rustc_nounwind]
3381#[rustc_intrinsic]
3382#[miri::intrinsic_fallback_is_spec]
3383pub const unsafe fn const_deallocate(_ptr: *mut u8, _size: usize, _align: usize) {
3384 // Runtime NOP
3385}
3386
3387/// Returns whether we should perform contract-checking at runtime.
3388///
3389/// This is meant to be similar to the ub_checks intrinsic, in terms
3390/// of not prematurely commiting at compile-time to whether contract
3391/// checking is turned on, so that we can specify contracts in libstd
3392/// and let an end user opt into turning them on.
3393#[rustc_const_unstable(feature = "contracts_internals", issue = "128044" /* compiler-team#759 */)]
3394#[unstable(feature = "contracts_internals", issue = "128044" /* compiler-team#759 */)]
3395#[inline(always)]
3396#[rustc_intrinsic]
3397pub const fn contract_checks() -> bool {
3398 // FIXME: should this be `false` or `cfg!(contract_checks)`?
3399
3400 // cfg!(contract_checks)
3401 false
3402}
3403
3404/// Check if the pre-condition `cond` has been met.
3405///
3406/// By default, if `contract_checks` is enabled, this will panic with no unwind if the condition
3407/// returns false.
3408///
3409/// Note that this function is a no-op during constant evaluation.
3410#[unstable(feature = "contracts_internals", issue = "128044")]
3411// Calls to this function get inserted by an AST expansion pass, which uses the equivalent of
3412// `#[allow_internal_unstable]` to allow using `contracts_internals` functions. Const-checking
3413// doesn't honor `#[allow_internal_unstable]`, so for the const feature gate we use the user-facing
3414// `contracts` feature rather than the perma-unstable `contracts_internals`
3415#[rustc_const_unstable(feature = "contracts", issue = "128044")]
3416#[lang = "contract_check_requires"]
3417#[rustc_intrinsic]
3418pub const fn contract_check_requires<C: Fn() -> bool + Copy>(cond: C) {
3419 const_eval_select!(
3420 @capture[C: Fn() -> bool + Copy] { cond: C } :
3421 if const {
3422 // Do nothing
3423 } else {
3424 if contract_checks() && !cond() {
3425 // Emit no unwind panic in case this was a safety requirement.
3426 crate::panicking::panic_nounwind("failed requires check");
3427 }
3428 }
3429 )
3430}
3431
3432/// Check if the post-condition `cond` has been met.
3433///
3434/// By default, if `contract_checks` is enabled, this will panic with no unwind if the condition
3435/// returns false.
3436///
3437/// Note that this function is a no-op during constant evaluation.
3438#[cfg(not(bootstrap))]
3439#[unstable(feature = "contracts_internals", issue = "128044")]
3440// Similar to `contract_check_requires`, we need to use the user-facing
3441// `contracts` feature rather than the perma-unstable `contracts_internals`.
3442// Const-checking doesn't honor allow_internal_unstable logic used by contract expansion.
3443#[rustc_const_unstable(feature = "contracts", issue = "128044")]
3444#[lang = "contract_check_ensures"]
3445#[rustc_intrinsic]
3446pub const fn contract_check_ensures<C: Fn(&Ret) -> bool + Copy, Ret>(cond: C, ret: Ret) -> Ret {
3447 const_eval_select!(
3448 @capture[C: Fn(&Ret) -> bool + Copy, Ret] { cond: C, ret: Ret } -> Ret :
3449 if const {
3450 // Do nothing
3451 ret
3452 } else {
3453 if contract_checks() && !cond(&ret) {
3454 // Emit no unwind panic in case this was a safety requirement.
3455 crate::panicking::panic_nounwind("failed ensures check");
3456 }
3457 ret
3458 }
3459 )
3460}
3461
3462/// This is the old version of contract_check_ensures kept here for bootstrap only.
