core/fmt/
mod.rs

1//! Utilities for formatting and printing strings.
2
3#![stable(feature = "rust1", since = "1.0.0")]
4
5use crate::cell::{Cell, Ref, RefCell, RefMut, SyncUnsafeCell, UnsafeCell};
6use crate::char::{EscapeDebugExtArgs, MAX_LEN_UTF8};
7use crate::marker::PhantomData;
8use crate::num::fmt as numfmt;
9use crate::ops::Deref;
10use crate::{iter, result, str};
11
12mod builders;
13#[cfg(not(no_fp_fmt_parse))]
14mod float;
15#[cfg(no_fp_fmt_parse)]
16mod nofloat;
17mod num;
18mod rt;
19
20#[stable(feature = "fmt_flags_align", since = "1.28.0")]
21#[rustc_diagnostic_item = "Alignment"]
22/// Possible alignments returned by `Formatter::align`
23#[derive(Copy, Clone, Debug, PartialEq, Eq)]
24pub enum Alignment {
25    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
26    /// Indication that contents should be left-aligned.
27    Left,
28    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
29    /// Indication that contents should be right-aligned.
30    Right,
31    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
32    /// Indication that contents should be center-aligned.
33    Center,
34}
35
36#[stable(feature = "debug_builders", since = "1.2.0")]
37pub use self::builders::{DebugList, DebugMap, DebugSet, DebugStruct, DebugTuple};
38#[unstable(feature = "debug_closure_helpers", issue = "117729")]
39pub use self::builders::{FromFn, from_fn};
40
41/// The type returned by formatter methods.
42///
43/// # Examples
44///
45/// ```
46/// use std::fmt;
47///
48/// #[derive(Debug)]
49/// struct Triangle {
50///     a: f32,
51///     b: f32,
52///     c: f32
53/// }
54///
55/// impl fmt::Display for Triangle {
56///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
57///         write!(f, "({}, {}, {})", self.a, self.b, self.c)
58///     }
59/// }
60///
61/// let pythagorean_triple = Triangle { a: 3.0, b: 4.0, c: 5.0 };
62///
63/// assert_eq!(format!("{pythagorean_triple}"), "(3, 4, 5)");
64/// ```
65#[stable(feature = "rust1", since = "1.0.0")]
66pub type Result = result::Result<(), Error>;
67
68/// The error type which is returned from formatting a message into a stream.
69///
70/// This type does not support transmission of an error other than that an error
71/// occurred. This is because, despite the existence of this error,
72/// string formatting is considered an infallible operation.
73/// `fmt()` implementors should not return this `Error` unless they received it from their
74/// [`Formatter`]. The only time your code should create a new instance of this
75/// error is when implementing `fmt::Write`, in order to cancel the formatting operation when
76/// writing to the underlying stream fails.
77///
78/// Any extra information must be arranged to be transmitted through some other means,
79/// such as storing it in a field to be consulted after the formatting operation has been
80/// cancelled. (For example, this is how [`std::io::Write::write_fmt()`] propagates IO errors
81/// during writing.)
82///
83/// This type, `fmt::Error`, should not be
84/// confused with [`std::io::Error`] or [`std::error::Error`], which you may also
85/// have in scope.
86///
87/// [`std::io::Error`]: ../../std/io/struct.Error.html
88/// [`std::io::Write::write_fmt()`]: ../../std/io/trait.Write.html#method.write_fmt
89/// [`std::error::Error`]: ../../std/error/trait.Error.html
90///
91/// # Examples
92///
93/// ```rust
94/// use std::fmt::{self, write};
95///
96/// let mut output = String::new();
97/// if let Err(fmt::Error) = write(&mut output, format_args!("Hello {}!", "world")) {
98///     panic!("An error occurred");
99/// }
100/// ```
101#[stable(feature = "rust1", since = "1.0.0")]
102#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
103pub struct Error;
104
105/// A trait for writing or formatting into Unicode-accepting buffers or streams.
106///
107/// This trait only accepts UTF-8–encoded data and is not [flushable]. If you only
108/// want to accept Unicode and you don't need flushing, you should implement this trait;
109/// otherwise you should implement [`std::io::Write`].
110///
111/// [`std::io::Write`]: ../../std/io/trait.Write.html
112/// [flushable]: ../../std/io/trait.Write.html#tymethod.flush
113#[stable(feature = "rust1", since = "1.0.0")]
114pub trait Write {
115    /// Writes a string slice into this writer, returning whether the write
116    /// succeeded.
117    ///
118    /// This method can only succeed if the entire string slice was successfully
119    /// written, and this method will not return until all data has been
120    /// written or an error occurs.
121    ///
122    /// # Errors
123    ///
124    /// This function will return an instance of [`std::fmt::Error`][Error] on error.
125    ///
126    /// The purpose of that error is to abort the formatting operation when the underlying
127    /// destination encounters some error preventing it from accepting more text;
128    /// in particular, it does not communicate any information about *what* error occurred.
129    /// It should generally be propagated rather than handled, at least when implementing
130    /// formatting traits.
131    ///
132    /// # Examples
133    ///
134    /// ```
135    /// use std::fmt::{Error, Write};
136    ///
137    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
138    ///     f.write_str(s)
139    /// }
140    ///
141    /// let mut buf = String::new();
142    /// writer(&mut buf, "hola")?;
143    /// assert_eq!(&buf, "hola");
144    /// # std::fmt::Result::Ok(())
145    /// ```
146    #[stable(feature = "rust1", since = "1.0.0")]
147    fn write_str(&mut self, s: &str) -> Result;
148
149    /// Writes a [`char`] into this writer, returning whether the write succeeded.
150    ///
151    /// A single [`char`] may be encoded as more than one byte.
152    /// This method can only succeed if the entire byte sequence was successfully
153    /// written, and this method will not return until all data has been
154    /// written or an error occurs.
155    ///
156    /// # Errors
157    ///
158    /// This function will return an instance of [`Error`] on error.
159    ///
160    /// # Examples
161    ///
162    /// ```
163    /// use std::fmt::{Error, Write};
164    ///
165    /// fn writer<W: Write>(f: &mut W, c: char) -> Result<(), Error> {
166    ///     f.write_char(c)
167    /// }
168    ///
169    /// let mut buf = String::new();
170    /// writer(&mut buf, 'a')?;
171    /// writer(&mut buf, 'b')?;
172    /// assert_eq!(&buf, "ab");
173    /// # std::fmt::Result::Ok(())
174    /// ```
175    #[stable(feature = "fmt_write_char", since = "1.1.0")]
176    fn write_char(&mut self, c: char) -> Result {
177        self.write_str(c.encode_utf8(&mut [0; MAX_LEN_UTF8]))
178    }
179
180    /// Glue for usage of the [`write!`] macro with implementors of this trait.
181    ///
182    /// This method should generally not be invoked manually, but rather through
183    /// the [`write!`] macro itself.
184    ///
185    /// # Errors
186    ///
187    /// This function will return an instance of [`Error`] on error. Please see
188    /// [write_str](Write::write_str) for details.
189    ///
190    /// # Examples
191    ///
192    /// ```
193    /// use std::fmt::{Error, Write};
194    ///
195    /// fn writer<W: Write>(f: &mut W, s: &str) -> Result<(), Error> {
196    ///     f.write_fmt(format_args!("{s}"))
197    /// }
198    ///
199    /// let mut buf = String::new();
200    /// writer(&mut buf, "world")?;
201    /// assert_eq!(&buf, "world");
202    /// # std::fmt::Result::Ok(())
203    /// ```
204    #[stable(feature = "rust1", since = "1.0.0")]
205    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
206        // We use a specialization for `Sized` types to avoid an indirection
207        // through `&mut self`
208        trait SpecWriteFmt {
209            fn spec_write_fmt(self, args: Arguments<'_>) -> Result;
210        }
211
212        impl<W: Write + ?Sized> SpecWriteFmt for &mut W {
213            #[inline]
214            default fn spec_write_fmt(mut self, args: Arguments<'_>) -> Result {
215                if let Some(s) = args.as_statically_known_str() {
216                    self.write_str(s)
217                } else {
218                    write(&mut self, args)
219                }
220            }
221        }
222
223        impl<W: Write> SpecWriteFmt for &mut W {
224            #[inline]
225            fn spec_write_fmt(self, args: Arguments<'_>) -> Result {
226                if let Some(s) = args.as_statically_known_str() {
227                    self.write_str(s)
228                } else {
229                    write(self, args)
230                }
231            }
232        }
233
234        self.spec_write_fmt(args)
235    }
236}
237
238#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
239impl<W: Write + ?Sized> Write for &mut W {
240    fn write_str(&mut self, s: &str) -> Result {
241        (**self).write_str(s)
242    }
243
244    fn write_char(&mut self, c: char) -> Result {
245        (**self).write_char(c)
246    }
247
248    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
249        (**self).write_fmt(args)
250    }
251}
252
253/// The signedness of a [`Formatter`] (or of a [`FormattingOptions`]).
254#[derive(Copy, Clone, Debug, PartialEq, Eq)]
255#[unstable(feature = "formatting_options", issue = "118117")]
256pub enum Sign {
257    /// Represents the `+` flag.
258    Plus,
259    /// Represents the `-` flag.
260    Minus,
261}
262
263/// Specifies whether the [`Debug`] trait should use lower-/upper-case
264/// hexadecimal or normal integers.
265#[derive(Copy, Clone, Debug, PartialEq, Eq)]
266#[unstable(feature = "formatting_options", issue = "118117")]
267pub enum DebugAsHex {
268    /// Use lower-case hexadecimal integers for the `Debug` trait (like [the `x?` type](../../std/fmt/index.html#formatting-traits)).
269    Lower,
270    /// Use upper-case hexadecimal integers for the `Debug` trait (like [the `X?` type](../../std/fmt/index.html#formatting-traits)).
271    Upper,
272}
273
274/// Options for formatting.
275///
276/// `FormattingOptions` is a [`Formatter`] without an attached [`Write`] trait.
277/// It is mainly used to construct `Formatter` instances.
278#[derive(Copy, Clone, Debug, PartialEq, Eq)]
279#[unstable(feature = "formatting_options", issue = "118117")]
280pub struct FormattingOptions {
281    /// Flags, with the following bit fields:
282    ///
283    /// ```text
284    ///   31  30  29  28  27  26  25  24  23  22  21  20                              0
285    /// ┌───┬───────┬───┬───┬───┬───┬───┬───┬───┬───┬──────────────────────────────────┐
286    /// │ 1 │ align │ p │ w │ X?│ x?│'0'│ # │ - │ + │               fill               │
287    /// └───┴───────┴───┴───┴───┴───┴───┴───┴───┴───┴──────────────────────────────────┘
288    ///   │     │     │   │  └─┬───────────────────┘ └─┬──────────────────────────────┘
289    ///   │     │     │   │    │                       └─ The fill character (21 bits char).
290    ///   │     │     │   │    └─ The debug upper/lower hex, zero pad, alternate, and plus/minus flags.
291    ///   │     │     │   └─ Whether a width is set. (The value is stored separately.)
292    ///   │     │     └─ Whether a precision is set. (The value is stored separately.)
293    ///   │     ├─ 0: Align left. (<)
294    ///   │     ├─ 1: Align right. (>)
295    ///   │     ├─ 2: Align center. (^)
296    ///   │     └─ 3: Alignment not set. (default)
297    ///   └─ Always set.
298    ///      This makes it possible to distinguish formatting flags from
299    ///      a &str size when stored in (the upper bits of) the same field.
300    ///      (fmt::Arguments will make use of this property in the future.)
301    /// ```
302    // Note: This could use a special niche type with range 0x8000_0000..=0xfdd0ffff.
303    // It's unclear if that's useful, though.
304    flags: u32,
305    /// Width if width flag (bit 27) above is set. Otherwise, always 0.
306    width: u16,
307    /// Precision if precision flag (bit 28) above is set. Otherwise, always 0.
308    precision: u16,
309}
310
311// This needs to match with compiler/rustc_ast_lowering/src/format.rs.
312mod flags {
313    pub(super) const SIGN_PLUS_FLAG: u32 = 1 << 21;
314    pub(super) const SIGN_MINUS_FLAG: u32 = 1 << 22;
315    pub(super) const ALTERNATE_FLAG: u32 = 1 << 23;
316    pub(super) const SIGN_AWARE_ZERO_PAD_FLAG: u32 = 1 << 24;
317    pub(super) const DEBUG_LOWER_HEX_FLAG: u32 = 1 << 25;
318    pub(super) const DEBUG_UPPER_HEX_FLAG: u32 = 1 << 26;
319    pub(super) const WIDTH_FLAG: u32 = 1 << 27;
320    pub(super) const PRECISION_FLAG: u32 = 1 << 28;
321    pub(super) const ALIGN_BITS: u32 = 0b11 << 29;
322    pub(super) const ALIGN_LEFT: u32 = 0 << 29;
323    pub(super) const ALIGN_RIGHT: u32 = 1 << 29;
324    pub(super) const ALIGN_CENTER: u32 = 2 << 29;
325    pub(super) const ALIGN_UNKNOWN: u32 = 3 << 29;
326    pub(super) const ALWAYS_SET: u32 = 1 << 31;
327}
328
329impl FormattingOptions {
330    /// Construct a new `FormatterBuilder` with the supplied `Write` trait
331    /// object for output that is equivalent to the `{}` formatting
332    /// specifier:
333    ///
334    /// - no flags,
335    /// - filled with spaces,
336    /// - no alignment,
337    /// - no width,
338    /// - no precision, and
339    /// - no [`DebugAsHex`] output mode.
