core/
cell.rs

1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//!  - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//!    interior value by duplicating it.
38//!  - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//!    interior value with [`Default::default()`] and returns the replaced value.
40//!  - All types have:
41//!    - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//!      value.
43//!    - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//!      interior value.
45//!    - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//!   if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//!     let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//!     // Create a new block to limit the scope of the dynamic borrow
131//!     {
132//!         let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//!         map.insert("africa", 92388);
134//!         map.insert("kyoto", 11837);
135//!         map.insert("piccadilly", 11826);
136//!         map.insert("marbles", 38);
137//!     }
138//!
139//!     // Note that if we had not let the previous borrow of the cache fall out
140//!     // of scope then the subsequent borrow would cause a dynamic thread panic.
141//!     // This is the major hazard of using `RefCell`.
142//!     let total: i32 = shared_map.borrow().values().sum();
143//!     println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//!     edges: Vec<(i32, i32)>,
164//!     span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//!     fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//!         self.span_tree_cache
170//!             .get_or_init(|| self.calc_span_tree())
171//!             .clone()
172//!     }
173//!
174//!     fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//!         // Expensive computation goes here
176//!         vec![]
177//!     }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//!     ptr: NonNull<RcInner<T>>,
197//!     phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//!     strong: Cell<usize>,
202//!     refcount: Cell<usize>,
203//!     value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//!     fn clone(&self) -> Rc<T> {
208//!         self.inc_strong();
209//!         Rc {
210//!             ptr: self.ptr,
211//!             phantom: PhantomData,
212//!         }
213//!     }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//!     fn inner(&self) -> &RcInner<T>;
219//!
220//!     fn strong(&self) -> usize {
221//!         self.inner().strong.get()
222//!     }
223//!
224//!     fn inc_strong(&self) {
225//!         self.inner()
226//!             .strong
227//!             .set(self.strong()
228//!                      .checked_add(1)
229//!                      .unwrap_or_else(|| abort() ));
230//!     }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//!    fn inner(&self) -> &RcInner<T> {
235//!        unsafe {
236//!            self.ptr.as_ref()
237//!        }
238//!    }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, PointerLike, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::pin::PinCoerceUnsized;
259use crate::ptr::{self, NonNull};
260
261mod lazy;
262mod once;
263
264#[stable(feature = "lazy_cell", since = "1.80.0")]
265pub use lazy::LazyCell;
266#[stable(feature = "once_cell", since = "1.70.0")]
267pub use once::OnceCell;
268
269/// A mutable memory location.
270///
271/// # Memory layout
272///
273/// `Cell<T>` has the same [memory layout and caveats as
274/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
275/// `Cell<T>` has the same in-memory representation as its inner type `T`.
276///
277/// # Examples
278///
279/// In this example, you can see that `Cell<T>` enables mutation inside an
280/// immutable struct. In other words, it enables "interior mutability".
281///
282/// ```
283/// use std::cell::Cell;
284///
285/// struct SomeStruct {
286///     regular_field: u8,
287///     special_field: Cell<u8>,
288/// }
289///
290/// let my_struct = SomeStruct {
291///     regular_field: 0,
292///     special_field: Cell::new(1),
293/// };
294///
295/// let new_value = 100;
296///
297/// // ERROR: `my_struct` is immutable
298/// // my_struct.regular_field = new_value;
299///
300/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
301/// // which can always be mutated
302/// my_struct.special_field.set(new_value);
303/// assert_eq!(my_struct.special_field.get(), new_value);
304/// ```
305///
306/// See the [module-level documentation](self) for more.
307#[rustc_diagnostic_item = "Cell"]
308#[stable(feature = "rust1", since = "1.0.0")]
309#[repr(transparent)]
310#[rustc_pub_transparent]
311pub struct Cell<T: ?Sized> {
312    value: UnsafeCell<T>,
313}
314
315#[stable(feature = "rust1", since = "1.0.0")]
316unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
317
318// Note that this negative impl isn't strictly necessary for correctness,
319// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
320// However, given how important `Cell`'s `!Sync`-ness is,
321// having an explicit negative impl is nice for documentation purposes
322// and results in nicer error messages.
323#[stable(feature = "rust1", since = "1.0.0")]
324impl<T: ?Sized> !Sync for Cell<T> {}
325
326#[stable(feature = "rust1", since = "1.0.0")]
327impl<T: Copy> Clone for Cell<T> {
328    #[inline]
329    fn clone(&self) -> Cell<T> {
330        Cell::new(self.get())
331    }
332}
333
334#[stable(feature = "rust1", since = "1.0.0")]
335impl<T: Default> Default for Cell<T> {
336    /// Creates a `Cell<T>`, with the `Default` value for T.