3463#[cfg(bootstrap)]
3464#[unstable(feature = "contracts_internals", issue = "128044" /* compiler-team#759 */)]
3465#[rustc_intrinsic]
3466pub fn contract_check_ensures<'a, Ret, C: Fn(&'a Ret) -> bool>(ret: &'a Ret, cond: C) {
3467 if contract_checks() && !cond(ret) {
3468 crate::panicking::panic_nounwind("failed ensures check");
3469 }
3470}
3471
3472/// The intrinsic will return the size stored in that vtable.
3473///
3474/// # Safety
3475///
3476/// `ptr` must point to a vtable.
3477#[rustc_nounwind]
3478#[unstable(feature = "core_intrinsics", issue = "none")]
3479#[rustc_intrinsic]
3480pub unsafe fn vtable_size(ptr: *const ()) -> usize;
3481
3482/// The intrinsic will return the alignment stored in that vtable.
3483///
3484/// # Safety
3485///
3486/// `ptr` must point to a vtable.
3487#[rustc_nounwind]
3488#[unstable(feature = "core_intrinsics", issue = "none")]
3489#[rustc_intrinsic]
3490pub unsafe fn vtable_align(ptr: *const ()) -> usize;
3491
3492/// The size of a type in bytes.
3493///
3494/// Note that, unlike most intrinsics, this is safe to call;
3495/// it does not require an `unsafe` block.
3496/// Therefore, implementations must not require the user to uphold
3497/// any safety invariants.
3498///
3499/// More specifically, this is the offset in bytes between successive
3500/// items of the same type, including alignment padding.
3501///
3502/// The stabilized version of this intrinsic is [`size_of`].
3503#[rustc_nounwind]
3504#[unstable(feature = "core_intrinsics", issue = "none")]
3505#[rustc_intrinsic_const_stable_indirect]
3506#[rustc_intrinsic]
3507pub const fn size_of<T>() -> usize;
3508
3509/// The minimum alignment of a type.
3510///
3511/// Note that, unlike most intrinsics, this is safe to call;
3512/// it does not require an `unsafe` block.
3513/// Therefore, implementations must not require the user to uphold
3514/// any safety invariants.
3515///
3516/// The stabilized version of this intrinsic is [`align_of`].
3517#[rustc_nounwind]
3518#[unstable(feature = "core_intrinsics", issue = "none")]
3519#[rustc_intrinsic_const_stable_indirect]
3520#[rustc_intrinsic]
3521pub const fn min_align_of<T>() -> usize;
3522
3523/// The preferred alignment of a type.
3524///
3525/// This intrinsic does not have a stable counterpart.
3526/// It's "tracking issue" is [#91971](https://github.com/rust-lang/rust/issues/91971).
3527#[rustc_nounwind]
3528#[unstable(feature = "core_intrinsics", issue = "none")]
3529#[rustc_intrinsic]
3530pub const unsafe fn pref_align_of<T>() -> usize;
3531
3532/// Returns the number of variants of the type `T` cast to a `usize`;
3533/// if `T` has no variants, returns `0`. Uninhabited variants will be counted.
3534///
3535/// Note that, unlike most intrinsics, this is safe to call;
3536/// it does not require an `unsafe` block.
3537/// Therefore, implementations must not require the user to uphold
3538/// any safety invariants.
3539///
3540/// The to-be-stabilized version of this intrinsic is [`crate::mem::variant_count`].
3541#[rustc_nounwind]
3542#[unstable(feature = "core_intrinsics", issue = "none")]
3543#[rustc_intrinsic]
3544pub const fn variant_count<T>() -> usize;
3545
3546/// The size of the referenced value in bytes.
3547///
3548/// The stabilized version of this intrinsic is [`size_of_val`].
3549///
3550/// # Safety
3551///
3552/// See [`crate::mem::size_of_val_raw`] for safety conditions.