340    #[unstable(feature = "formatting_options", issue = "118117")]
341    pub const fn new() -> Self {
342        Self {
343            flags: ' ' as u32 | flags::ALIGN_UNKNOWN | flags::ALWAYS_SET,
344            width: 0,
345            precision: 0,
346        }
347    }
348
349    /// Sets or removes the sign (the `+` or the `-` flag).
350    ///
351    /// - `+`: This is intended for numeric types and indicates that the sign
352    /// should always be printed. By default only the negative sign of signed
353    /// values is printed, and the sign of positive or unsigned values is
354    /// omitted. This flag indicates that the correct sign (+ or -) should
355    /// always be printed.
356    /// - `-`: Currently not used
357    #[unstable(feature = "formatting_options", issue = "118117")]
358    pub fn sign(&mut self, sign: Option<Sign>) -> &mut Self {
359        let sign = match sign {
360            None => 0,
361            Some(Sign::Plus) => flags::SIGN_PLUS_FLAG,
362            Some(Sign::Minus) => flags::SIGN_MINUS_FLAG,
363        };
364        self.flags = self.flags & !(flags::SIGN_PLUS_FLAG | flags::SIGN_MINUS_FLAG) | sign;
365        self
366    }
367    /// Sets or unsets the `0` flag.
368    ///
369    /// This is used to indicate for integer formats that the padding to width should both be done with a 0 character as well as be sign-aware
370    #[unstable(feature = "formatting_options", issue = "118117")]
371    pub fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self {
372        if sign_aware_zero_pad {
373            self.flags |= flags::SIGN_AWARE_ZERO_PAD_FLAG;
374        } else {
375            self.flags &= !flags::SIGN_AWARE_ZERO_PAD_FLAG;
376        }
377        self
378    }
379    /// Sets or unsets the `#` flag.
380    ///
381    /// This flag indicates that the "alternate" form of printing should be
382    /// used. The alternate forms are:
383    /// - [`Debug`] : pretty-print the [`Debug`] formatting (adds linebreaks and indentation)
384    /// - [`LowerHex`] as well as [`UpperHex`] - precedes the argument with a `0x`
385    /// - [`Octal`] - precedes the argument with a `0b`
386    /// - [`Binary`] - precedes the argument with a `0o`
387    #[unstable(feature = "formatting_options", issue = "118117")]
388    pub fn alternate(&mut self, alternate: bool) -> &mut Self {
389        if alternate {
390            self.flags |= flags::ALTERNATE_FLAG;
391        } else {
392            self.flags &= !flags::ALTERNATE_FLAG;
393        }
394        self
395    }
396    /// Sets the fill character.
397    ///
398    /// The optional fill character and alignment is provided normally in
399    /// conjunction with the width parameter. This indicates that if the value
400    /// being formatted is smaller than width some extra characters will be
401    /// printed around it.
402    #[unstable(feature = "formatting_options", issue = "118117")]
403    pub fn fill(&mut self, fill: char) -> &mut Self {
404        self.flags = self.flags & (u32::MAX << 21) | fill as u32;
405        self
406    }
407    /// Sets or removes the alignment.
408    ///
409    /// The alignment specifies how the value being formatted should be
410    /// positioned if it is smaller than the width of the formatter.
411    #[unstable(feature = "formatting_options", issue = "118117")]
412    pub fn align(&mut self, align: Option<Alignment>) -> &mut Self {
413        let align: u32 = match align {
414            Some(Alignment::Left) => flags::ALIGN_LEFT,
415            Some(Alignment::Right) => flags::ALIGN_RIGHT,
416            Some(Alignment::Center) => flags::ALIGN_CENTER,
417            None => flags::ALIGN_UNKNOWN,
418        };
419        self.flags = self.flags & !flags::ALIGN_BITS | align;
420        self
421    }
422    /// Sets or removes the width.
423    ///
424    /// This is a parameter for the “minimum width” that the format should take
425    /// up. If the value’s string does not fill up this many characters, then
426    /// the padding specified by [`FormattingOptions::fill`]/[`FormattingOptions::align`]
427    /// will be used to take up the required space.
428    #[unstable(feature = "formatting_options", issue = "118117")]
429    pub fn width(&mut self, width: Option<u16>) -> &mut Self {
430        if let Some(width) = width {
431            self.flags |= flags::WIDTH_FLAG;
432            self.width = width;
433        } else {
434            self.flags &= !flags::WIDTH_FLAG;
435            self.width = 0;
436        }
437        self
438    }
439    /// Sets or removes the precision.
440    ///
441    /// - For non-numeric types, this can be considered a “maximum width”. If
442    /// the resulting string is longer than this width, then it is truncated
443    /// down to this many characters and that truncated value is emitted with
444    /// proper fill, alignment and width if those parameters are set.
445    /// - For integral types, this is ignored.
446    /// - For floating-point types, this indicates how many digits after the
447    /// decimal point should be printed.
448    #[unstable(feature = "formatting_options", issue = "118117")]
449    pub fn precision(&mut self, precision: Option<u16>) -> &mut Self {
450        if let Some(precision) = precision {
451            self.flags |= flags::PRECISION_FLAG;
452            self.precision = precision;
453        } else {
454            self.flags &= !flags::PRECISION_FLAG;
455            self.precision = 0;
456        }
457        self
458    }
459    /// Specifies whether the [`Debug`] trait should use lower-/upper-case
460    /// hexadecimal or normal integers
461    #[unstable(feature = "formatting_options", issue = "118117")]
462    pub fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self {
463        let debug_as_hex = match debug_as_hex {
464            None => 0,
465            Some(DebugAsHex::Lower) => flags::DEBUG_LOWER_HEX_FLAG,
466            Some(DebugAsHex::Upper) => flags::DEBUG_UPPER_HEX_FLAG,
467        };
468        self.flags = self.flags & !(flags::DEBUG_LOWER_HEX_FLAG | flags::DEBUG_UPPER_HEX_FLAG)
469            | debug_as_hex;
470        self
471    }
472
473    /// Returns the current sign (the `+` or the `-` flag).
474    #[unstable(feature = "formatting_options", issue = "118117")]
475    pub const fn get_sign(&self) -> Option<Sign> {
476        if self.flags & flags::SIGN_PLUS_FLAG != 0 {
477            Some(Sign::Plus)
478        } else if self.flags & flags::SIGN_MINUS_FLAG != 0 {
479            Some(Sign::Minus)
480        } else {
481            None
482        }
483    }
484    /// Returns the current `0` flag.
485    #[unstable(feature = "formatting_options", issue = "118117")]
486    pub const fn get_sign_aware_zero_pad(&self) -> bool {
487        self.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
488    }
489    /// Returns the current `#` flag.
490    #[unstable(feature = "formatting_options", issue = "118117")]
491    pub const fn get_alternate(&self) -> bool {
492        self.flags & flags::ALTERNATE_FLAG != 0
493    }
494    /// Returns the current fill character.
495    #[unstable(feature = "formatting_options", issue = "118117")]
496    pub const fn get_fill(&self) -> char {
497        // SAFETY: We only ever put a valid `char` in the lower 21 bits of the flags field.
498        unsafe { char::from_u32_unchecked(self.flags & 0x1FFFFF) }
499    }
500    /// Returns the current alignment.
501    #[unstable(feature = "formatting_options", issue = "118117")]
502    pub const fn get_align(&self) -> Option<Alignment> {
503        match self.flags & flags::ALIGN_BITS {
504            flags::ALIGN_LEFT => Some(Alignment::Left),
505            flags::ALIGN_RIGHT => Some(Alignment::Right),
506            flags::ALIGN_CENTER => Some(Alignment::Center),
507            _ => None,
508        }
509    }
510    /// Returns the current width.
511    #[unstable(feature = "formatting_options", issue = "118117")]
512    pub const fn get_width(&self) -> Option<u16> {
513        if self.flags & flags::WIDTH_FLAG != 0 { Some(self.width) } else { None }
514    }
515    /// Returns the current precision.
516    #[unstable(feature = "formatting_options", issue = "118117")]
517    pub const fn get_precision(&self) -> Option<u16> {
518        if self.flags & flags::PRECISION_FLAG != 0 { Some(self.precision) } else { None }
519    }
520    /// Returns the current precision.
521    #[unstable(feature = "formatting_options", issue = "118117")]
522    pub const fn get_debug_as_hex(&self) -> Option<DebugAsHex> {
523        if self.flags & flags::DEBUG_LOWER_HEX_FLAG != 0 {
524            Some(DebugAsHex::Lower)
525        } else if self.flags & flags::DEBUG_UPPER_HEX_FLAG != 0 {
526            Some(DebugAsHex::Upper)
527        } else {
528            None
529        }
530    }
531
532    /// Creates a [`Formatter`] that writes its output to the given [`Write`] trait.
533    ///
534    /// You may alternatively use [`Formatter::new()`].
535    #[unstable(feature = "formatting_options", issue = "118117")]
536    pub fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a> {
537        Formatter { options: self, buf: write }
538    }
539}
540
541#[unstable(feature = "formatting_options", issue = "118117")]
542impl Default for FormattingOptions {
543    /// Same as [`FormattingOptions::new()`].
544    fn default() -> Self {
545        // The `#[derive(Default)]` implementation would set `fill` to `\0` instead of space.
546        Self::new()
547    }
548}
549
550/// Configuration for formatting.
551///
552/// A `Formatter` represents various options related to formatting. Users do not
553/// construct `Formatter`s directly; a mutable reference to one is passed to
554/// the `fmt` method of all formatting traits, like [`Debug`] and [`Display`].
555///
556/// To interact with a `Formatter`, you'll call various methods to change the
557/// various options related to formatting. For examples, please see the
558/// documentation of the methods defined on `Formatter` below.
559#[allow(missing_debug_implementations)]
560#[stable(feature = "rust1", since = "1.0.0")]
561#[rustc_diagnostic_item = "Formatter"]
562pub struct Formatter<'a> {
563    options: FormattingOptions,
564
565    buf: &'a mut (dyn Write + 'a),
566}
567
568impl<'a> Formatter<'a> {
569    /// Creates a new formatter with given [`FormattingOptions`].
570    ///
571    /// If `write` is a reference to a formatter, it is recommended to use
572    /// [`Formatter::with_options`] instead as this can borrow the underlying
573    /// `write`, thereby bypassing one layer of indirection.
574    ///
575    /// You may alternatively use [`FormattingOptions::create_formatter()`].
576    #[unstable(feature = "formatting_options", issue = "118117")]
577    pub fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self {
578        Formatter { options, buf: write }
579    }
580
581    /// Creates a new formatter based on this one with given [`FormattingOptions`].
582    #[unstable(feature = "formatting_options", issue = "118117")]
583    pub fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b> {
584        Formatter { options, buf: self.buf }
585    }
586}
587
588/// This structure represents a safely precompiled version of a format string
589/// and its arguments. This cannot be generated at runtime because it cannot
590/// safely be done, so no constructors are given and the fields are private
591/// to prevent modification.
592///
593/// The [`format_args!`] macro will safely create an instance of this structure.
594/// The macro validates the format string at compile-time so usage of the
595/// [`write()`] and [`format()`] functions can be safely performed.
596///
597/// You can use the `Arguments<'a>` that [`format_args!`] returns in `Debug`
598/// and `Display` contexts as seen below. The example also shows that `Debug`
599/// and `Display` format to the same thing: the interpolated format string
600/// in `format_args!`.
601///
602/// ```rust
603/// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
604/// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
605/// assert_eq!("1 foo 2", display);
606/// assert_eq!(display, debug);
607/// ```
608///
609/// [`format()`]: ../../std/fmt/fn.format.html
610#[lang = "format_arguments"]
611#[stable(feature = "rust1", since = "1.0.0")]
612#[derive(Copy, Clone)]
613pub struct Arguments<'a> {
614    // Format string pieces to print.
615    pieces: &'a [&'static str],
616
617    // Placeholder specs, or `None` if all specs are default (as in "{}{}").
618    fmt: Option<&'a [rt::Placeholder]>,
619
620    // Dynamic arguments for interpolation, to be interleaved with string
621    // pieces. (Every argument is preceded by a string piece.)
622    args: &'a [rt::Argument<'a>],
623}
624
625#[doc(hidden)]
626#[unstable(feature = "fmt_internals", issue = "none")]
627impl<'a> Arguments<'a> {
628    /// Estimates the length of the formatted text.
629    ///
630    /// This is intended to be used for setting initial `String` capacity
631    /// when using `format!`. Note: this is neither the lower nor upper bound.
632    #[inline]
633    pub fn estimated_capacity(&self) -> usize {
634        let pieces_length: usize = self.pieces.iter().map(|x| x.len()).sum();
635
636        if self.args.is_empty() {
637            pieces_length
638        } else if !self.pieces.is_empty() && self.pieces[0].is_empty() && pieces_length < 16 {
639            // If the format string starts with an argument,
640            // don't preallocate anything, unless length
641            // of pieces is significant.