337    #[inline]
338    fn default() -> Cell<T> {
339        Cell::new(Default::default())
340    }
341}
342
343#[stable(feature = "rust1", since = "1.0.0")]
344impl<T: PartialEq + Copy> PartialEq for Cell<T> {
345    #[inline]
346    fn eq(&self, other: &Cell<T>) -> bool {
347        self.get() == other.get()
348    }
349}
350
351#[stable(feature = "cell_eq", since = "1.2.0")]
352impl<T: Eq + Copy> Eq for Cell<T> {}
353
354#[stable(feature = "cell_ord", since = "1.10.0")]
355impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
356    #[inline]
357    fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
358        self.get().partial_cmp(&other.get())
359    }
360
361    #[inline]
362    fn lt(&self, other: &Cell<T>) -> bool {
363        self.get() < other.get()
364    }
365
366    #[inline]
367    fn le(&self, other: &Cell<T>) -> bool {
368        self.get() <= other.get()
369    }
370
371    #[inline]
372    fn gt(&self, other: &Cell<T>) -> bool {
373        self.get() > other.get()
374    }
375
376    #[inline]
377    fn ge(&self, other: &Cell<T>) -> bool {
378        self.get() >= other.get()
379    }
380}
381
382#[stable(feature = "cell_ord", since = "1.10.0")]
383impl<T: Ord + Copy> Ord for Cell<T> {
384    #[inline]
385    fn cmp(&self, other: &Cell<T>) -> Ordering {
386        self.get().cmp(&other.get())
387    }
388}
389
390#[stable(feature = "cell_from", since = "1.12.0")]
391impl<T> From<T> for Cell<T> {
392    /// Creates a new `Cell<T>` containing the given value.
393    fn from(t: T) -> Cell<T> {
394        Cell::new(t)
395    }
396}
397
398impl<T> Cell<T> {
399    /// Creates a new `Cell` containing the given value.
400    ///
401    /// # Examples
402    ///
403    /// ```
404    /// use std::cell::Cell;
405    ///
406    /// let c = Cell::new(5);
407    /// ```
408    #[stable(feature = "rust1", since = "1.0.0")]
409    #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
410    #[inline]
411    pub const fn new(value: T) -> Cell<T> {
412        Cell { value: UnsafeCell::new(value) }
413    }
414
415    /// Sets the contained value.
416    ///
417    /// # Examples
418    ///
419    /// ```
420    /// use std::cell::Cell;
421    ///
422    /// let c = Cell::new(5);
423    ///
424    /// c.set(10);
425    /// ```
426    #[inline]
427    #[stable(feature = "rust1", since = "1.0.0")]
428    pub fn set(&self, val: T) {
429        self.replace(val);
430    }
431
432    /// Swaps the values of two `Cell`s.
433    ///
434    /// The difference with `std::mem::swap` is that this function doesn't
435    /// require a `&mut` reference.
436    ///
437    /// # Panics
438    ///
439    /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
440    /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
441    /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
442    ///
443    /// # Examples
444    ///
445    /// ```
446    /// use std::cell::Cell;
447    ///
448    /// let c1 = Cell::new(5i32);
449    /// let c2 = Cell::new(10i32);
450    /// c1.swap(&c2);
451    /// assert_eq!(10, c1.get());
452    /// assert_eq!(5, c2.get());
453    /// ```
454    #[inline]
455    #[stable(feature = "move_cell", since = "1.17.0")]
456    pub fn swap(&self, other: &Self) {
457        // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
458        // do the check in const, so trying to use it here would be inviting unnecessary fragility.
459        fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
460            let src_usize = src.addr();
461            let dst_usize = dst.addr();
462            let diff = src_usize.abs_diff(dst_usize);
463            diff >= size_of::<T>()
464        }
465
466        if ptr::eq(self, other) {
467            // Swapping wouldn't change anything.
468            return;
469        }
470        if !is_nonoverlapping(self, other) {
471            // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
472            panic!("`Cell::swap` on overlapping non-identical `Cell`s");
473        }
474        // SAFETY: This can be risky if called from separate threads, but `Cell`
475        // is `!Sync` so this won't happen. This also won't invalidate any
476        // pointers since `Cell` makes sure nothing else will be pointing into
477        // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
478        // so `swap` will just properly copy two full values of type `T` back and forth.
479        unsafe {
480            mem::swap(&mut *self.value.get(), &mut *other.value.get());
481        }
482    }
483
484    /// Replaces the contained value with `val`, and returns the old contained value.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// use std::cell::Cell;
490    ///
491    /// let cell = Cell::new(5);
492    /// assert_eq!(cell.get(), 5);
493    /// assert_eq!(cell.replace(10), 5);
494    /// assert_eq!(cell.get(), 10);
495    /// ```
496    #[inline]
497    #[stable(feature = "move_cell", since = "1.17.0")]
498    #[rustc_const_stable(feature = "const_cell", since = "CURRENT_RUSTC_VERSION")]
499    #[rustc_confusables("swap")]
500    pub const fn replace(&self, val: T) -> T {
501        // SAFETY: This can cause data races if called from a separate thread,
502        // but `Cell` is `!Sync` so this won't happen.