3553#[rustc_nounwind]
3554#[unstable(feature = "core_intrinsics", issue = "none")]
3555#[rustc_intrinsic]
3556#[rustc_intrinsic_const_stable_indirect]
3557pub const unsafe fn size_of_val<T: ?Sized>(ptr: *const T) -> usize;
3558
3559/// The required alignment of the referenced value.
3560///
3561/// The stabilized version of this intrinsic is [`align_of_val`].
3562///
3563/// # Safety
3564///
3565/// See [`crate::mem::align_of_val_raw`] for safety conditions.
3566#[rustc_nounwind]
3567#[unstable(feature = "core_intrinsics", issue = "none")]
3568#[rustc_intrinsic]
3569#[rustc_intrinsic_const_stable_indirect]
3570pub const unsafe fn min_align_of_val<T: ?Sized>(ptr: *const T) -> usize;
3571
3572/// Gets a static string slice containing the name of a type.
3573///
3574/// Note that, unlike most intrinsics, this is safe to call;
3575/// it does not require an `unsafe` block.
3576/// Therefore, implementations must not require the user to uphold
3577/// any safety invariants.
3578///
3579/// The stabilized version of this intrinsic is [`core::any::type_name`].
3580#[rustc_nounwind]
3581#[unstable(feature = "core_intrinsics", issue = "none")]
3582#[rustc_intrinsic]
3583pub const fn type_name<T: ?Sized>() -> &'static str;
3584
3585/// Gets an identifier which is globally unique to the specified type. This
3586/// function will return the same value for a type regardless of whichever
3587/// crate it is invoked in.
3588///
3589/// Note that, unlike most intrinsics, this is safe to call;
3590/// it does not require an `unsafe` block.
3591/// Therefore, implementations must not require the user to uphold
3592/// any safety invariants.
3593///
3594/// The stabilized version of this intrinsic is [`core::any::TypeId::of`].
3595#[rustc_nounwind]
3596#[unstable(feature = "core_intrinsics", issue = "none")]
3597#[rustc_intrinsic]
3598pub const fn type_id<T: ?Sized + 'static>() -> u128;
3599
3600/// Lowers in MIR to `Rvalue::Aggregate` with `AggregateKind::RawPtr`.
3601///
3602/// This is used to implement functions like `slice::from_raw_parts_mut` and
3603/// `ptr::from_raw_parts` in a way compatible with the compiler being able to
3604/// change the possible layouts of pointers.
3605#[rustc_nounwind]
3606#[unstable(feature = "core_intrinsics", issue = "none")]
3607#[rustc_intrinsic_const_stable_indirect]
3608#[rustc_intrinsic]
3609pub const fn aggregate_raw_ptr<P: AggregateRawPtr<D, Metadata = M>, D, M>(data: D, meta: M) -> P;
3610
3611#[unstable(feature = "core_intrinsics", issue = "none")]
3612pub trait AggregateRawPtr<D> {
3613 type Metadata: Copy;
3614}
3615impl<P: ?Sized, T: ptr::Thin> AggregateRawPtr<*const T> for *const P {
3616 type Metadata = <P as ptr::Pointee>::Metadata;
3617}
3618impl<P: ?Sized, T: ptr::Thin> AggregateRawPtr<*mut T> for *mut P {
3619 type Metadata = <P as ptr::Pointee>::Metadata;
3620}
3621
3622/// Lowers in MIR to `Rvalue::UnaryOp` with `UnOp::PtrMetadata`.
3623///
3624/// This is used to implement functions like `ptr::metadata`.
3625#[rustc_nounwind]
3626#[unstable(feature = "core_intrinsics", issue = "none")]
3627#[rustc_intrinsic_const_stable_indirect]
3628#[rustc_intrinsic]
3629pub const fn ptr_metadata<P: ptr::Pointee<Metadata = M> + ?Sized, M>(ptr: *const P) -> M;
3630
3631// Some functions are defined here because they accidentally got made
3632// available in this module on stable. See <https://github.com/rust-lang/rust/issues/15702>.