642            0
643        } else {
644            // There are some arguments, so any additional push
645            // will reallocate the string. To avoid that,
646            // we're "pre-doubling" the capacity here.
647            pieces_length.checked_mul(2).unwrap_or(0)
648        }
649    }
650}
651
652impl<'a> Arguments<'a> {
653    /// Gets the formatted string, if it has no arguments to be formatted at runtime.
654    ///
655    /// This can be used to avoid allocations in some cases.
656    ///
657    /// # Guarantees
658    ///
659    /// For `format_args!("just a literal")`, this function is guaranteed to
660    /// return `Some("just a literal")`.
661    ///
662    /// For most cases with placeholders, this function will return `None`.
663    ///
664    /// However, the compiler may perform optimizations that can cause this
665    /// function to return `Some(_)` even if the format string contains
666    /// placeholders. For example, `format_args!("Hello, {}!", "world")` may be
667    /// optimized to `format_args!("Hello, world!")`, such that `as_str()`
668    /// returns `Some("Hello, world!")`.
669    ///
670    /// The behavior for anything but the trivial case (without placeholders)
671    /// is not guaranteed, and should not be relied upon for anything other
672    /// than optimization.
673    ///
674    /// # Examples
675    ///
676    /// ```rust
677    /// use std::fmt::Arguments;
678    ///
679    /// fn write_str(_: &str) { /* ... */ }
680    ///
681    /// fn write_fmt(args: &Arguments<'_>) {
682    ///     if let Some(s) = args.as_str() {
683    ///         write_str(s)
684    ///     } else {
685    ///         write_str(&args.to_string());
686    ///     }
687    /// }
688    /// ```
689    ///
690    /// ```rust
691    /// assert_eq!(format_args!("hello").as_str(), Some("hello"));
692    /// assert_eq!(format_args!("").as_str(), Some(""));
693    /// assert_eq!(format_args!("{:?}", std::env::current_dir()).as_str(), None);
694    /// ```
695    #[stable(feature = "fmt_as_str", since = "1.52.0")]
696    #[rustc_const_stable(feature = "const_arguments_as_str", since = "1.84.0")]
697    #[must_use]
698    #[inline]
699    pub const fn as_str(&self) -> Option<&'static str> {
700        match (self.pieces, self.args) {
701            ([], []) => Some(""),
702            ([s], []) => Some(s),
703            _ => None,
704        }
705    }
706
707    /// Same as [`Arguments::as_str`], but will only return `Some(s)` if it can be determined at compile time.
708    #[unstable(feature = "fmt_internals", reason = "internal to standard library", issue = "none")]
709    #[must_use]
710    #[inline]
711    #[doc(hidden)]
712    pub fn as_statically_known_str(&self) -> Option<&'static str> {
713        let s = self.as_str();
714        if core::intrinsics::is_val_statically_known(s.is_some()) { s } else { None }
715    }
716}
717
718// Manually implementing these results in better error messages.
719#[stable(feature = "rust1", since = "1.0.0")]
720impl !Send for Arguments<'_> {}
721#[stable(feature = "rust1", since = "1.0.0")]
722impl !Sync for Arguments<'_> {}
723
724#[stable(feature = "rust1", since = "1.0.0")]
725impl Debug for Arguments<'_> {
726    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
727        Display::fmt(self, fmt)
728    }
729}
730
731#[stable(feature = "rust1", since = "1.0.0")]
732impl Display for Arguments<'_> {
733    fn fmt(&self, fmt: &mut Formatter<'_>) -> Result {
734        write(fmt.buf, *self)
735    }
736}
737
738/// `?` formatting.
739///
740/// `Debug` should format the output in a programmer-facing, debugging context.
741///
742/// Generally speaking, you should just `derive` a `Debug` implementation.
743///
744/// When used with the alternate format specifier `#?`, the output is pretty-printed.
745///
746/// For more information on formatters, see [the module-level documentation][module].
747///
748/// [module]: ../../std/fmt/index.html
749///
750/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
751/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
752/// comma-separated list of each field's name and `Debug` value, then `}`. For
753/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
754/// `Debug` values of the fields, then `)`.
755///
756/// # Stability
757///
758/// Derived `Debug` formats are not stable, and so may change with future Rust
759/// versions. Additionally, `Debug` implementations of types provided by the
760/// standard library (`std`, `core`, `alloc`, etc.) are not stable, and
761/// may also change with future Rust versions.
762///
763/// # Examples
764///
765/// Deriving an implementation:
766///
767/// ```
768/// #[derive(Debug)]
769/// struct Point {
770///     x: i32,
771///     y: i32,
772/// }
773///
774/// let origin = Point { x: 0, y: 0 };
775///
776/// assert_eq!(
777///     format!("The origin is: {origin:?}"),
778///     "The origin is: Point { x: 0, y: 0 }",
779/// );
780/// ```
781///
782/// Manually implementing:
783///
784/// ```
785/// use std::fmt;
786///
787/// struct Point {
788///     x: i32,
789///     y: i32,
790/// }
791///
792/// impl fmt::Debug for Point {
793///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
794///         f.debug_struct("Point")
795///          .field("x", &self.x)
796///          .field("y", &self.y)
797///          .finish()
798///     }
799/// }
800///
801/// let origin = Point { x: 0, y: 0 };
802///
803/// assert_eq!(
804///     format!("The origin is: {origin:?}"),
805///     "The origin is: Point { x: 0, y: 0 }",
806/// );
807/// ```
808///
809/// There are a number of helper methods on the [`Formatter`] struct to help you with manual
810/// implementations, such as [`debug_struct`].
811///
812/// [`debug_struct`]: Formatter::debug_struct
813///
814/// Types that do not wish to use the standard suite of debug representations
815/// provided by the `Formatter` trait (`debug_struct`, `debug_tuple`,
816/// `debug_list`, `debug_set`, `debug_map`) can do something totally custom by
817/// manually writing an arbitrary representation to the `Formatter`.
818///
819/// ```
820/// # use std::fmt;
821/// # struct Point {
822/// #     x: i32,
823/// #     y: i32,
824/// # }
825/// #
826/// impl fmt::Debug for Point {
827///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
828///         write!(f, "Point [{} {}]", self.x, self.y)
829///     }
830/// }
831/// ```
832///
833/// `Debug` implementations using either `derive` or the debug builder API
834/// on [`Formatter`] support pretty-printing using the alternate flag: `{:#?}`.
835///
836/// Pretty-printing with `#?`:
837///
838/// ```
839/// #[derive(Debug)]
840/// struct Point {
841///     x: i32,
842///     y: i32,
843/// }
844///
845/// let origin = Point { x: 0, y: 0 };
846///
847/// let expected = "The origin is: Point {
848///     x: 0,
849///     y: 0,
850/// }";
851/// assert_eq!(format!("The origin is: {origin:#?}"), expected);
852/// ```
853
854#[stable(feature = "rust1", since = "1.0.0")]
855#[rustc_on_unimplemented(
856    on(
857        crate_local,
858        label = "`{Self}` cannot be formatted using `{{:?}}`",
859        note = "add `#[derive(Debug)]` to `{Self}` or manually `impl {Debug} for {Self}`"
860    ),
861    message = "`{Self}` doesn't implement `{Debug}`",
862    label = "`{Self}` cannot be formatted using `{{:?}}` because it doesn't implement `{Debug}`"
863)]
864#[doc(alias = "{:?}")]
865#[rustc_diagnostic_item = "Debug"]
866#[rustc_trivial_field_reads]
867pub trait Debug {
868    #[doc = include_str!("fmt_trait_method_doc.md")]
869    ///
870    /// # Examples
871    ///
872    /// ```
873    /// use std::fmt;
874    ///
875    /// struct Position {
876    ///     longitude: f32,
877    ///     latitude: f32,
878    /// }
879    ///
880    /// impl fmt::Debug for Position {
881    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
882    ///         f.debug_tuple("")
883    ///          .field(&self.longitude)
884    ///          .field(&self.latitude)
885    ///          .finish()
886    ///     }
887    /// }
888    ///
889    /// let position = Position { longitude: 1.987, latitude: 2.983 };
890    /// assert_eq!(format!("{position:?}"), "(1.987, 2.983)");
891    ///
892    /// assert_eq!(format!("{position:#?}"), "(
893    ///     1.987,
894    ///     2.983,
895    /// )");
896    /// ```
897    #[stable(feature = "rust1", since = "1.0.0")]
898    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
899}
900
901// Separate module to reexport the macro `Debug` from prelude without the trait `Debug`.
902pub(crate) mod macros {
903    /// Derive macro generating an impl of the trait `Debug`.
904    #[rustc_builtin_macro]
905    #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
906    #[allow_internal_unstable(core_intrinsics, fmt_helpers_for_derive)]
907    pub macro Debug($item:item) {
908        /* compiler built-in */
909    }
910}
911#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
912#[doc(inline)]
913pub use macros::Debug;
914
915/// Format trait for an empty format, `{}`.
916///
917/// Implementing this trait for a type will automatically implement the
918/// [`ToString`][tostring] trait for the type, allowing the usage
919/// of the [`.to_string()`][tostring_function] method. Prefer implementing
920/// the `Display` trait for a type, rather than [`ToString`][tostring].
921///
922/// `Display` is similar to [`Debug`], but `Display` is for user-facing
923/// output, and so cannot be derived.
924///
925/// For more information on formatters, see [the module-level documentation][module].
926///
927/// [module]: ../../std/fmt/index.html
928/// [tostring]: ../../std/string/trait.ToString.html
929/// [tostring_function]: ../../std/string/trait.ToString.html#tymethod.to_string
930///
931/// # Internationalization
932///
933/// Because a type can only have one `Display` implementation, it is often preferable
934/// to only implement `Display` when there is a single most "obvious" way that
935/// values can be formatted as text. This could mean formatting according to the
936/// "invariant" culture and "undefined" locale, or it could mean that the type
937/// display is designed for a specific culture/locale, such as developer logs.
938///
939/// If not all values have a justifiably canonical textual format or if you want
940/// to support alternative formats not covered by the standard set of possible
941/// [formatting traits], the most flexible approach is display adapters: methods
942/// like [`str::escape_default`] or [`Path::display`] which create a wrapper
943/// implementing `Display` to output the specific display format.
944///
945/// [formatting traits]: ../../std/fmt/index.html#formatting-traits
946/// [`Path::display`]: ../../std/path/struct.Path.html#method.display
947///
948/// # Examples
949///
950/// Implementing `Display` on a type:
951///
952/// ```
953/// use std::fmt;
954///
955/// struct Point {
956///     x: i32,
957///     y: i32,
958/// }
959///
960/// impl fmt::Display for Point {
961///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
962///         write!(f, "({}, {})", self.x, self.y)
963///     }
964/// }
965///
966/// let origin = Point { x: 0, y: 0 };
967///
968/// assert_eq!(format!("The origin is: {origin}"), "The origin is: (0, 0)");
969/// ```
970#[rustc_on_unimplemented(
971    on(
972        any(_Self = "std::path::Path", _Self = "std::path::PathBuf"),
973        label = "`{Self}` cannot be formatted with the default formatter; call `.display()` on it",
974        note = "call `.display()` or `.to_string_lossy()` to safely print paths, \
975                as they may contain non-Unicode data"
976    ),
977    message = "`{Self}` doesn't implement `{Display}`",
978    label = "`{Self}` cannot be formatted with the default formatter",
979    note = "in format strings you may be able to use `{{:?}}` (or {{:#?}} for pretty-print) instead"
980)]
981#[doc(alias = "{}")]
982#[rustc_diagnostic_item = "Display"]
983#[stable(feature = "rust1", since = "1.0.0")]
984pub trait Display {
985    #[doc = include_str!("fmt_trait_method_doc.md")]
986    ///
987    /// # Examples
988    ///
989    /// ```
990    /// use std::fmt;
991    ///
992    /// struct Position {
993    ///     longitude: f32,
994    ///     latitude: f32,
995    /// }
996    ///
997    /// impl fmt::Display for Position {
998    ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
999    ///         write!(f, "({}, {})", self.longitude, self.latitude)
1000    ///     }
1001    /// }
1002    ///
1003    /// assert_eq!(
1004    ///     "(1.987, 2.983)",
1005    ///     format!("{}", Position { longitude: 1.987, latitude: 2.983, }),
1006    /// );
1007    /// ```
1008    #[stable(feature = "rust1", since = "1.0.0")]
1009    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1010}
1011
1012/// `o` formatting.
1013///
1014/// The `Octal` trait should format its output as a number in base-8.
1015///
1016/// For primitive signed integers (`i8` to `i128`, and `isize`),
1017/// negative values are formatted as the two’s complement representation.
1018///
1019/// The alternate flag, `#`, adds a `0o` in front of the output.
1020///
1021/// For more information on formatters, see [the module-level documentation][module].