503        mem::replace(unsafe { &mut *self.value.get() }, val)
504    }
505
506    /// Unwraps the value, consuming the cell.
507    ///
508    /// # Examples
509    ///
510    /// ```
511    /// use std::cell::Cell;
512    ///
513    /// let c = Cell::new(5);
514    /// let five = c.into_inner();
515    ///
516    /// assert_eq!(five, 5);
517    /// ```
518    #[stable(feature = "move_cell", since = "1.17.0")]
519    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
520    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
521    pub const fn into_inner(self) -> T {
522        self.value.into_inner()
523    }
524}
525
526impl<T: Copy> Cell<T> {
527    /// Returns a copy of the contained value.
528    ///
529    /// # Examples
530    ///
531    /// ```
532    /// use std::cell::Cell;
533    ///
534    /// let c = Cell::new(5);
535    ///
536    /// let five = c.get();
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    #[rustc_const_stable(feature = "const_cell", since = "CURRENT_RUSTC_VERSION")]
541    pub const fn get(&self) -> T {
542        // SAFETY: This can cause data races if called from a separate thread,
543        // but `Cell` is `!Sync` so this won't happen.
544        unsafe { *self.value.get() }
545    }
546
547    /// Updates the contained value using a function.
548    ///
549    /// # Examples
550    ///
551    /// ```
552    /// use std::cell::Cell;
553    ///
554    /// let c = Cell::new(5);
555    /// c.update(|x| x + 1);
556    /// assert_eq!(c.get(), 6);
557    /// ```
558    #[inline]
559    #[stable(feature = "cell_update", since = "CURRENT_RUSTC_VERSION")]
560    pub fn update(&self, f: impl FnOnce(T) -> T) {
561        let old = self.get();
562        self.set(f(old));
563    }
564}
565
566impl<T: ?Sized> Cell<T> {
567    /// Returns a raw pointer to the underlying data in this cell.
568    ///
569    /// # Examples
570    ///
571    /// ```
572    /// use std::cell::Cell;
573    ///
574    /// let c = Cell::new(5);
575    ///
576    /// let ptr = c.as_ptr();
577    /// ```
578    #[inline]
579    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
580    #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
581    #[rustc_as_ptr]
582    #[rustc_never_returns_null_ptr]
583    pub const fn as_ptr(&self) -> *mut T {
584        self.value.get()
585    }
586
587    /// Returns a mutable reference to the underlying data.
588    ///
589    /// This call borrows `Cell` mutably (at compile-time) which guarantees
590    /// that we possess the only reference.
591    ///
592    /// However be cautious: this method expects `self` to be mutable, which is
593    /// generally not the case when using a `Cell`. If you require interior
594    /// mutability by reference, consider using `RefCell` which provides
595    /// run-time checked mutable borrows through its [`borrow_mut`] method.
596    ///
597    /// [`borrow_mut`]: RefCell::borrow_mut()
598    ///
599    /// # Examples
600    ///
601    /// ```
602    /// use std::cell::Cell;
603    ///
604    /// let mut c = Cell::new(5);
605    /// *c.get_mut() += 1;
606    ///
607    /// assert_eq!(c.get(), 6);
608    /// ```
609    #[inline]
610    #[stable(feature = "cell_get_mut", since = "1.11.0")]
611    #[rustc_const_stable(feature = "const_cell", since = "CURRENT_RUSTC_VERSION")]
612    pub const fn get_mut(&mut self) -> &mut T {
613        self.value.get_mut()
614    }
615
616    /// Returns a `&Cell<T>` from a `&mut T`
617    ///
618    /// # Examples
619    ///
620    /// ```
621    /// use std::cell::Cell;
622    ///
623    /// let slice: &mut [i32] = &mut [1, 2, 3];
624    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
625    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
626    ///
627    /// assert_eq!(slice_cell.len(), 3);
628    /// ```
629    #[inline]
630    #[stable(feature = "as_cell", since = "1.37.0")]
631    #[rustc_const_stable(feature = "const_cell", since = "CURRENT_RUSTC_VERSION")]
632    pub const fn from_mut(t: &mut T) -> &Cell<T> {
633        // SAFETY: `&mut` ensures unique access.
634        unsafe { &*(t as *mut T as *const Cell<T>) }
635    }
636}
637
638impl<T: Default> Cell<T> {
639    /// Takes the value of the cell, leaving `Default::default()` in its place.