3633// (`transmute` also falls into this category, but it cannot be wrapped due to the
3634// check that `T` and `U` have the same size.)
3635
3636/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
3637/// and destination must *not* overlap.
3638///
3639/// For regions of memory which might overlap, use [`copy`] instead.
3640///
3641/// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but
3642/// with the source and destination arguments swapped,
3643/// and `count` counting the number of `T`s instead of bytes.
3644///
3645/// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the
3646/// requirements of `T`. The initialization state is preserved exactly.
3647///
3648/// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
3649///
3650/// # Safety
3651///
3652/// Behavior is undefined if any of the following conditions are violated:
3653///
3654/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
3655///
3656/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
3657///
3658/// * Both `src` and `dst` must be properly aligned.
3659///
3660/// * The region of memory beginning at `src` with a size of `count *
3661/// size_of::<T>()` bytes must *not* overlap with the region of memory
3662/// beginning at `dst` with the same size.
3663///
3664/// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
3665/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
3666/// in the region beginning at `*src` and the region beginning at `*dst` can
3667/// [violate memory safety][read-ownership].
3668///
3669/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
3670/// `0`, the pointers must be properly aligned.
3671///
3672/// [`read`]: crate::ptr::read
3673/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
3674/// [valid]: crate::ptr#safety
3675///
3676/// # Examples
3677///
3678/// Manually implement [`Vec::append`]:
3679///
3680/// ```
3681/// use std::ptr;
3682///
3683/// /// Moves all the elements of `src` into `dst`, leaving `src` empty.
3684/// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) {
3685/// let src_len = src.len();
3686/// let dst_len = dst.len();
3687///
3688/// // Ensure that `dst` has enough capacity to hold all of `src`.
3689/// dst.reserve(src_len);
3690///
3691/// unsafe {
3692/// // The call to add is always safe because `Vec` will never
3693/// // allocate more than `isize::MAX` bytes.
3694/// let dst_ptr = dst.as_mut_ptr().add(dst_len);
3695/// let src_ptr = src.as_ptr();
3696///
3697/// // Truncate `src` without dropping its contents. We do this first,
3698/// // to avoid problems in case something further down panics.
3699/// src.set_len(0);
3700///
3701/// // The two regions cannot overlap because mutable references do
3702/// // not alias, and two different vectors cannot own the same
3703/// // memory.
3704/// ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len);
3705///
3706/// // Notify `dst` that it now holds the contents of `src`.
3707/// dst.set_len(dst_len + src_len);
3708/// }
3709/// }
3710///
3711/// let mut a = vec!['r'];
3712/// let mut b = vec!['u', 's', 't'];
3713///
3714/// append(&mut a, &mut b);
3715///
3716/// assert_eq!(a, &['r', 'u', 's', 't']);
3717/// assert!(b.is_empty());
3718/// ```
3719///
3720/// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append
3721#[doc(alias = "memcpy")]
3722#[stable(feature = "rust1", since = "1.0.0")]
3723#[rustc_allowed_through_unstable_modules = "import this function via `std::ptr` instead"]
3724#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
3725#[inline(always)]
3726#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3727#[rustc_diagnostic_item = "ptr_copy_nonoverlapping"]
3728pub const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize) {
3729 #[rustc_intrinsic_const_stable_indirect]
3730 #[rustc_nounwind]
3731 #[rustc_intrinsic]
3732 const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
3733
3734 ub_checks::assert_unsafe_precondition!(
3735 check_language_ub,
3736 "ptr::copy_nonoverlapping requires that both pointer arguments are aligned and non-null \
3737 and the specified memory ranges do not overlap",
3738 (
3739 src: *const () = src as *const (),
3740 dst: *mut () = dst as *mut (),
3741 size: usize = size_of::<T>(),
3742 align: usize = align_of::<T>(),
3743 count: usize = count,
3744 ) => {
3745 let zero_size = count == 0 || size == 0;
3746 ub_checks::maybe_is_aligned_and_not_null(src, align, zero_size)
3747 && ub_checks::maybe_is_aligned_and_not_null(dst, align, zero_size)
3748 && ub_checks::maybe_is_nonoverlapping(src, dst, size, count)
3749 }
3750 );
3751
3752 // SAFETY: the safety contract for `copy_nonoverlapping` must be
3753 // upheld by the caller.