1022///
1023/// [module]: ../../std/fmt/index.html
1024///
1025/// # Examples
1026///
1027/// Basic usage with `i32`:
1028///
1029/// ```
1030/// let x = 42; // 42 is '52' in octal
1031///
1032/// assert_eq!(format!("{x:o}"), "52");
1033/// assert_eq!(format!("{x:#o}"), "0o52");
1034///
1035/// assert_eq!(format!("{:o}", -16), "37777777760");
1036/// ```
1037///
1038/// Implementing `Octal` on a type:
1039///
1040/// ```
1041/// use std::fmt;
1042///
1043/// struct Length(i32);
1044///
1045/// impl fmt::Octal for Length {
1046///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1047///         let val = self.0;
1048///
1049///         fmt::Octal::fmt(&val, f) // delegate to i32's implementation
1050///     }
1051/// }
1052///
1053/// let l = Length(9);
1054///
1055/// assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");
1056///
1057/// assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");
1058/// ```
1059#[stable(feature = "rust1", since = "1.0.0")]
1060pub trait Octal {
1061    #[doc = include_str!("fmt_trait_method_doc.md")]
1062    #[stable(feature = "rust1", since = "1.0.0")]
1063    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1064}
1065
1066/// `b` formatting.
1067///
1068/// The `Binary` trait should format its output as a number in binary.
1069///
1070/// For primitive signed integers ([`i8`] to [`i128`], and [`isize`]),
1071/// negative values are formatted as the two’s complement representation.
1072///
1073/// The alternate flag, `#`, adds a `0b` in front of the output.
1074///
1075/// For more information on formatters, see [the module-level documentation][module].
1076///
1077/// [module]: ../../std/fmt/index.html
1078///
1079/// # Examples
1080///
1081/// Basic usage with [`i32`]:
1082///
1083/// ```
1084/// let x = 42; // 42 is '101010' in binary
1085///
1086/// assert_eq!(format!("{x:b}"), "101010");
1087/// assert_eq!(format!("{x:#b}"), "0b101010");
1088///
1089/// assert_eq!(format!("{:b}", -16), "11111111111111111111111111110000");
1090/// ```
1091///
1092/// Implementing `Binary` on a type:
1093///
1094/// ```
1095/// use std::fmt;
1096///
1097/// struct Length(i32);
1098///
1099/// impl fmt::Binary for Length {
1100///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1101///         let val = self.0;
1102///
1103///         fmt::Binary::fmt(&val, f) // delegate to i32's implementation
1104///     }
1105/// }
1106///
1107/// let l = Length(107);
1108///
1109/// assert_eq!(format!("l as binary is: {l:b}"), "l as binary is: 1101011");
1110///
1111/// assert_eq!(
1112///     // Note that the `0b` prefix added by `#` is included in the total width, so we
1113///     // need to add two to correctly display all 32 bits.
1114///     format!("l as binary is: {l:#034b}"),
1115///     "l as binary is: 0b00000000000000000000000001101011"
1116/// );
1117/// ```
1118#[stable(feature = "rust1", since = "1.0.0")]
1119pub trait Binary {
1120    #[doc = include_str!("fmt_trait_method_doc.md")]
1121    #[stable(feature = "rust1", since = "1.0.0")]
1122    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1123}
1124
1125/// `x` formatting.
1126///
1127/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
1128/// in lower case.
1129///
1130/// For primitive signed integers (`i8` to `i128`, and `isize`),
1131/// negative values are formatted as the two’s complement representation.
1132///
1133/// The alternate flag, `#`, adds a `0x` in front of the output.
1134///
1135/// For more information on formatters, see [the module-level documentation][module].
1136///
1137/// [module]: ../../std/fmt/index.html
1138///
1139/// # Examples
1140///
1141/// Basic usage with `i32`:
1142///
1143/// ```
1144/// let y = 42; // 42 is '2a' in hex
1145///
1146/// assert_eq!(format!("{y:x}"), "2a");
1147/// assert_eq!(format!("{y:#x}"), "0x2a");
1148///
1149/// assert_eq!(format!("{:x}", -16), "fffffff0");
1150/// ```
1151///
1152/// Implementing `LowerHex` on a type:
1153///
1154/// ```
1155/// use std::fmt;
1156///
1157/// struct Length(i32);
1158///
1159/// impl fmt::LowerHex for Length {
1160///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1161///         let val = self.0;
1162///
1163///         fmt::LowerHex::fmt(&val, f) // delegate to i32's implementation
1164///     }
1165/// }
1166///
1167/// let l = Length(9);
1168///
1169/// assert_eq!(format!("l as hex is: {l:x}"), "l as hex is: 9");
1170///
1171/// assert_eq!(format!("l as hex is: {l:#010x}"), "l as hex is: 0x00000009");
1172/// ```
1173#[stable(feature = "rust1", since = "1.0.0")]
1174pub trait LowerHex {
1175    #[doc = include_str!("fmt_trait_method_doc.md")]
1176    #[stable(feature = "rust1", since = "1.0.0")]
1177    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1178}
1179
1180/// `X` formatting.
1181///
1182/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
1183/// in upper case.
1184///
1185/// For primitive signed integers (`i8` to `i128`, and `isize`),
1186/// negative values are formatted as the two’s complement representation.
1187///
1188/// The alternate flag, `#`, adds a `0x` in front of the output.
1189///
1190/// For more information on formatters, see [the module-level documentation][module].
1191///
1192/// [module]: ../../std/fmt/index.html
1193///
1194/// # Examples
1195///
1196/// Basic usage with `i32`:
1197///
1198/// ```
1199/// let y = 42; // 42 is '2A' in hex
1200///
1201/// assert_eq!(format!("{y:X}"), "2A");
1202/// assert_eq!(format!("{y:#X}"), "0x2A");
1203///
1204/// assert_eq!(format!("{:X}", -16), "FFFFFFF0");
1205/// ```
1206///
1207/// Implementing `UpperHex` on a type:
1208///
1209/// ```
1210/// use std::fmt;
1211///
1212/// struct Length(i32);
1213///
1214/// impl fmt::UpperHex for Length {
1215///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1216///         let val = self.0;
1217///
1218///         fmt::UpperHex::fmt(&val, f) // delegate to i32's implementation
1219///     }
1220/// }
1221///
1222/// let l = Length(i32::MAX);
1223///
1224/// assert_eq!(format!("l as hex is: {l:X}"), "l as hex is: 7FFFFFFF");
1225///
1226/// assert_eq!(format!("l as hex is: {l:#010X}"), "l as hex is: 0x7FFFFFFF");
1227/// ```
1228#[stable(feature = "rust1", since = "1.0.0")]
1229pub trait UpperHex {
1230    #[doc = include_str!("fmt_trait_method_doc.md")]
1231    #[stable(feature = "rust1", since = "1.0.0")]
1232    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1233}
1234
1235/// `p` formatting.
1236///
1237/// The `Pointer` trait should format its output as a memory location. This is commonly presented
1238/// as hexadecimal. For more information on formatters, see [the module-level documentation][module].
1239///
1240/// Printing of pointers is not a reliable way to discover how Rust programs are implemented.
1241/// The act of reading an address changes the program itself, and may change how the data is represented
1242/// in memory, and may affect which optimizations are applied to the code.
1243///
1244/// The printed pointer values are not guaranteed to be stable nor unique identifiers of objects.
1245/// Rust allows moving values to different memory locations, and may reuse the same memory locations
1246/// for different purposes.
1247///
1248/// There is no guarantee that the printed value can be converted back to a pointer.
1249///
1250/// [module]: ../../std/fmt/index.html
1251///
1252/// # Examples
1253///
1254/// Basic usage with `&i32`:
1255///
1256/// ```
1257/// let x = &42;
1258///
1259/// let address = format!("{x:p}"); // this produces something like '0x7f06092ac6d0'
1260/// ```
1261///
1262/// Implementing `Pointer` on a type:
1263///
1264/// ```
1265/// use std::fmt;
1266///
1267/// struct Length(i32);
1268///
1269/// impl fmt::Pointer for Length {
1270///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1271///         // use `as` to convert to a `*const T`, which implements Pointer, which we can use
1272///
1273///         let ptr = self as *const Self;
1274///         fmt::Pointer::fmt(&ptr, f)
1275///     }
1276/// }
1277///
1278/// let l = Length(42);
1279///
1280/// println!("l is in memory here: {l:p}");
1281///
1282/// let l_ptr = format!("{l:018p}");
1283/// assert_eq!(l_ptr.len(), 18);
1284/// assert_eq!(&l_ptr[..2], "0x");
1285/// ```
1286#[stable(feature = "rust1", since = "1.0.0")]
1287#[rustc_diagnostic_item = "Pointer"]
1288pub trait Pointer {
1289    #[doc = include_str!("fmt_trait_method_doc.md")]
1290    #[stable(feature = "rust1", since = "1.0.0")]
1291    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1292}
1293
1294/// `e` formatting.
1295///
1296/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
1297///
1298/// For more information on formatters, see [the module-level documentation][module].
1299///
1300/// [module]: ../../std/fmt/index.html
1301///
1302/// # Examples
1303///
1304/// Basic usage with `f64`:
1305///
1306/// ```
1307/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
1308///
1309/// assert_eq!(format!("{x:e}"), "4.2e1");
1310/// ```
1311///
1312/// Implementing `LowerExp` on a type:
1313///
1314/// ```
1315/// use std::fmt;
1316///
1317/// struct Length(i32);
1318///
1319/// impl fmt::LowerExp for Length {
1320///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1321///         let val = f64::from(self.0);
1322///         fmt::LowerExp::fmt(&val, f) // delegate to f64's implementation
1323///     }
1324/// }
1325///
1326/// let l = Length(100);
1327///
1328/// assert_eq!(
1329///     format!("l in scientific notation is: {l:e}"),
1330///     "l in scientific notation is: 1e2"
1331/// );
1332///
1333/// assert_eq!(
1334///     format!("l in scientific notation is: {l:05e}"),
1335///     "l in scientific notation is: 001e2"
1336/// );
1337/// ```
1338#[stable(feature = "rust1", since = "1.0.0")]
1339pub trait LowerExp {
1340    #[doc = include_str!("fmt_trait_method_doc.md")]
1341    #[stable(feature = "rust1", since = "1.0.0")]
1342    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1343}
1344
1345/// `E` formatting.
1346///
1347/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
1348///
1349/// For more information on formatters, see [the module-level documentation][module].
1350///
1351/// [module]: ../../std/fmt/index.html
1352///
1353/// # Examples
1354///
1355/// Basic usage with `f64`:
1356///
1357/// ```
1358/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
1359///
1360/// assert_eq!(format!("{x:E}"), "4.2E1");
1361/// ```
1362///
1363/// Implementing `UpperExp` on a type:
1364///
1365/// ```
1366/// use std::fmt;
1367///
1368/// struct Length(i32);
1369///
1370/// impl fmt::UpperExp for Length {
1371///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1372///         let val = f64::from(self.0);
1373///         fmt::UpperExp::fmt(&val, f) // delegate to f64's implementation
1374///     }
1375/// }
1376///
1377/// let l = Length(100);
1378///
1379/// assert_eq!(
1380///     format!("l in scientific notation is: {l:E}"),
1381///     "l in scientific notation is: 1E2"
1382/// );
1383///
1384/// assert_eq!(
1385///     format!("l in scientific notation is: {l:05E}"),
1386///     "l in scientific notation is: 001E2"
1387/// );
1388/// ```
1389#[stable(feature = "rust1", since = "1.0.0")]
1390pub trait UpperExp {
1391    #[doc = include_str!("fmt_trait_method_doc.md")]
1392    #[stable(feature = "rust1", since = "1.0.0")]
1393    fn fmt(&self, f: &mut Formatter<'_>) -> Result;
1394}
1395
1396/// Takes an output stream and an `Arguments` struct that can be precompiled with
1397/// the `format_args!` macro.
1398///
1399/// The arguments will be formatted according to the specified format string
1400/// into the output stream provided.
1401///
1402/// # Examples
1403///
1404/// Basic usage:
1405///
1406/// ```
1407/// use std::fmt;
1408///
1409/// let mut output = String::new();
1410/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
1411///     .expect("Error occurred while trying to write in String");
1412/// assert_eq!(output, "Hello world!");
1413/// ```
1414///
1415/// Please note that using [`write!`] might be preferable. Example:
1416///
1417/// ```
1418/// use std::fmt::Write;
1419///
1420/// let mut output = String::new();
1421/// write!(&mut output, "Hello {}!", "world")
1422///     .expect("Error occurred while trying to write in String");
1423/// assert_eq!(output, "Hello world!");
1424/// ```
1425///
1426/// [`write!`]: crate::write!
1427#[stable(feature = "rust1", since = "1.0.0")]
1428pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
1429    let mut formatter = Formatter::new(output, FormattingOptions::new());
1430    let mut idx = 0;
1431
1432    match args.fmt {
1433        None => {
1434            // We can use default formatting parameters for all arguments.
1435            for (i, arg) in args.args.iter().enumerate() {
1436                // SAFETY: args.args and args.pieces come from the same Arguments,
1437                // which guarantees the indexes are always within bounds.
1438                let piece = unsafe { args.pieces.get_unchecked(i) };
1439                if !piece.is_empty() {
1440                    formatter.buf.write_str(*piece)?;
1441                }
1442
1443                // SAFETY: There are no formatting parameters and hence no
1444                // count arguments.