640    ///
641    /// # Examples
642    ///
643    /// ```
644    /// use std::cell::Cell;
645    ///
646    /// let c = Cell::new(5);
647    /// let five = c.take();
648    ///
649    /// assert_eq!(five, 5);
650    /// assert_eq!(c.into_inner(), 0);
651    /// ```
652    #[stable(feature = "move_cell", since = "1.17.0")]
653    pub fn take(&self) -> T {
654        self.replace(Default::default())
655    }
656}
657
658#[unstable(feature = "coerce_unsized", issue = "18598")]
659impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
660
661// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
662// and become dyn-compatible method receivers.
663// Note that currently `Cell` itself cannot be a method receiver
664// because it does not implement Deref.
665// In other words:
666// `self: Cell<&Self>` won't work
667// `self: CellWrapper<Self>` becomes possible
668#[unstable(feature = "dispatch_from_dyn", issue = "none")]
669impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
670
671#[unstable(feature = "pointer_like_trait", issue = "none")]
672impl<T: PointerLike> PointerLike for Cell<T> {}
673
674impl<T> Cell<[T]> {
675    /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
676    ///
677    /// # Examples
678    ///
679    /// ```
680    /// use std::cell::Cell;
681    ///
682    /// let slice: &mut [i32] = &mut [1, 2, 3];
683    /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
684    /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
685    ///
686    /// assert_eq!(slice_cell.len(), 3);
687    /// ```
688    #[stable(feature = "as_cell", since = "1.37.0")]
689    #[rustc_const_stable(feature = "const_cell", since = "CURRENT_RUSTC_VERSION")]
690    pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
691        // SAFETY: `Cell<T>` has the same memory layout as `T`.
692        unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
693    }
694}
695
696impl<T, const N: usize> Cell<[T; N]> {
697    /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
698    ///
699    /// # Examples
700    ///
701    /// ```
702    /// #![feature(as_array_of_cells)]
703    /// use std::cell::Cell;
704    ///
705    /// let mut array: [i32; 3] = [1, 2, 3];
706    /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
707    /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
708    /// ```
709    #[unstable(feature = "as_array_of_cells", issue = "88248")]
710    pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
711        // SAFETY: `Cell<T>` has the same memory layout as `T`.
712        unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
713    }
714}
715
716/// A mutable memory location with dynamically checked borrow rules
717///
718/// See the [module-level documentation](self) for more.
719#[rustc_diagnostic_item = "RefCell"]
720#[stable(feature = "rust1", since = "1.0.0")]
721pub struct RefCell<T: ?Sized> {
722    borrow: Cell<BorrowFlag>,
723    // Stores the location of the earliest currently active borrow.
724    // This gets updated whenever we go from having zero borrows
725    // to having a single borrow. When a borrow occurs, this gets included
726    // in the generated `BorrowError`/`BorrowMutError`
727    #[cfg(feature = "debug_refcell")]
728    borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
729    value: UnsafeCell<T>,
730}
731
732/// An error returned by [`RefCell::try_borrow`].
733#[stable(feature = "try_borrow", since = "1.13.0")]
734#[non_exhaustive]
735pub struct BorrowError {
736    #[cfg(feature = "debug_refcell")]
737    location: &'static crate::panic::Location<'static>,
738}
739
740#[stable(feature = "try_borrow", since = "1.13.0")]
741impl Debug for BorrowError {
742    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
743        let mut builder = f.debug_struct("BorrowError");
744
745        #[cfg(feature = "debug_refcell")]
746        builder.field("location", self.location);
747
748        builder.finish()
749    }
750}
751
752#[stable(feature = "try_borrow", since = "1.13.0")]
753impl Display for BorrowError {
754    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
755        Display::fmt("already mutably borrowed", f)
756    }
757}
758
759/// An error returned by [`RefCell::try_borrow_mut`].
760#[stable(feature = "try_borrow", since = "1.13.0")]
761#[non_exhaustive]
762pub struct BorrowMutError {
763    #[cfg(feature = "debug_refcell")]
764    location: &'static crate::panic::Location<'static>,
765}
766
767#[stable(feature = "try_borrow", since = "1.13.0")]
768impl Debug for BorrowMutError {
769    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
770        let mut builder = f.debug_struct("BorrowMutError");
771
772        #[cfg(feature = "debug_refcell")]
773        builder.field("location", self.location);
774
775        builder.finish()
776    }
777}
778
779#[stable(feature = "try_borrow", since = "1.13.0")]
780impl Display for BorrowMutError {
781    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
782        Display::fmt("already borrowed", f)
783    }
784}
785
786// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
787#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
788#[track_caller]
789#[cold]
790fn panic_already_borrowed(err: BorrowMutError) -> ! {
791    panic!("already borrowed: {:?}", err)
792}
793
794// This ensures the panicking code is outlined from `borrow` for `RefCell`.
795#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
796#[track_caller]
797#[cold]
798fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
799    panic!("already mutably borrowed: {:?}", err)
800}
801
802// Positive values represent the number of `Ref` active. Negative values
803// represent the number of `RefMut` active. Multiple `RefMut`s can only be
804// active at a time if they refer to distinct, nonoverlapping components of a
805// `RefCell` (e.g., different ranges of a slice).