3754 unsafe { copy_nonoverlapping(src, dst, count) }
3755}
3756
3757/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
3758/// and destination may overlap.
3759///
3760/// If the source and destination will *never* overlap,
3761/// [`copy_nonoverlapping`] can be used instead.
3762///
3763/// `copy` is semantically equivalent to C's [`memmove`], but
3764/// with the source and destination arguments swapped,
3765/// and `count` counting the number of `T`s instead of bytes.
3766/// Copying takes place as if the bytes were copied from `src`
3767/// to a temporary array and then copied from the array to `dst`.
3768///
3769/// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the
3770/// requirements of `T`. The initialization state is preserved exactly.
3771///
3772/// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
3773///
3774/// # Safety
3775///
3776/// Behavior is undefined if any of the following conditions are violated:
3777///
3778/// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
3779///
3780/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes, and must remain valid even
3781/// when `src` is read for `count * size_of::<T>()` bytes. (This means if the memory ranges
3782/// overlap, the `dst` pointer must not be invalidated by `src` reads.)
3783///
3784/// * Both `src` and `dst` must be properly aligned.
3785///
3786/// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of
3787/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values
3788/// in the region beginning at `*src` and the region beginning at `*dst` can
3789/// [violate memory safety][read-ownership].
3790///
3791/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
3792/// `0`, the pointers must be properly aligned.
3793///
3794/// [`read`]: crate::ptr::read
3795/// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
3796/// [valid]: crate::ptr#safety
3797///
3798/// # Examples
3799///
3800/// Efficiently create a Rust vector from an unsafe buffer:
3801///
3802/// ```
3803/// use std::ptr;
3804///
3805/// /// # Safety
3806/// ///
3807/// /// * `ptr` must be correctly aligned for its type and non-zero.
3808/// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`.
3809/// /// * Those elements must not be used after calling this function unless `T: Copy`.
3810/// # #[allow(dead_code)]
3811/// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
3812/// let mut dst = Vec::with_capacity(elts);
3813///
3814/// // SAFETY: Our precondition ensures the source is aligned and valid,
3815/// // and `Vec::with_capacity` ensures that we have usable space to write them.
3816/// unsafe { ptr::copy(ptr, dst.as_mut_ptr(), elts); }
3817///
3818/// // SAFETY: We created it with this much capacity earlier,
3819/// // and the previous `copy` has initialized these elements.
3820/// unsafe { dst.set_len(elts); }
3821/// dst
3822/// }
3823/// ```
3824#[doc(alias = "memmove")]
3825#[stable(feature = "rust1", since = "1.0.0")]
3826#[rustc_allowed_through_unstable_modules = "import this function via `std::ptr` instead"]
3827#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
3828#[inline(always)]
3829#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3830#[rustc_diagnostic_item = "ptr_copy"]
3831pub const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize) {
3832 #[rustc_intrinsic_const_stable_indirect]
3833 #[rustc_nounwind]
3834 #[rustc_intrinsic]
3835 const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize);
3836
3837 // SAFETY: the safety contract for `copy` must be upheld by the caller.
3838 unsafe {
3839 ub_checks::assert_unsafe_precondition!(
3840 check_language_ub,
3841 "ptr::copy requires that both pointer arguments are aligned and non-null",
3842 (
3843 src: *const () = src as *const (),
3844 dst: *mut () = dst as *mut (),
3845 align: usize = align_of::<T>(),
3846 zero_size: bool = T::IS_ZST || count == 0,
3847 ) =>
3848 ub_checks::maybe_is_aligned_and_not_null(src, align, zero_size)
3849 && ub_checks::maybe_is_aligned_and_not_null(dst, align, zero_size)
3850 );
3851 copy(src, dst, count)
3852 }
3853}
3854
3855/// Sets `count * size_of::<T>()` bytes of memory starting at `dst` to
3856/// `val`.