1445                unsafe {
1446                    arg.fmt(&mut formatter)?;
1447                }
1448                idx += 1;
1449            }
1450        }
1451        Some(fmt) => {
1452            // Every spec has a corresponding argument that is preceded by
1453            // a string piece.
1454            for (i, arg) in fmt.iter().enumerate() {
1455                // SAFETY: fmt and args.pieces come from the same Arguments,
1456                // which guarantees the indexes are always within bounds.
1457                let piece = unsafe { args.pieces.get_unchecked(i) };
1458                if !piece.is_empty() {
1459                    formatter.buf.write_str(*piece)?;
1460                }
1461                // SAFETY: arg and args.args come from the same Arguments,
1462                // which guarantees the indexes are always within bounds.
1463                unsafe { run(&mut formatter, arg, args.args) }?;
1464                idx += 1;
1465            }
1466        }
1467    }
1468
1469    // There can be only one trailing string piece left.
1470    if let Some(piece) = args.pieces.get(idx) {
1471        formatter.buf.write_str(*piece)?;
1472    }
1473
1474    Ok(())
1475}
1476
1477unsafe fn run(fmt: &mut Formatter<'_>, arg: &rt::Placeholder, args: &[rt::Argument<'_>]) -> Result {
1478    let (width, precision) =
1479        // SAFETY: arg and args come from the same Arguments,
1480        // which guarantees the indexes are always within bounds.
1481        unsafe { (getcount(args, &arg.width), getcount(args, &arg.precision)) };
1482
1483    let options = FormattingOptions { flags: arg.flags, width, precision };
1484
1485    // Extract the correct argument
1486    debug_assert!(arg.position < args.len());
1487    // SAFETY: arg and args come from the same Arguments,
1488    // which guarantees its index is always within bounds.
1489    let value = unsafe { args.get_unchecked(arg.position) };
1490
1491    // Set all the formatting options.
1492    fmt.options = options;
1493
1494    // Then actually do some printing
1495    // SAFETY: this is a placeholder argument.
1496    unsafe { value.fmt(fmt) }
1497}
1498
1499unsafe fn getcount(args: &[rt::Argument<'_>], cnt: &rt::Count) -> u16 {
1500    match *cnt {
1501        rt::Count::Is(n) => n,
1502        rt::Count::Implied => 0,
1503        rt::Count::Param(i) => {
1504            debug_assert!(i < args.len());
1505            // SAFETY: cnt and args come from the same Arguments,
1506            // which guarantees this index is always within bounds.
1507            unsafe { args.get_unchecked(i).as_u16().unwrap_unchecked() }
1508        }
1509    }
1510}
1511
1512/// Padding after the end of something. Returned by `Formatter::padding`.
1513#[must_use = "don't forget to write the post padding"]
1514pub(crate) struct PostPadding {
1515    fill: char,
1516    padding: u16,
1517}
1518
1519impl PostPadding {
1520    fn new(fill: char, padding: u16) -> PostPadding {
1521        PostPadding { fill, padding }
1522    }
1523
1524    /// Writes this post padding.
1525    pub(crate) fn write(self, f: &mut Formatter<'_>) -> Result {
1526        for _ in 0..self.padding {
1527            f.buf.write_char(self.fill)?;
1528        }
1529        Ok(())
1530    }
1531}
1532
1533impl<'a> Formatter<'a> {
1534    fn wrap_buf<'b, 'c, F>(&'b mut self, wrap: F) -> Formatter<'c>
1535    where
1536        'b: 'c,
1537        F: FnOnce(&'b mut (dyn Write + 'b)) -> &'c mut (dyn Write + 'c),
1538    {
1539        Formatter {
1540            // We want to change this
1541            buf: wrap(self.buf),
1542
1543            // And preserve these
1544            options: self.options,
1545        }
1546    }
1547
1548    // Helper methods used for padding and processing formatting arguments that
1549    // all formatting traits can use.
1550
1551    /// Performs the correct padding for an integer which has already been
1552    /// emitted into a str. The str should *not* contain the sign for the
1553    /// integer, that will be added by this method.
1554    ///
1555    /// # Arguments
1556    ///
1557    /// * is_nonnegative - whether the original integer was either positive or zero.
1558    /// * prefix - if the '#' character (Alternate) is provided, this
1559    ///   is the prefix to put in front of the number.
1560    /// * buf - the byte array that the number has been formatted into
1561    ///
1562    /// This function will correctly account for the flags provided as well as
1563    /// the minimum width. It will not take precision into account.
1564    ///
1565    /// # Examples
1566    ///
1567    /// ```
1568    /// use std::fmt;
1569    ///
1570    /// struct Foo { nb: i32 }
1571    ///
1572    /// impl Foo {
1573    ///     fn new(nb: i32) -> Foo {
1574    ///         Foo {
1575    ///             nb,
1576    ///         }
1577    ///     }
1578    /// }
1579    ///
1580    /// impl fmt::Display for Foo {
1581    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1582    ///         // We need to remove "-" from the number output.
1583    ///         let tmp = self.nb.abs().to_string();
1584    ///
1585    ///         formatter.pad_integral(self.nb >= 0, "Foo ", &tmp)
1586    ///     }
1587    /// }
1588    ///
1589    /// assert_eq!(format!("{}", Foo::new(2)), "2");
1590    /// assert_eq!(format!("{}", Foo::new(-1)), "-1");
1591    /// assert_eq!(format!("{}", Foo::new(0)), "0");
1592    /// assert_eq!(format!("{:#}", Foo::new(-1)), "-Foo 1");
1593    /// assert_eq!(format!("{:0>#8}", Foo::new(-1)), "00-Foo 1");
1594    /// ```
1595    #[stable(feature = "rust1", since = "1.0.0")]
1596    pub fn pad_integral(&mut self, is_nonnegative: bool, prefix: &str, buf: &str) -> Result {
1597        let mut width = buf.len();
1598
1599        let mut sign = None;
1600        if !is_nonnegative {
1601            sign = Some('-');
1602            width += 1;
1603        } else if self.sign_plus() {
1604            sign = Some('+');
1605            width += 1;
1606        }
1607
1608        let prefix = if self.alternate() {
1609            width += prefix.chars().count();
1610            Some(prefix)
1611        } else {
1612            None
1613        };
1614
1615        // Writes the sign if it exists, and then the prefix if it was requested
1616        #[inline(never)]
1617        fn write_prefix(f: &mut Formatter<'_>, sign: Option<char>, prefix: Option<&str>) -> Result {
1618            if let Some(c) = sign {
1619                f.buf.write_char(c)?;
1620            }
1621            if let Some(prefix) = prefix { f.buf.write_str(prefix) } else { Ok(()) }
1622        }
1623
1624        // The `width` field is more of a `min-width` parameter at this point.
1625        let min = self.options.width;
1626        if width >= usize::from(min) {
1627            // We're over the minimum width, so then we can just write the bytes.
1628            write_prefix(self, sign, prefix)?;
1629            self.buf.write_str(buf)
1630        } else if self.sign_aware_zero_pad() {
1631            // The sign and prefix goes before the padding if the fill character
1632            // is zero
1633            let old_options = self.options;
1634            self.options.fill('0').align(Some(Alignment::Right));
1635            write_prefix(self, sign, prefix)?;
1636            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1637            self.buf.write_str(buf)?;
1638            post_padding.write(self)?;
1639            self.options = old_options;
1640            Ok(())
1641        } else {
1642            // Otherwise, the sign and prefix goes after the padding
1643            let post_padding = self.padding(min - width as u16, Alignment::Right)?;
1644            write_prefix(self, sign, prefix)?;
1645            self.buf.write_str(buf)?;
1646            post_padding.write(self)
1647        }
1648    }
1649
1650    /// Takes a string slice and emits it to the internal buffer after applying
1651    /// the relevant formatting flags specified.
1652    ///
1653    /// The flags recognized for generic strings are:
1654    ///
1655    /// * width - the minimum width of what to emit
1656    /// * fill/align - what to emit and where to emit it if the string
1657    ///                provided needs to be padded
1658    /// * precision - the maximum length to emit, the string is truncated if it
1659    ///               is longer than this length
1660    ///
1661    /// Notably this function ignores the `flag` parameters.
1662    ///
1663    /// # Examples
1664    ///
1665    /// ```
1666    /// use std::fmt;
1667    ///
1668    /// struct Foo;
1669    ///
1670    /// impl fmt::Display for Foo {
1671    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1672    ///         formatter.pad("Foo")
1673    ///     }
1674    /// }
1675    ///
1676    /// assert_eq!(format!("{Foo:<4}"), "Foo ");
1677    /// assert_eq!(format!("{Foo:0>4}"), "0Foo");
1678    /// ```
1679    #[stable(feature = "rust1", since = "1.0.0")]
1680    pub fn pad(&mut self, s: &str) -> Result {
1681        // Make sure there's a fast path up front.
1682        if self.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
1683            return self.buf.write_str(s);
1684        }
1685
1686        // The `precision` field can be interpreted as a maximum width for the
1687        // string being formatted.
1688        let (s, char_count) = if let Some(max_char_count) = self.options.get_precision() {
1689            let mut iter = s.char_indices();
1690            let remaining = match iter.advance_by(usize::from(max_char_count)) {
1691                Ok(()) => 0,
1692                Err(remaining) => remaining.get(),
1693            };
1694            // SAFETY: The offset of `.char_indices()` is guaranteed to be
1695            // in-bounds and between character boundaries.
1696            let truncated = unsafe { s.get_unchecked(..iter.offset()) };
1697            (truncated, usize::from(max_char_count) - remaining)
1698        } else {
1699            // Use the optimized char counting algorithm for the full string.
1700            (s, s.chars().count())
1701        };
1702
1703        // The `width` field is more of a minimum width parameter at this point.
1704        if char_count < usize::from(self.options.width) {
1705            // If we're under the minimum width, then fill up the minimum width
1706            // with the specified string + some alignment.
1707            let post_padding =
1708                self.padding(self.options.width - char_count as u16, Alignment::Left)?;
1709            self.buf.write_str(s)?;
1710            post_padding.write(self)
1711        } else {
1712            // If we're over the minimum width or there is no minimum width, we
1713            // can just emit the string.
1714            self.buf.write_str(s)
1715        }
1716    }
1717
1718    /// Writes the pre-padding and returns the unwritten post-padding.
1719    ///
1720    /// Callers are responsible for ensuring post-padding is written after the
1721    /// thing that is being padded.
1722    pub(crate) fn padding(
1723        &mut self,
1724        padding: u16,
1725        default: Alignment,
1726    ) -> result::Result<PostPadding, Error> {
1727        let align = self.options.get_align().unwrap_or(default);
1728        let fill = self.options.get_fill();
1729
1730        let padding_left = match align {
1731            Alignment::Left => 0,
1732            Alignment::Right => padding,
1733            Alignment::Center => padding / 2,
1734        };
1735
1736        for _ in 0..padding_left {
1737            self.buf.write_char(fill)?;
1738        }
1739
1740        Ok(PostPadding::new(fill, padding - padding_left))
1741    }
1742
1743    /// Takes the formatted parts and applies the padding.
1744    ///
1745    /// Assumes that the caller already has rendered the parts with required precision,
1746    /// so that `self.precision` can be ignored.
1747    ///
1748    /// # Safety
1749    ///
1750    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1751    unsafe fn pad_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1752        if self.options.width == 0 {
1753            // this is the common case and we take a shortcut
1754            // SAFETY: Per the precondition.
1755            unsafe { self.write_formatted_parts(formatted) }
1756        } else {
1757            // for the sign-aware zero padding, we render the sign first and
1758            // behave as if we had no sign from the beginning.
1759            let mut formatted = formatted.clone();
1760            let mut width = self.options.width;
1761            let old_options = self.options;
1762            if self.sign_aware_zero_pad() {
1763                // a sign always goes first
1764                let sign = formatted.sign;
1765                self.buf.write_str(sign)?;
1766
1767                // remove the sign from the formatted parts
1768                formatted.sign = "";
1769                width = width.saturating_sub(sign.len() as u16);
1770                self.options.fill('0').align(Some(Alignment::Right));
1771            }
1772
1773            // remaining parts go through the ordinary padding process.
1774            let len = formatted.len();
1775            let ret = if usize::from(width) <= len {
1776                // no padding
1777                // SAFETY: Per the precondition.
1778                unsafe { self.write_formatted_parts(&formatted) }
1779            } else {
1780                let post_padding = self.padding(width - len as u16, Alignment::Right)?;
1781                // SAFETY: Per the precondition.
1782                unsafe {
1783                    self.write_formatted_parts(&formatted)?;
1784                }
1785                post_padding.write(self)
1786            };
1787            self.options = old_options;
1788            ret
1789        }
1790    }
1791
1792    /// # Safety
1793    ///
1794    /// Any `numfmt::Part::Copy` parts in `formatted` must contain valid UTF-8.
1795    unsafe fn write_formatted_parts(&mut self, formatted: &numfmt::Formatted<'_>) -> Result {
1796        unsafe fn write_bytes(buf: &mut dyn Write, s: &[u8]) -> Result {
1797            // SAFETY: This is used for `numfmt::Part::Num` and `numfmt::Part::Copy`.