806//
807// `Ref` and `RefMut` are both two words in size, and so there will likely never
808// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
809// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
810// However, this is not a guarantee, as a pathological program could repeatedly
811// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
812// explicitly check for overflow and underflow in order to avoid unsafety, or at
813// least behave correctly in the event that overflow or underflow happens (e.g.,
814// see BorrowRef::new).
815type BorrowFlag = isize;
816const UNUSED: BorrowFlag = 0;
817
818#[inline(always)]
819fn is_writing(x: BorrowFlag) -> bool {
820    x < UNUSED
821}
822
823#[inline(always)]
824fn is_reading(x: BorrowFlag) -> bool {
825    x > UNUSED
826}
827
828impl<T> RefCell<T> {
829    /// Creates a new `RefCell` containing `value`.
830    ///
831    /// # Examples
832    ///
833    /// ```
834    /// use std::cell::RefCell;
835    ///
836    /// let c = RefCell::new(5);
837    /// ```
838    #[stable(feature = "rust1", since = "1.0.0")]
839    #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
840    #[inline]
841    pub const fn new(value: T) -> RefCell<T> {
842        RefCell {
843            value: UnsafeCell::new(value),
844            borrow: Cell::new(UNUSED),
845            #[cfg(feature = "debug_refcell")]
846            borrowed_at: Cell::new(None),
847        }
848    }
849
850    /// Consumes the `RefCell`, returning the wrapped value.
851    ///
852    /// # Examples
853    ///
854    /// ```
855    /// use std::cell::RefCell;
856    ///
857    /// let c = RefCell::new(5);
858    ///
859    /// let five = c.into_inner();
860    /// ```
861    #[stable(feature = "rust1", since = "1.0.0")]
862    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
863    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
864    #[inline]
865    pub const fn into_inner(self) -> T {
866        // Since this function takes `self` (the `RefCell`) by value, the
867        // compiler statically verifies that it is not currently borrowed.
868        self.value.into_inner()
869    }
870
871    /// Replaces the wrapped value with a new one, returning the old value,
872    /// without deinitializing either one.
873    ///
874    /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
875    ///
876    /// # Panics
877    ///
878    /// Panics if the value is currently borrowed.
879    ///
880    /// # Examples
881    ///
882    /// ```
883    /// use std::cell::RefCell;
884    /// let cell = RefCell::new(5);
885    /// let old_value = cell.replace(6);
886    /// assert_eq!(old_value, 5);
887    /// assert_eq!(cell, RefCell::new(6));
888    /// ```
889    #[inline]
890    #[stable(feature = "refcell_replace", since = "1.24.0")]
891    #[track_caller]
892    #[rustc_confusables("swap")]
893    pub fn replace(&self, t: T) -> T {
894        mem::replace(&mut *self.borrow_mut(), t)
895    }
896
897    /// Replaces the wrapped value with a new one computed from `f`, returning
898    /// the old value, without deinitializing either one.
899    ///
900    /// # Panics
901    ///
902    /// Panics if the value is currently borrowed.
903    ///
904    /// # Examples
905    ///
906    /// ```
907    /// use std::cell::RefCell;
908    /// let cell = RefCell::new(5);
909    /// let old_value = cell.replace_with(|&mut old| old + 1);
910    /// assert_eq!(old_value, 5);
911    /// assert_eq!(cell, RefCell::new(6));
912    /// ```
913    #[inline]
914    #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
915    #[track_caller]
916    pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
917        let mut_borrow = &mut *self.borrow_mut();
918        let replacement = f(mut_borrow);
919        mem::replace(mut_borrow, replacement)
920    }
921
922    /// Swaps the wrapped value of `self` with the wrapped value of `other`,
923    /// without deinitializing either one.
924    ///
925    /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
926    ///
927    /// # Panics
928    ///
929    /// Panics if the value in either `RefCell` is currently borrowed, or
930    /// if `self` and `other` point to the same `RefCell`.
931    ///
932    /// # Examples
933    ///
934    /// ```
935    /// use std::cell::RefCell;
936    /// let c = RefCell::new(5);
937    /// let d = RefCell::new(6);
938    /// c.swap(&d);
939    /// assert_eq!(c, RefCell::new(6));
940    /// assert_eq!(d, RefCell::new(5));
941    /// ```
942    #[inline]
943    #[stable(feature = "refcell_swap", since = "1.24.0")]
944    pub fn swap(&self, other: &Self) {
945        mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
946    }
947}
948
949impl<T: ?Sized> RefCell<T> {
950    /// Immutably borrows the wrapped value.
951    ///
952    /// The borrow lasts until the returned `Ref` exits scope. Multiple
953    /// immutable borrows can be taken out at the same time.