3857///
3858/// `write_bytes` is similar to C's [`memset`], but sets `count *
3859/// size_of::<T>()` bytes to `val`.
3860///
3861/// [`memset`]: https://en.cppreference.com/w/c/string/byte/memset
3862///
3863/// # Safety
3864///
3865/// Behavior is undefined if any of the following conditions are violated:
3866///
3867/// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
3868///
3869/// * `dst` must be properly aligned.
3870///
3871/// Note that even if the effectively copied size (`count * size_of::<T>()`) is
3872/// `0`, the pointer must be properly aligned.
3873///
3874/// Additionally, note that changing `*dst` in this way can easily lead to undefined behavior (UB)
3875/// later if the written bytes are not a valid representation of some `T`. For instance, the
3876/// following is an **incorrect** use of this function:
3877///
3878/// ```rust,no_run
3879/// unsafe {
3880/// let mut value: u8 = 0;
3881/// let ptr: *mut bool = &mut value as *mut u8 as *mut bool;
3882/// let _bool = ptr.read(); // This is fine, `ptr` points to a valid `bool`.
3883/// ptr.write_bytes(42u8, 1); // This function itself does not cause UB...
3884/// let _bool = ptr.read(); // ...but it makes this operation UB! ⚠️
3885/// }
3886/// ```
3887///
3888/// [valid]: crate::ptr#safety
3889///
3890/// # Examples
3891///
3892/// Basic usage:
3893///
3894/// ```
3895/// use std::ptr;
3896///
3897/// let mut vec = vec![0u32; 4];
3898/// unsafe {
3899/// let vec_ptr = vec.as_mut_ptr();
3900/// ptr::write_bytes(vec_ptr, 0xfe, 2);
3901/// }
3902/// assert_eq!(vec, [0xfefefefe, 0xfefefefe, 0, 0]);
3903/// ```
3904#[doc(alias = "memset")]
3905#[stable(feature = "rust1", since = "1.0.0")]
3906#[rustc_allowed_through_unstable_modules = "import this function via `std::ptr` instead"]
3907#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
3908#[inline(always)]
3909#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3910#[rustc_diagnostic_item = "ptr_write_bytes"]
3911pub const unsafe fn write_bytes<T>(dst: *mut T, val: u8, count: usize) {
3912 #[rustc_intrinsic_const_stable_indirect]
3913 #[rustc_nounwind]
3914 #[rustc_intrinsic]
3915 const unsafe fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
3916
3917 // SAFETY: the safety contract for `write_bytes` must be upheld by the caller.
3918 unsafe {
3919 ub_checks::assert_unsafe_precondition!(
3920 check_language_ub,
3921 "ptr::write_bytes requires that the destination pointer is aligned and non-null",
3922 (
3923 addr: *const () = dst as *const (),
3924 align: usize = align_of::<T>(),
3925 zero_size: bool = T::IS_ZST || count == 0,
3926 ) => ub_checks::maybe_is_aligned_and_not_null(addr, align, zero_size)
3927 );
3928 write_bytes(dst, val, count)
3929 }
3930}
3931
3932/// Returns the minimum of two `f16` values.
3933///
3934/// Note that, unlike most intrinsics, this is safe to call;
3935/// it does not require an `unsafe` block.
3936/// Therefore, implementations must not require the user to uphold
3937/// any safety invariants.
3938///
3939/// The stabilized version of this intrinsic is
3940/// [`f16::min`]
3941#[rustc_nounwind]
3942#[rustc_intrinsic]
3943pub const fn minnumf16(x: f16, y: f16) -> f16;
3944
3945/// Returns the minimum of two `f32` values.