1798            // It's safe to use for `numfmt::Part::Num` since every char `c` is between
1799            // `b'0'` and `b'9'`, which means `s` is valid UTF-8. It's safe to use for
1800            // `numfmt::Part::Copy` due to this function's precondition.
1801            buf.write_str(unsafe { str::from_utf8_unchecked(s) })
1802        }
1803
1804        if !formatted.sign.is_empty() {
1805            self.buf.write_str(formatted.sign)?;
1806        }
1807        for part in formatted.parts {
1808            match *part {
1809                numfmt::Part::Zero(mut nzeroes) => {
1810                    const ZEROES: &str = // 64 zeroes
1811                        "0000000000000000000000000000000000000000000000000000000000000000";
1812                    while nzeroes > ZEROES.len() {
1813                        self.buf.write_str(ZEROES)?;
1814                        nzeroes -= ZEROES.len();
1815                    }
1816                    if nzeroes > 0 {
1817                        self.buf.write_str(&ZEROES[..nzeroes])?;
1818                    }
1819                }
1820                numfmt::Part::Num(mut v) => {
1821                    let mut s = [0; 5];
1822                    let len = part.len();
1823                    for c in s[..len].iter_mut().rev() {
1824                        *c = b'0' + (v % 10) as u8;
1825                        v /= 10;
1826                    }
1827                    // SAFETY: Per the precondition.
1828                    unsafe {
1829                        write_bytes(self.buf, &s[..len])?;
1830                    }
1831                }
1832                // SAFETY: Per the precondition.
1833                numfmt::Part::Copy(buf) => unsafe {
1834                    write_bytes(self.buf, buf)?;
1835                },
1836            }
1837        }
1838        Ok(())
1839    }
1840
1841    /// Writes some data to the underlying buffer contained within this
1842    /// formatter.
1843    ///
1844    /// # Examples
1845    ///
1846    /// ```
1847    /// use std::fmt;
1848    ///
1849    /// struct Foo;
1850    ///
1851    /// impl fmt::Display for Foo {
1852    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1853    ///         formatter.write_str("Foo")
1854    ///         // This is equivalent to:
1855    ///         // write!(formatter, "Foo")
1856    ///     }
1857    /// }
1858    ///
1859    /// assert_eq!(format!("{Foo}"), "Foo");
1860    /// assert_eq!(format!("{Foo:0>8}"), "Foo");
1861    /// ```
1862    #[stable(feature = "rust1", since = "1.0.0")]
1863    pub fn write_str(&mut self, data: &str) -> Result {
1864        self.buf.write_str(data)
1865    }
1866
1867    /// Glue for usage of the [`write!`] macro with implementors of this trait.
1868    ///
1869    /// This method should generally not be invoked manually, but rather through
1870    /// the [`write!`] macro itself.
1871    ///
1872    /// Writes some formatted information into this instance.
1873    ///
1874    /// # Examples
1875    ///
1876    /// ```
1877    /// use std::fmt;
1878    ///
1879    /// struct Foo(i32);
1880    ///
1881    /// impl fmt::Display for Foo {
1882    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1883    ///         formatter.write_fmt(format_args!("Foo {}", self.0))
1884    ///     }
1885    /// }
1886    ///
1887    /// assert_eq!(format!("{}", Foo(-1)), "Foo -1");
1888    /// assert_eq!(format!("{:0>8}", Foo(2)), "Foo 2");
1889    /// ```
1890    #[stable(feature = "rust1", since = "1.0.0")]
1891    #[inline]
1892    pub fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result {
1893        if let Some(s) = fmt.as_statically_known_str() {
1894            self.buf.write_str(s)
1895        } else {
1896            write(self.buf, fmt)
1897        }
1898    }
1899
1900    /// Returns flags for formatting.
1901    #[must_use]
1902    #[stable(feature = "rust1", since = "1.0.0")]
1903    #[deprecated(
1904        since = "1.24.0",
1905        note = "use the `sign_plus`, `sign_minus`, `alternate`, \
1906                or `sign_aware_zero_pad` methods instead"
1907    )]
1908    pub fn flags(&self) -> u32 {
1909        // Extract the debug upper/lower hex, zero pad, alternate, and plus/minus flags
1910        // to stay compatible with older versions of Rust.
1911        self.options.flags >> 21 & 0x3F
1912    }
1913
1914    /// Returns the character used as 'fill' whenever there is alignment.
1915    ///
1916    /// # Examples
1917    ///
1918    /// ```
1919    /// use std::fmt;
1920    ///
1921    /// struct Foo;
1922    ///
1923    /// impl fmt::Display for Foo {
1924    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1925    ///         let c = formatter.fill();
1926    ///         if let Some(width) = formatter.width() {
1927    ///             for _ in 0..width {
1928    ///                 write!(formatter, "{c}")?;
1929    ///             }
1930    ///             Ok(())
1931    ///         } else {
1932    ///             write!(formatter, "{c}")
1933    ///         }
1934    ///     }
1935    /// }
1936    ///
1937    /// // We set alignment to the right with ">".
1938    /// assert_eq!(format!("{Foo:G>3}"), "GGG");
1939    /// assert_eq!(format!("{Foo:t>6}"), "tttttt");
1940    /// ```
1941    #[must_use]
1942    #[stable(feature = "fmt_flags", since = "1.5.0")]
1943    pub fn fill(&self) -> char {
1944        self.options.get_fill()
1945    }
1946
1947    /// Returns a flag indicating what form of alignment was requested.
1948    ///
1949    /// # Examples
1950    ///
1951    /// ```
1952    /// use std::fmt::{self, Alignment};
1953    ///
1954    /// struct Foo;
1955    ///
1956    /// impl fmt::Display for Foo {
1957    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1958    ///         let s = if let Some(s) = formatter.align() {
1959    ///             match s {
1960    ///                 Alignment::Left    => "left",
1961    ///                 Alignment::Right   => "right",
1962    ///                 Alignment::Center  => "center",
1963    ///             }
1964    ///         } else {
1965    ///             "into the void"
1966    ///         };
1967    ///         write!(formatter, "{s}")
1968    ///     }
1969    /// }
1970    ///
1971    /// assert_eq!(format!("{Foo:<}"), "left");
1972    /// assert_eq!(format!("{Foo:>}"), "right");
1973    /// assert_eq!(format!("{Foo:^}"), "center");
1974    /// assert_eq!(format!("{Foo}"), "into the void");
1975    /// ```
1976    #[must_use]
1977    #[stable(feature = "fmt_flags_align", since = "1.28.0")]
1978    pub fn align(&self) -> Option<Alignment> {
1979        self.options.get_align()
1980    }
1981
1982    /// Returns the optionally specified integer width that the output should be.
1983    ///
1984    /// # Examples
1985    ///
1986    /// ```
1987    /// use std::fmt;
1988    ///
1989    /// struct Foo(i32);
1990    ///
1991    /// impl fmt::Display for Foo {
1992    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1993    ///         if let Some(width) = formatter.width() {
1994    ///             // If we received a width, we use it
1995    ///             write!(formatter, "{:width$}", format!("Foo({})", self.0), width = width)
1996    ///         } else {
1997    ///             // Otherwise we do nothing special
1998    ///             write!(formatter, "Foo({})", self.0)
1999    ///         }
2000    ///     }
2001    /// }
2002    ///
2003    /// assert_eq!(format!("{:10}", Foo(23)), "Foo(23)   ");
2004    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2005    /// ```
2006    #[must_use]
2007    #[stable(feature = "fmt_flags", since = "1.5.0")]
2008    pub fn width(&self) -> Option<usize> {
2009        if self.options.flags & flags::WIDTH_FLAG == 0 {
2010            None
2011        } else {
2012            Some(self.options.width as usize)
2013        }
2014    }
2015
2016    /// Returns the optionally specified precision for numeric types.
2017    /// Alternatively, the maximum width for string types.
2018    ///
2019    /// # Examples
2020    ///
2021    /// ```
2022    /// use std::fmt;
2023    ///
2024    /// struct Foo(f32);
2025    ///
2026    /// impl fmt::Display for Foo {
2027    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2028    ///         if let Some(precision) = formatter.precision() {
2029    ///             // If we received a precision, we use it.
2030    ///             write!(formatter, "Foo({1:.*})", precision, self.0)
2031    ///         } else {
2032    ///             // Otherwise we default to 2.
2033    ///             write!(formatter, "Foo({:.2})", self.0)
2034    ///         }
2035    ///     }
2036    /// }
2037    ///
2038    /// assert_eq!(format!("{:.4}", Foo(23.2)), "Foo(23.2000)");
2039    /// assert_eq!(format!("{}", Foo(23.2)), "Foo(23.20)");
2040    /// ```
2041    #[must_use]
2042    #[stable(feature = "fmt_flags", since = "1.5.0")]
2043    pub fn precision(&self) -> Option<usize> {
2044        if self.options.flags & flags::PRECISION_FLAG == 0 {
2045            None
2046        } else {
2047            Some(self.options.precision as usize)
2048        }
2049    }
2050
2051    /// Determines if the `+` flag was specified.
2052    ///
2053    /// # Examples
2054    ///
2055    /// ```
2056    /// use std::fmt;
2057    ///
2058    /// struct Foo(i32);
2059    ///
2060    /// impl fmt::Display for Foo {
2061    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2062    ///         if formatter.sign_plus() {
2063    ///             write!(formatter,
2064    ///                    "Foo({}{})",
2065    ///                    if self.0 < 0 { '-' } else { '+' },
2066    ///                    self.0.abs())
2067    ///         } else {
2068    ///             write!(formatter, "Foo({})", self.0)
2069    ///         }
2070    ///     }
2071    /// }
2072    ///
2073    /// assert_eq!(format!("{:+}", Foo(23)), "Foo(+23)");
2074    /// assert_eq!(format!("{:+}", Foo(-23)), "Foo(-23)");
2075    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2076    /// ```
2077    #[must_use]
2078    #[stable(feature = "fmt_flags", since = "1.5.0")]
2079    pub fn sign_plus(&self) -> bool {
2080        self.options.flags & flags::SIGN_PLUS_FLAG != 0
2081    }
2082
2083    /// Determines if the `-` flag was specified.
2084    ///
2085    /// # Examples
2086    ///
2087    /// ```
2088    /// use std::fmt;
2089    ///
2090    /// struct Foo(i32);
2091    ///
2092    /// impl fmt::Display for Foo {
2093    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2094    ///         if formatter.sign_minus() {
2095    ///             // You want a minus sign? Have one!
2096    ///             write!(formatter, "-Foo({})", self.0)
2097    ///         } else {
2098    ///             write!(formatter, "Foo({})", self.0)
2099    ///         }
2100    ///     }
2101    /// }
2102    ///
2103    /// assert_eq!(format!("{:-}", Foo(23)), "-Foo(23)");
2104    /// assert_eq!(format!("{}", Foo(23)), "Foo(23)");
2105    /// ```
2106    #[must_use]
2107    #[stable(feature = "fmt_flags", since = "1.5.0")]
2108    pub fn sign_minus(&self) -> bool {
2109        self.options.flags & flags::SIGN_MINUS_FLAG != 0
2110    }
2111
2112    /// Determines if the `#` flag was specified.
2113    ///
2114    /// # Examples
2115    ///
2116    /// ```
2117    /// use std::fmt;
2118    ///
2119    /// struct Foo(i32);
2120    ///
2121    /// impl fmt::Display for Foo {
2122    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2123    ///         if formatter.alternate() {
2124    ///             write!(formatter, "Foo({})", self.0)
2125    ///         } else {
2126    ///             write!(formatter, "{}", self.0)
2127    ///         }
2128    ///     }
2129    /// }
2130    ///
2131    /// assert_eq!(format!("{:#}", Foo(23)), "Foo(23)");
2132    /// assert_eq!(format!("{}", Foo(23)), "23");
2133    /// ```
2134    #[must_use]
2135    #[stable(feature = "fmt_flags", since = "1.5.0")]
2136    pub fn alternate(&self) -> bool {
2137        self.options.flags & flags::ALTERNATE_FLAG != 0
2138    }
2139
2140    /// Determines if the `0` flag was specified.
2141    ///
2142    /// # Examples
2143    ///
2144    /// ```
2145    /// use std::fmt;
2146    ///
2147    /// struct Foo(i32);
2148    ///
2149    /// impl fmt::Display for Foo {
2150    ///     fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2151    ///         assert!(formatter.sign_aware_zero_pad());
2152    ///         assert_eq!(formatter.width(), Some(4));
2153    ///         // We ignore the formatter's options.
2154    ///         write!(formatter, "{}", self.0)
2155    ///     }
2156    /// }
2157    ///
2158    /// assert_eq!(format!("{:04}", Foo(23)), "23");
2159    /// ```
2160    #[must_use]
2161    #[stable(feature = "fmt_flags", since = "1.5.0")]
2162    pub fn sign_aware_zero_pad(&self) -> bool {
2163        self.options.flags & flags::SIGN_AWARE_ZERO_PAD_FLAG != 0
2164    }
2165
2166    // FIXME: Decide what public API we want for these two flags.