954    ///
955    /// # Panics
956    ///
957    /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
958    /// [`try_borrow`](#method.try_borrow).
959    ///
960    /// # Examples
961    ///
962    /// ```
963    /// use std::cell::RefCell;
964    ///
965    /// let c = RefCell::new(5);
966    ///
967    /// let borrowed_five = c.borrow();
968    /// let borrowed_five2 = c.borrow();
969    /// ```
970    ///
971    /// An example of panic:
972    ///
973    /// ```should_panic
974    /// use std::cell::RefCell;
975    ///
976    /// let c = RefCell::new(5);
977    ///
978    /// let m = c.borrow_mut();
979    /// let b = c.borrow(); // this causes a panic
980    /// ```
981    #[stable(feature = "rust1", since = "1.0.0")]
982    #[inline]
983    #[track_caller]
984    pub fn borrow(&self) -> Ref<'_, T> {
985        match self.try_borrow() {
986            Ok(b) => b,
987            Err(err) => panic_already_mutably_borrowed(err),
988        }
989    }
990
991    /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
992    /// borrowed.
993    ///
994    /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
995    /// taken out at the same time.
996    ///
997    /// This is the non-panicking variant of [`borrow`](#method.borrow).
998    ///
999    /// # Examples
1000    ///
1001    /// ```
1002    /// use std::cell::RefCell;
1003    ///
1004    /// let c = RefCell::new(5);
1005    ///
1006    /// {
1007    ///     let m = c.borrow_mut();
1008    ///     assert!(c.try_borrow().is_err());
1009    /// }
1010    ///
1011    /// {
1012    ///     let m = c.borrow();
1013    ///     assert!(c.try_borrow().is_ok());
1014    /// }
1015    /// ```
1016    #[stable(feature = "try_borrow", since = "1.13.0")]
1017    #[inline]
1018    #[cfg_attr(feature = "debug_refcell", track_caller)]
1019    pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1020        match BorrowRef::new(&self.borrow) {
1021            Some(b) => {
1022                #[cfg(feature = "debug_refcell")]
1023                {
1024                    // `borrowed_at` is always the *first* active borrow
1025                    if b.borrow.get() == 1 {
1026                        self.borrowed_at.set(Some(crate::panic::Location::caller()));
1027                    }
1028                }
1029
1030                // SAFETY: `BorrowRef` ensures that there is only immutable access
1031                // to the value while borrowed.
1032                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1033                Ok(Ref { value, borrow: b })
1034            }
1035            None => Err(BorrowError {
1036                // If a borrow occurred, then we must already have an outstanding borrow,
1037                // so `borrowed_at` will be `Some`
1038                #[cfg(feature = "debug_refcell")]
1039                location: self.borrowed_at.get().unwrap(),
1040            }),
1041        }
1042    }
1043
1044    /// Mutably borrows the wrapped value.
1045    ///
1046    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1047    /// from it exit scope. The value cannot be borrowed while this borrow is
1048    /// active.
1049    ///
1050    /// # Panics
1051    ///
1052    /// Panics if the value is currently borrowed. For a non-panicking variant, use
1053    /// [`try_borrow_mut`](#method.try_borrow_mut).
1054    ///
1055    /// # Examples
1056    ///
1057    /// ```
1058    /// use std::cell::RefCell;
1059    ///
1060    /// let c = RefCell::new("hello".to_owned());
1061    ///
1062    /// *c.borrow_mut() = "bonjour".to_owned();
1063    ///
1064    /// assert_eq!(&*c.borrow(), "bonjour");
1065    /// ```
1066    ///
1067    /// An example of panic:
1068    ///
1069    /// ```should_panic
1070    /// use std::cell::RefCell;
1071    ///
1072    /// let c = RefCell::new(5);
1073    /// let m = c.borrow();
1074    ///
1075    /// let b = c.borrow_mut(); // this causes a panic
1076    /// ```
1077    #[stable(feature = "rust1", since = "1.0.0")]
1078    #[inline]
1079    #[track_caller]
1080    pub fn borrow_mut(&self) -> RefMut<'_, T> {
1081        match self.try_borrow_mut() {
1082            Ok(b) => b,
1083            Err(err) => panic_already_borrowed(err),
1084        }
1085    }
1086
1087    /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1088    ///
1089    /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1090    /// from it exit scope. The value cannot be borrowed while this borrow is
1091    /// active.
1092    ///
1093    /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1094    ///
1095    /// # Examples
1096    ///
1097    /// ```
1098    /// use std::cell::RefCell;
1099    ///
1100    /// let c = RefCell::new(5);
1101    ///
1102    /// {
1103    ///     let m = c.borrow();
1104    ///     assert!(c.try_borrow_mut().is_err());
1105    /// }
1106    ///
1107    /// assert!(c.try_borrow_mut().is_ok());
1108    /// ```
1109    #[stable(feature = "try_borrow", since = "1.13.0")]
1110    #[inline]
1111    #[cfg_attr(feature = "debug_refcell", track_caller)]
1112    pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1113        match BorrowRefMut::new(&self.borrow) {
1114            Some(b) => {
1115                #[cfg(feature = "debug_refcell")]
1116                {
1117                    self.borrowed_at.set(Some(crate::panic::Location::caller()));
1118                }
1119
1120                // SAFETY: `BorrowRefMut` guarantees unique access.