3946///
3947/// Note that, unlike most intrinsics, this is safe to call;
3948/// it does not require an `unsafe` block.
3949/// Therefore, implementations must not require the user to uphold
3950/// any safety invariants.
3951///
3952/// The stabilized version of this intrinsic is
3953/// [`f32::min`]
3954#[rustc_nounwind]
3955#[rustc_intrinsic_const_stable_indirect]
3956#[rustc_intrinsic]
3957pub const fn minnumf32(x: f32, y: f32) -> f32;
3958
3959/// Returns the minimum of two `f64` values.
3960///
3961/// Note that, unlike most intrinsics, this is safe to call;
3962/// it does not require an `unsafe` block.
3963/// Therefore, implementations must not require the user to uphold
3964/// any safety invariants.
3965///
3966/// The stabilized version of this intrinsic is
3967/// [`f64::min`]
3968#[rustc_nounwind]
3969#[rustc_intrinsic_const_stable_indirect]
3970#[rustc_intrinsic]
3971pub const fn minnumf64(x: f64, y: f64) -> f64;
3972
3973/// Returns the minimum of two `f128` values.
3974///
3975/// Note that, unlike most intrinsics, this is safe to call;
3976/// it does not require an `unsafe` block.
3977/// Therefore, implementations must not require the user to uphold
3978/// any safety invariants.
3979///
3980/// The stabilized version of this intrinsic is
3981/// [`f128::min`]
3982#[rustc_nounwind]
3983#[rustc_intrinsic]
3984pub const fn minnumf128(x: f128, y: f128) -> f128;
3985
3986/// Returns the maximum of two `f16` values.
3987///
3988/// Note that, unlike most intrinsics, this is safe to call;
3989/// it does not require an `unsafe` block.
3990/// Therefore, implementations must not require the user to uphold
3991/// any safety invariants.
3992///
3993/// The stabilized version of this intrinsic is
3994/// [`f16::max`]
3995#[rustc_nounwind]
3996#[rustc_intrinsic]
3997pub const fn maxnumf16(x: f16, y: f16) -> f16;
3998
3999/// Returns the maximum of two `f32` values.
4000///
4001/// Note that, unlike most intrinsics, this is safe to call;
4002/// it does not require an `unsafe` block.
4003/// Therefore, implementations must not require the user to uphold
4004/// any safety invariants.
4005///
4006/// The stabilized version of this intrinsic is
4007/// [`f32::max`]
4008#[rustc_nounwind]
4009#[rustc_intrinsic_const_stable_indirect]
4010#[rustc_intrinsic]
4011pub const fn maxnumf32(x: f32, y: f32) -> f32;
4012
4013/// Returns the maximum of two `f64` values.
4014///
4015/// Note that, unlike most intrinsics, this is safe to call;
4016/// it does not require an `unsafe` block.
4017/// Therefore, implementations must not require the user to uphold
4018/// any safety invariants.
4019///
4020/// The stabilized version of this intrinsic is
4021/// [`f64::max`]
4022#[rustc_nounwind]
4023#[rustc_intrinsic_const_stable_indirect]
4024#[rustc_intrinsic]
4025pub const fn maxnumf64(x: f64, y: f64) -> f64;
4026
4027/// Returns the maximum of two `f128` values.
4028///
4029/// Note that, unlike most intrinsics, this is safe to call;
4030/// it does not require an `unsafe` block.
4031/// Therefore, implementations must not require the user to uphold
4032/// any safety invariants.
4033///
4034/// The stabilized version of this intrinsic is
4035/// [`f128::max`]
4036#[rustc_nounwind]
4037#[rustc_intrinsic]
4038pub const fn maxnumf128(x: f128, y: f128) -> f128;
4039
4040/// Returns the absolute value of an `f16`.