2167    // https://github.com/rust-lang/rust/issues/48584
2168    fn debug_lower_hex(&self) -> bool {
2169        self.options.flags & flags::DEBUG_LOWER_HEX_FLAG != 0
2170    }
2171    fn debug_upper_hex(&self) -> bool {
2172        self.options.flags & flags::DEBUG_UPPER_HEX_FLAG != 0
2173    }
2174
2175    /// Creates a [`DebugStruct`] builder designed to assist with creation of
2176    /// [`fmt::Debug`] implementations for structs.
2177    ///
2178    /// [`fmt::Debug`]: self::Debug
2179    ///
2180    /// # Examples
2181    ///
2182    /// ```rust
2183    /// use std::fmt;
2184    /// use std::net::Ipv4Addr;
2185    ///
2186    /// struct Foo {
2187    ///     bar: i32,
2188    ///     baz: String,
2189    ///     addr: Ipv4Addr,
2190    /// }
2191    ///
2192    /// impl fmt::Debug for Foo {
2193    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2194    ///         fmt.debug_struct("Foo")
2195    ///             .field("bar", &self.bar)
2196    ///             .field("baz", &self.baz)
2197    ///             .field("addr", &format_args!("{}", self.addr))
2198    ///             .finish()
2199    ///     }
2200    /// }
2201    ///
2202    /// assert_eq!(
2203    ///     "Foo { bar: 10, baz: \"Hello World\", addr: 127.0.0.1 }",
2204    ///     format!("{:?}", Foo {
2205    ///         bar: 10,
2206    ///         baz: "Hello World".to_string(),
2207    ///         addr: Ipv4Addr::new(127, 0, 0, 1),
2208    ///     })
2209    /// );
2210    /// ```
2211    #[stable(feature = "debug_builders", since = "1.2.0")]
2212    pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
2213        builders::debug_struct_new(self, name)
2214    }
2215
2216    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2217    /// binaries. `debug_struct_fields_finish` is more general, but this is
2218    /// faster for 1 field.
2219    #[doc(hidden)]
2220    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2221    pub fn debug_struct_field1_finish<'b>(
2222        &'b mut self,
2223        name: &str,
2224        name1: &str,
2225        value1: &dyn Debug,
2226    ) -> Result {
2227        let mut builder = builders::debug_struct_new(self, name);
2228        builder.field(name1, value1);
2229        builder.finish()
2230    }
2231
2232    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2233    /// binaries. `debug_struct_fields_finish` is more general, but this is
2234    /// faster for 2 fields.
2235    #[doc(hidden)]
2236    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2237    pub fn debug_struct_field2_finish<'b>(
2238        &'b mut self,
2239        name: &str,
2240        name1: &str,
2241        value1: &dyn Debug,
2242        name2: &str,
2243        value2: &dyn Debug,
2244    ) -> Result {
2245        let mut builder = builders::debug_struct_new(self, name);
2246        builder.field(name1, value1);
2247        builder.field(name2, value2);
2248        builder.finish()
2249    }
2250
2251    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2252    /// binaries. `debug_struct_fields_finish` is more general, but this is
2253    /// faster for 3 fields.
2254    #[doc(hidden)]
2255    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2256    pub fn debug_struct_field3_finish<'b>(
2257        &'b mut self,
2258        name: &str,
2259        name1: &str,
2260        value1: &dyn Debug,
2261        name2: &str,
2262        value2: &dyn Debug,
2263        name3: &str,
2264        value3: &dyn Debug,
2265    ) -> Result {
2266        let mut builder = builders::debug_struct_new(self, name);
2267        builder.field(name1, value1);
2268        builder.field(name2, value2);
2269        builder.field(name3, value3);
2270        builder.finish()
2271    }
2272
2273    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2274    /// binaries. `debug_struct_fields_finish` is more general, but this is
2275    /// faster for 4 fields.
2276    #[doc(hidden)]
2277    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2278    pub fn debug_struct_field4_finish<'b>(
2279        &'b mut self,
2280        name: &str,
2281        name1: &str,
2282        value1: &dyn Debug,
2283        name2: &str,
2284        value2: &dyn Debug,
2285        name3: &str,
2286        value3: &dyn Debug,
2287        name4: &str,
2288        value4: &dyn Debug,
2289    ) -> Result {
2290        let mut builder = builders::debug_struct_new(self, name);
2291        builder.field(name1, value1);
2292        builder.field(name2, value2);
2293        builder.field(name3, value3);
2294        builder.field(name4, value4);
2295        builder.finish()
2296    }
2297
2298    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2299    /// binaries. `debug_struct_fields_finish` is more general, but this is
2300    /// faster for 5 fields.
2301    #[doc(hidden)]
2302    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2303    pub fn debug_struct_field5_finish<'b>(
2304        &'b mut self,
2305        name: &str,
2306        name1: &str,
2307        value1: &dyn Debug,
2308        name2: &str,
2309        value2: &dyn Debug,
2310        name3: &str,
2311        value3: &dyn Debug,
2312        name4: &str,
2313        value4: &dyn Debug,
2314        name5: &str,
2315        value5: &dyn Debug,
2316    ) -> Result {
2317        let mut builder = builders::debug_struct_new(self, name);
2318        builder.field(name1, value1);
2319        builder.field(name2, value2);
2320        builder.field(name3, value3);
2321        builder.field(name4, value4);
2322        builder.field(name5, value5);
2323        builder.finish()
2324    }
2325
2326    /// Shrinks `derive(Debug)` code, for faster compilation and smaller binaries.
2327    /// For the cases not covered by `debug_struct_field[12345]_finish`.
2328    #[doc(hidden)]
2329    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2330    pub fn debug_struct_fields_finish<'b>(
2331        &'b mut self,
2332        name: &str,
2333        names: &[&str],
2334        values: &[&dyn Debug],
2335    ) -> Result {
2336        assert_eq!(names.len(), values.len());
2337        let mut builder = builders::debug_struct_new(self, name);
2338        for (name, value) in iter::zip(names, values) {
2339            builder.field(name, value);
2340        }
2341        builder.finish()
2342    }
2343
2344    /// Creates a `DebugTuple` builder designed to assist with creation of
2345    /// `fmt::Debug` implementations for tuple structs.
2346    ///
2347    /// # Examples
2348    ///
2349    /// ```rust
2350    /// use std::fmt;
2351    /// use std::marker::PhantomData;
2352    ///
2353    /// struct Foo<T>(i32, String, PhantomData<T>);
2354    ///
2355    /// impl<T> fmt::Debug for Foo<T> {
2356    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2357    ///         fmt.debug_tuple("Foo")
2358    ///             .field(&self.0)
2359    ///             .field(&self.1)
2360    ///             .field(&format_args!("_"))
2361    ///             .finish()
2362    ///     }
2363    /// }
2364    ///
2365    /// assert_eq!(
2366    ///     "Foo(10, \"Hello\", _)",
2367    ///     format!("{:?}", Foo(10, "Hello".to_string(), PhantomData::<u8>))
2368    /// );
2369    /// ```
2370    #[stable(feature = "debug_builders", since = "1.2.0")]
2371    pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
2372        builders::debug_tuple_new(self, name)
2373    }
2374
2375    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2376    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2377    /// for 1 field.
2378    #[doc(hidden)]
2379    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2380    pub fn debug_tuple_field1_finish<'b>(&'b mut self, name: &str, value1: &dyn Debug) -> Result {
2381        let mut builder = builders::debug_tuple_new(self, name);
2382        builder.field(value1);
2383        builder.finish()
2384    }
2385
2386    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2387    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2388    /// for 2 fields.
2389    #[doc(hidden)]
2390    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2391    pub fn debug_tuple_field2_finish<'b>(
2392        &'b mut self,
2393        name: &str,
2394        value1: &dyn Debug,
2395        value2: &dyn Debug,
2396    ) -> Result {
2397        let mut builder = builders::debug_tuple_new(self, name);
2398        builder.field(value1);
2399        builder.field(value2);
2400        builder.finish()
2401    }
2402
2403    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2404    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2405    /// for 3 fields.
2406    #[doc(hidden)]
2407    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2408    pub fn debug_tuple_field3_finish<'b>(
2409        &'b mut self,
2410        name: &str,
2411        value1: &dyn Debug,
2412        value2: &dyn Debug,
2413        value3: &dyn Debug,
2414    ) -> Result {
2415        let mut builder = builders::debug_tuple_new(self, name);
2416        builder.field(value1);
2417        builder.field(value2);
2418        builder.field(value3);
2419        builder.finish()
2420    }
2421
2422    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2423    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2424    /// for 4 fields.
2425    #[doc(hidden)]
2426    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2427    pub fn debug_tuple_field4_finish<'b>(
2428        &'b mut self,
2429        name: &str,
2430        value1: &dyn Debug,
2431        value2: &dyn Debug,
2432        value3: &dyn Debug,
2433        value4: &dyn Debug,
2434    ) -> Result {
2435        let mut builder = builders::debug_tuple_new(self, name);
2436        builder.field(value1);
2437        builder.field(value2);
2438        builder.field(value3);
2439        builder.field(value4);
2440        builder.finish()
2441    }
2442
2443    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2444    /// binaries. `debug_tuple_fields_finish` is more general, but this is faster
2445    /// for 5 fields.
2446    #[doc(hidden)]
2447    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2448    pub fn debug_tuple_field5_finish<'b>(
2449        &'b mut self,
2450        name: &str,
2451        value1: &dyn Debug,
2452        value2: &dyn Debug,
2453        value3: &dyn Debug,
2454        value4: &dyn Debug,
2455        value5: &dyn Debug,
2456    ) -> Result {
2457        let mut builder = builders::debug_tuple_new(self, name);
2458        builder.field(value1);
2459        builder.field(value2);
2460        builder.field(value3);
2461        builder.field(value4);
2462        builder.field(value5);
2463        builder.finish()
2464    }
2465
2466    /// Shrinks `derive(Debug)` code, for faster compilation and smaller
2467    /// binaries. For the cases not covered by `debug_tuple_field[12345]_finish`.
2468    #[doc(hidden)]
2469    #[unstable(feature = "fmt_helpers_for_derive", issue = "none")]
2470    pub fn debug_tuple_fields_finish<'b>(
2471        &'b mut self,
2472        name: &str,
2473        values: &[&dyn Debug],
2474    ) -> Result {
2475        let mut builder = builders::debug_tuple_new(self, name);
2476        for value in values {
2477            builder.field(value);
2478        }
2479        builder.finish()
2480    }
2481
2482    /// Creates a `DebugList` builder designed to assist with creation of
2483    /// `fmt::Debug` implementations for list-like structures.
2484    ///
2485    /// # Examples
2486    ///
2487    /// ```rust
2488    /// use std::fmt;
2489    ///
2490    /// struct Foo(Vec<i32>);
2491    ///
2492    /// impl fmt::Debug for Foo {
2493    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2494    ///         fmt.debug_list().entries(self.0.iter()).finish()
2495    ///     }
2496    /// }
2497    ///
2498    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "[10, 11]");
2499    /// ```
2500    #[stable(feature = "debug_builders", since = "1.2.0")]
2501    pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
2502        builders::debug_list_new(self)
2503    }
2504
2505    /// Creates a `DebugSet` builder designed to assist with creation of
2506    /// `fmt::Debug` implementations for set-like structures.
2507    ///
2508    /// # Examples
2509    ///
2510    /// ```rust
2511    /// use std::fmt;
2512    ///
2513    /// struct Foo(Vec<i32>);
2514    ///
2515    /// impl fmt::Debug for Foo {
2516    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2517    ///         fmt.debug_set().entries(self.0.iter()).finish()
2518    ///     }
2519    /// }
2520    ///
2521    /// assert_eq!(format!("{:?}", Foo(vec![10, 11])), "{10, 11}");
2522    /// ```
2523    ///
2524    /// [`format_args!`]: crate::format_args
2525    ///
2526    /// In this more complex example, we use [`format_args!`] and `.debug_set()`
2527    /// to build a list of match arms:
2528    ///
2529    /// ```rust
2530    /// use std::fmt;
2531    ///
2532    /// struct Arm<'a, L, R>(&'a (L, R));
2533    /// struct Table<'a, K, V>(&'a [(K, V)], V);
2534    ///
2535    /// impl<'a, L, R> fmt::Debug for Arm<'a, L, R>
2536    /// where
2537    ///     L: 'a + fmt::Debug, R: 'a + fmt::Debug
2538    /// {
2539    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2540    ///         L::fmt(&(self.0).0, fmt)?;
2541    ///         fmt.write_str(" => ")?;
2542    ///         R::fmt(&(self.0).1, fmt)
2543    ///     }
2544    /// }
2545    ///
2546    /// impl<'a, K, V> fmt::Debug for Table<'a, K, V>
2547    /// where
2548    ///     K: 'a + fmt::Debug, V: 'a + fmt::Debug
2549    /// {
2550    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2551    ///         fmt.debug_set()
2552    ///         .entries(self.0.iter().map(Arm))
2553    ///         .entry(&Arm(&(format_args!("_"), &self.1)))
2554    ///         .finish()
2555    ///     }
2556    /// }
2557    /// ```
2558    #[stable(feature = "debug_builders", since = "1.2.0")]
2559    pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
2560        builders::debug_set_new(self)
2561    }
2562
2563    /// Creates a `DebugMap` builder designed to assist with creation of
2564    /// `fmt::Debug` implementations for map-like structures.