1121                let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1122                Ok(RefMut { value, borrow: b, marker: PhantomData })
1123            }
1124            None => Err(BorrowMutError {
1125                // If a borrow occurred, then we must already have an outstanding borrow,
1126                // so `borrowed_at` will be `Some`
1127                #[cfg(feature = "debug_refcell")]
1128                location: self.borrowed_at.get().unwrap(),
1129            }),
1130        }
1131    }
1132
1133    /// Returns a raw pointer to the underlying data in this cell.
1134    ///
1135    /// # Examples
1136    ///
1137    /// ```
1138    /// use std::cell::RefCell;
1139    ///
1140    /// let c = RefCell::new(5);
1141    ///
1142    /// let ptr = c.as_ptr();
1143    /// ```
1144    #[inline]
1145    #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1146    #[rustc_as_ptr]
1147    #[rustc_never_returns_null_ptr]
1148    pub fn as_ptr(&self) -> *mut T {
1149        self.value.get()
1150    }
1151
1152    /// Returns a mutable reference to the underlying data.
1153    ///
1154    /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1155    /// that no borrows to the underlying data exist. The dynamic checks inherent
1156    /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1157    /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1158    /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1159    /// consider using the unstable [`undo_leak`] method.
1160    ///
1161    /// This method can only be called if `RefCell` can be mutably borrowed,
1162    /// which in general is only the case directly after the `RefCell` has
1163    /// been created. In these situations, skipping the aforementioned dynamic
1164    /// borrowing checks may yield better ergonomics and runtime-performance.
1165    ///
1166    /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1167    /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1168    ///
1169    /// [`borrow_mut`]: RefCell::borrow_mut()
1170    /// [`forget()`]: mem::forget
1171    /// [`undo_leak`]: RefCell::undo_leak()
1172    ///
1173    /// # Examples
1174    ///
1175    /// ```
1176    /// use std::cell::RefCell;
1177    ///
1178    /// let mut c = RefCell::new(5);
1179    /// *c.get_mut() += 1;
1180    ///
1181    /// assert_eq!(c, RefCell::new(6));
1182    /// ```
1183    #[inline]
1184    #[stable(feature = "cell_get_mut", since = "1.11.0")]
1185    pub fn get_mut(&mut self) -> &mut T {
1186        self.value.get_mut()
1187    }
1188
1189    /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1190    ///
1191    /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1192    /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1193    /// if some `Ref` or `RefMut` borrows have been leaked.
1194    ///
1195    /// [`get_mut`]: RefCell::get_mut()
1196    ///
1197    /// # Examples
1198    ///
1199    /// ```
1200    /// #![feature(cell_leak)]
1201    /// use std::cell::RefCell;
1202    ///
1203    /// let mut c = RefCell::new(0);
1204    /// std::mem::forget(c.borrow_mut());
1205    ///
1206    /// assert!(c.try_borrow().is_err());
1207    /// c.undo_leak();
1208    /// assert!(c.try_borrow().is_ok());
1209    /// ```
1210    #[unstable(feature = "cell_leak", issue = "69099")]
1211    pub fn undo_leak(&mut self) -> &mut T {
1212        *self.borrow.get_mut() = UNUSED;
1213        self.get_mut()
1214    }
1215
1216    /// Immutably borrows the wrapped value, returning an error if the value is
1217    /// currently mutably borrowed.
1218    ///
1219    /// # Safety
1220    ///
1221    /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1222    /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1223    /// borrowing the `RefCell` while the reference returned by this method
1224    /// is alive is undefined behavior.
1225    ///
1226    /// # Examples
1227    ///
1228    /// ```
1229    /// use std::cell::RefCell;
1230    ///
1231    /// let c = RefCell::new(5);
1232    ///
1233    /// {
1234    ///     let m = c.borrow_mut();
1235    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1236    /// }
1237    ///
1238    /// {
1239    ///     let m = c.borrow();
1240    ///     assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1241    /// }
1242    /// ```
1243    #[stable(feature = "borrow_state", since = "1.37.0")]
1244    #[inline]
1245    pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1246        if !is_writing(self.borrow.get()) {
1247            // SAFETY: We check that nobody is actively writing now, but it is
1248            // the caller's responsibility to ensure that nobody writes until
1249            // the returned reference is no longer in use.
1250            // Also, `self.value.get()` refers to the value owned by `self`
1251            // and is thus guaranteed to be valid for the lifetime of `self`.