4041///
4042/// The stabilized version of this intrinsic is
4043/// [`f16::abs`](../../std/primitive.f16.html#method.abs)
4044#[rustc_nounwind]
4045#[rustc_intrinsic]
4046pub const unsafe fn fabsf16(x: f16) -> f16;
4047
4048/// Returns the absolute value of an `f32`.
4049///
4050/// The stabilized version of this intrinsic is
4051/// [`f32::abs`](../../std/primitive.f32.html#method.abs)
4052#[rustc_nounwind]
4053#[rustc_intrinsic_const_stable_indirect]
4054#[rustc_intrinsic]
4055pub const unsafe fn fabsf32(x: f32) -> f32;
4056
4057/// Returns the absolute value of an `f64`.
4058///
4059/// The stabilized version of this intrinsic is
4060/// [`f64::abs`](../../std/primitive.f64.html#method.abs)
4061#[rustc_nounwind]
4062#[rustc_intrinsic_const_stable_indirect]
4063#[rustc_intrinsic]
4064pub const unsafe fn fabsf64(x: f64) -> f64;
4065
4066/// Returns the absolute value of an `f128`.
4067///
4068/// The stabilized version of this intrinsic is
4069/// [`f128::abs`](../../std/primitive.f128.html#method.abs)
4070#[rustc_nounwind]
4071#[rustc_intrinsic]
4072pub const unsafe fn fabsf128(x: f128) -> f128;
4073
4074/// Copies the sign from `y` to `x` for `f16` values.
4075///
4076/// The stabilized version of this intrinsic is
4077/// [`f16::copysign`](../../std/primitive.f16.html#method.copysign)
4078#[rustc_nounwind]
4079#[rustc_intrinsic]
4080pub const unsafe fn copysignf16(x: f16, y: f16) -> f16;
4081
4082/// Copies the sign from `y` to `x` for `f32` values.
4083///
4084/// The stabilized version of this intrinsic is
4085/// [`f32::copysign`](../../std/primitive.f32.html#method.copysign)
4086#[rustc_nounwind]
4087#[rustc_intrinsic_const_stable_indirect]
4088#[rustc_intrinsic]
4089pub const unsafe fn copysignf32(x: f32, y: f32) -> f32;
4090/// Copies the sign from `y` to `x` for `f64` values.
4091///
4092/// The stabilized version of this intrinsic is
4093/// [`f64::copysign`](../../std/primitive.f64.html#method.copysign)
4094#[rustc_nounwind]
4095#[rustc_intrinsic_const_stable_indirect]
4096#[rustc_intrinsic]
4097pub const unsafe fn copysignf64(x: f64, y: f64) -> f64;
4098
4099/// Copies the sign from `y` to `x` for `f128` values.
4100///
4101/// The stabilized version of this intrinsic is
4102/// [`f128::copysign`](../../std/primitive.f128.html#method.copysign)
4103#[rustc_nounwind]
4104#[rustc_intrinsic]
4105pub const unsafe fn copysignf128(x: f128, y: f128) -> f128;
4106
4107/// Inform Miri that a given pointer definitely has a certain alignment.
4108#[cfg(miri)]
4109#[rustc_allow_const_fn_unstable(const_eval_select)]
4110pub(crate) const fn miri_promise_symbolic_alignment(ptr: *const (), align: usize) {
4111 unsafe extern "Rust" {
4112 /// Miri-provided extern function to promise that a given pointer is properly aligned for
4113 /// "symbolic" alignment checks. Will fail if the pointer is not actually aligned or `align` is
4114 /// not a power of two. Has no effect when alignment checks are concrete (which is the default).
4115 fn miri_promise_symbolic_alignment(ptr: *const (), align: usize);
4116 }
4117
4118 const_eval_select!(
4119 @capture { ptr: *const (), align: usize}:
4120 if const {
4121 // Do nothing.
4122 } else {
4123 // SAFETY: this call is always safe.
4124 unsafe {
4125 miri_promise_symbolic_alignment(ptr, align);
4126 }
4127 }
4128 )
4129}