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```rust
2569    /// use std::fmt;
2570    ///
2571    /// struct Foo(Vec<(String, i32)>);
2572    ///
2573    /// impl fmt::Debug for Foo {
2574    ///     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2575    ///         fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
2576    ///     }
2577    /// }
2578    ///
2579    /// assert_eq!(
2580    ///     format!("{:?}",  Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)])),
2581    ///     r#"{"A": 10, "B": 11}"#
2582    ///  );
2583    /// ```
2584    #[stable(feature = "debug_builders", since = "1.2.0")]
2585    pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
2586        builders::debug_map_new(self)
2587    }
2588
2589    /// Returns the sign of this formatter (`+` or `-`).
2590    #[unstable(feature = "formatting_options", issue = "118117")]
2591    pub const fn sign(&self) -> Option<Sign> {
2592        self.options.get_sign()
2593    }
2594
2595    /// Returns the formatting options this formatter corresponds to.
2596    #[unstable(feature = "formatting_options", issue = "118117")]
2597    pub const fn options(&self) -> FormattingOptions {
2598        self.options
2599    }
2600}
2601
2602#[stable(since = "1.2.0", feature = "formatter_write")]
2603impl Write for Formatter<'_> {
2604    fn write_str(&mut self, s: &str) -> Result {
2605        self.buf.write_str(s)
2606    }
2607
2608    fn write_char(&mut self, c: char) -> Result {
2609        self.buf.write_char(c)
2610    }
2611
2612    #[inline]
2613    fn write_fmt(&mut self, args: Arguments<'_>) -> Result {
2614        if let Some(s) = args.as_statically_known_str() {
2615            self.buf.write_str(s)
2616        } else {
2617            write(self.buf, args)
2618        }
2619    }
2620}
2621
2622#[stable(feature = "rust1", since = "1.0.0")]
2623impl Display for Error {
2624    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2625        Display::fmt("an error occurred when formatting an argument", f)
2626    }
2627}
2628
2629// Implementations of the core formatting traits
2630
2631macro_rules! fmt_refs {
2632    ($($tr:ident),*) => {
2633        $(
2634        #[stable(feature = "rust1", since = "1.0.0")]
2635        impl<T: ?Sized + $tr> $tr for &T {
2636            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2637        }
2638        #[stable(feature = "rust1", since = "1.0.0")]
2639        impl<T: ?Sized + $tr> $tr for &mut T {
2640            fn fmt(&self, f: &mut Formatter<'_>) -> Result { $tr::fmt(&**self, f) }
2641        }
2642        )*
2643    }
2644}
2645
2646fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
2647
2648#[unstable(feature = "never_type", issue = "35121")]
2649impl Debug for ! {
2650    #[inline]
2651    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2652        *self
2653    }
2654}
2655
2656#[unstable(feature = "never_type", issue = "35121")]
2657impl Display for ! {
2658    #[inline]
2659    fn fmt(&self, _: &mut Formatter<'_>) -> Result {
2660        *self
2661    }
2662}
2663
2664#[stable(feature = "rust1", since = "1.0.0")]
2665impl Debug for bool {
2666    #[inline]
2667    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2668        Display::fmt(self, f)
2669    }
2670}
2671
2672#[stable(feature = "rust1", since = "1.0.0")]
2673impl Display for bool {
2674    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2675        Display::fmt(if *self { "true" } else { "false" }, f)
2676    }
2677}
2678
2679#[stable(feature = "rust1", since = "1.0.0")]
2680impl Debug for str {
2681    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2682        f.write_char('"')?;
2683
2684        // substring we know is printable
2685        let mut printable_range = 0..0;
2686
2687        fn needs_escape(b: u8) -> bool {
2688            b > 0x7E || b < 0x20 || b == b'\\' || b == b'"'
2689        }
2690
2691        // the loop here first skips over runs of printable ASCII as a fast path.
2692        // other chars (unicode, or ASCII that needs escaping) are then handled per-`char`.
2693        let mut rest = self;
2694        while rest.len() > 0 {
2695            let Some(non_printable_start) = rest.as_bytes().iter().position(|&b| needs_escape(b))
2696            else {
2697                printable_range.end += rest.len();
2698                break;
2699            };
2700
2701            printable_range.end += non_printable_start;
2702            // SAFETY: the position was derived from an iterator, so is known to be within bounds, and at a char boundary
2703            rest = unsafe { rest.get_unchecked(non_printable_start..) };
2704
2705            let mut chars = rest.chars();
2706            if let Some(c) = chars.next() {
2707                let esc = c.escape_debug_ext(EscapeDebugExtArgs {
2708                    escape_grapheme_extended: true,
2709                    escape_single_quote: false,
2710                    escape_double_quote: true,
2711                });
2712                if esc.len() != 1 {
2713                    f.write_str(&self[printable_range.clone()])?;
2714                    Display::fmt(&esc, f)?;
2715                    printable_range.start = printable_range.end + c.len_utf8();
2716                }
2717                printable_range.end += c.len_utf8();
2718            }
2719            rest = chars.as_str();
2720        }
2721
2722        f.write_str(&self[printable_range])?;
2723
2724        f.write_char('"')
2725    }
2726}
2727
2728#[stable(feature = "rust1", since = "1.0.0")]
2729impl Display for str {
2730    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2731        f.pad(self)
2732    }
2733}
2734
2735#[stable(feature = "rust1", since = "1.0.0")]
2736impl Debug for char {
2737    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2738        f.write_char('\'')?;
2739        let esc = self.escape_debug_ext(EscapeDebugExtArgs {
2740            escape_grapheme_extended: true,
2741            escape_single_quote: true,
2742            escape_double_quote: false,
2743        });
2744        Display::fmt(&esc, f)?;
2745        f.write_char('\'')
2746    }
2747}
2748
2749#[stable(feature = "rust1", since = "1.0.0")]
2750impl Display for char {
2751    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2752        if f.options.flags & (flags::WIDTH_FLAG | flags::PRECISION_FLAG) == 0 {
2753            f.write_char(*self)
2754        } else {
2755            f.pad(self.encode_utf8(&mut [0; MAX_LEN_UTF8]))
2756        }
2757    }
2758}
2759
2760#[stable(feature = "rust1", since = "1.0.0")]
2761impl<T: ?Sized> Pointer for *const T {
2762    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2763        if <<T as core::ptr::Pointee>::Metadata as core::unit::IsUnit>::is_unit() {
2764            pointer_fmt_inner(self.expose_provenance(), f)
2765        } else {
2766            f.debug_struct("Pointer")
2767                .field_with("addr", |f| pointer_fmt_inner(self.expose_provenance(), f))
2768                .field("metadata", &core::ptr::metadata(*self))
2769                .finish()
2770        }
2771    }
2772}
2773
2774/// Since the formatting will be identical for all pointer types, uses a
2775/// non-monomorphized implementation for the actual formatting to reduce the
2776/// amount of codegen work needed.
2777///
2778/// This uses `ptr_addr: usize` and not `ptr: *const ()` to be able to use this for
2779/// `fn(...) -> ...` without using [problematic] "Oxford Casts".
2780///
2781/// [problematic]: https://github.com/rust-lang/rust/issues/95489
2782pub(crate) fn pointer_fmt_inner(ptr_addr: usize, f: &mut Formatter<'_>) -> Result {
2783    let old_options = f.options;
2784
2785    // The alternate flag is already treated by LowerHex as being special-
2786    // it denotes whether to prefix with 0x. We use it to work out whether
2787    // or not to zero extend, and then unconditionally set it to get the
2788    // prefix.
2789    if f.options.get_alternate() {
2790        f.options.sign_aware_zero_pad(true);
2791
2792        if f.options.get_width().is_none() {
2793            f.options.width(Some((usize::BITS / 4) as u16 + 2));
2794        }
2795    }
2796    f.options.alternate(true);
2797
2798    let ret = LowerHex::fmt(&ptr_addr, f);
2799
2800    f.options = old_options;
2801
2802    ret
2803}
2804
2805#[stable(feature = "rust1", since = "1.0.0")]
2806impl<T: ?Sized> Pointer for *mut T {
2807    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2808        Pointer::fmt(&(*self as *const T), f)
2809    }
2810}
2811
2812#[stable(feature = "rust1", since = "1.0.0")]
2813impl<T: ?Sized> Pointer for &T {
2814    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2815        Pointer::fmt(&(*self as *const T), f)
2816    }
2817}
2818
2819#[stable(feature = "rust1", since = "1.0.0")]
2820impl<T: ?Sized> Pointer for &mut T {
2821    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2822        Pointer::fmt(&(&**self as *const T), f)
2823    }
2824}
2825
2826// Implementation of Display/Debug for various core types
2827
2828#[stable(feature = "rust1", since = "1.0.0")]
2829impl<T: ?Sized> Debug for *const T {
2830    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2831        Pointer::fmt(self, f)
2832    }
2833}
2834#[stable(feature = "rust1", since = "1.0.0")]
2835impl<T: ?Sized> Debug for *mut T {
2836    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2837        Pointer::fmt(self, f)
2838    }
2839}
2840
2841macro_rules! peel {
2842    ($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
2843}
2844
2845macro_rules! tuple {
2846    () => ();
2847    ( $($name:ident,)+ ) => (
2848        maybe_tuple_doc! {
2849            $($name)+ @
2850            #[stable(feature = "rust1", since = "1.0.0")]
2851            impl<$($name:Debug),+> Debug for ($($name,)+) where last_type!($($name,)+): ?Sized {
2852                #[allow(non_snake_case, unused_assignments)]
2853                fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2854                    let mut builder = f.debug_tuple("");
2855                    let ($(ref $name,)+) = *self;
2856                    $(
2857                        builder.field(&$name);
2858                    )+
2859
2860                    builder.finish()
2861                }
2862            }
2863        }
2864        peel! { $($name,)+ }
2865    )
2866}
2867
2868macro_rules! maybe_tuple_doc {
2869    ($a:ident @ #[$meta:meta] $item:item) => {
2870        #[doc(fake_variadic)]
2871        #[doc = "This trait is implemented for tuples up to twelve items long."]
2872        #[$meta]
2873        $item
2874    };
2875    ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => {
2876        #[doc(hidden)]
2877        #[$meta]
2878        $item
2879    };
2880}
2881
2882macro_rules! last_type {
2883    ($a:ident,) => { $a };
2884    ($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) };
2885}
2886
2887tuple! { E, D, C, B, A, Z, Y, X, W, V, U, T, }
2888
2889#[stable(feature = "rust1", since = "1.0.0")]
2890impl<T: Debug> Debug for [T] {
2891    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2892        f.debug_list().entries(self.iter()).finish()
2893    }
2894}
2895
2896#[stable(feature = "rust1", since = "1.0.0")]
2897impl Debug for () {
2898    #[inline]
2899    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2900        f.pad("()")
2901    }
2902}
2903#[stable(feature = "rust1", since = "1.0.0")]
2904impl<T: ?Sized> Debug for PhantomData<T> {
2905    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2906        write!(f, "PhantomData<{}>", crate::any::type_name::<T>())
2907    }
2908}
2909
2910#[stable(feature = "rust1", since = "1.0.0")]
2911impl<T: Copy + Debug> Debug for Cell<T> {
2912    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2913        f.debug_struct("Cell").field("value", &self.get()).finish()
2914    }
2915}
2916
2917#[stable(feature = "rust1", since = "1.0.0")]
2918impl<T: ?Sized + Debug> Debug for RefCell<T> {
2919    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2920        let mut d = f.debug_struct("RefCell");
2921        match self.try_borrow() {
2922            Ok(borrow) => d.field("value", &borrow),
2923            Err(_) => d.field("value", &format_args!("<borrowed>")),
2924        };
2925        d.finish()
2926    }
2927}
2928
2929#[stable(feature = "rust1", since = "1.0.0")]
2930impl<T: ?Sized + Debug> Debug for Ref<'_, T> {
2931    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2932        Debug::fmt(&**self, f)
2933    }
2934}
2935
2936#[stable(feature = "rust1", since = "1.0.0")]
2937impl<T: ?Sized + Debug> Debug for RefMut<'_, T> {
2938    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2939        Debug::fmt(&*(self.deref()), f)
2940    }
2941}
2942
2943#[stable(feature = "core_impl_debug", since = "1.9.0")]
2944impl<T: ?Sized> Debug for UnsafeCell<T> {
2945    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2946        f.debug_struct("UnsafeCell").finish_non_exhaustive()
2947    }
2948}
2949
2950#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2951impl<T: ?Sized> Debug for SyncUnsafeCell<T> {
2952    fn fmt(&self, f: &mut Formatter<'_>) -> Result {
2953        f.debug_struct("SyncUnsafeCell").finish_non_exhaustive()
2954    }
2955}
2956
2957// If you expected tests to be here, look instead at coretests/tests/fmt/;
2958// it's a lot easier than creating all of the rt::Piece structures here.
2959// There are also tests in alloctests/tests/fmt.rs, for those that need allocations.