1252            Ok(unsafe { &*self.value.get() })
1253        } else {
1254            Err(BorrowError {
1255                // If a borrow occurred, then we must already have an outstanding borrow,
1256                // so `borrowed_at` will be `Some`
1257                #[cfg(feature = "debug_refcell")]
1258                location: self.borrowed_at.get().unwrap(),
1259            })
1260        }
1261    }
1262}
1263
1264impl<T: Default> RefCell<T> {
1265    /// Takes the wrapped value, leaving `Default::default()` in its place.
1266    ///
1267    /// # Panics
1268    ///
1269    /// Panics if the value is currently borrowed.
1270    ///
1271    /// # Examples
1272    ///
1273    /// ```
1274    /// use std::cell::RefCell;
1275    ///
1276    /// let c = RefCell::new(5);
1277    /// let five = c.take();
1278    ///
1279    /// assert_eq!(five, 5);
1280    /// assert_eq!(c.into_inner(), 0);
1281    /// ```
1282    #[stable(feature = "refcell_take", since = "1.50.0")]
1283    pub fn take(&self) -> T {
1284        self.replace(Default::default())
1285    }
1286}
1287
1288#[stable(feature = "rust1", since = "1.0.0")]
1289unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1290
1291#[stable(feature = "rust1", since = "1.0.0")]
1292impl<T: ?Sized> !Sync for RefCell<T> {}
1293
1294#[stable(feature = "rust1", since = "1.0.0")]
1295impl<T: Clone> Clone for RefCell<T> {
1296    /// # Panics
1297    ///
1298    /// Panics if the value is currently mutably borrowed.
1299    #[inline]
1300    #[track_caller]
1301    fn clone(&self) -> RefCell<T> {
1302        RefCell::new(self.borrow().clone())
1303    }
1304
1305    /// # Panics
1306    ///
1307    /// Panics if `source` is currently mutably borrowed.
1308    #[inline]
1309    #[track_caller]
1310    fn clone_from(&mut self, source: &Self) {
1311        self.get_mut().clone_from(&source.borrow())
1312    }
1313}
1314
1315#[stable(feature = "rust1", since = "1.0.0")]
1316impl<T: Default> Default for RefCell<T> {
1317    /// Creates a `RefCell<T>`, with the `Default` value for T.
1318    #[inline]
1319    fn default() -> RefCell<T> {
1320        RefCell::new(Default::default())
1321    }
1322}
1323
1324#[stable(feature = "rust1", since = "1.0.0")]
1325impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1326    /// # Panics
1327    ///
1328    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1329    #[inline]
1330    fn eq(&self, other: &RefCell<T>) -> bool {
1331        *self.borrow() == *other.borrow()
1332    }
1333}
1334
1335#[stable(feature = "cell_eq", since = "1.2.0")]
1336impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1337
1338#[stable(feature = "cell_ord", since = "1.10.0")]
1339impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1340    /// # Panics
1341    ///
1342    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1343    #[inline]
1344    fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1345        self.borrow().partial_cmp(&*other.borrow())
1346    }
1347
1348    /// # Panics
1349    ///
1350    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1351    #[inline]
1352    fn lt(&self, other: &RefCell<T>) -> bool {
1353        *self.borrow() < *other.borrow()
1354    }
1355
1356    /// # Panics
1357    ///
1358    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1359    #[inline]
1360    fn le(&self, other: &RefCell<T>) -> bool {
1361        *self.borrow() <= *other.borrow()
1362    }
1363
1364    /// # Panics
1365    ///
1366    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1367    #[inline]
1368    fn gt(&self, other: &RefCell<T>) -> bool {
1369        *self.borrow() > *other.borrow()
1370    }
1371
1372    /// # Panics
1373    ///
1374    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1375    #[inline]
1376    fn ge(&self, other: &RefCell<T>) -> bool {
1377        *self.borrow() >= *other.borrow()
1378    }
1379}
1380
1381#[stable(feature = "cell_ord", since = "1.10.0")]
1382impl<T: ?Sized + Ord> Ord for RefCell<T> {
1383    /// # Panics
1384    ///
1385    /// Panics if the value in either `RefCell` is currently mutably borrowed.
1386    #[inline]
1387    fn cmp(&self, other: &RefCell<T>) -> Ordering {
1388        self.borrow().cmp(&*other.borrow())
1389    }
1390}
1391
1392#[stable(feature = "cell_from", since = "1.12.0")]
1393impl<T> From<T> for RefCell<T> {
1394    /// Creates a new `RefCell<T>` containing the given value.
1395    fn from(t: T) -> RefCell<T> {
1396        RefCell::new(t)
1397    }
1398}
1399
1400#[unstable(feature = "coerce_unsized", issue = "18598")]
1401impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1402
1403struct BorrowRef<'b> {
1404    borrow: &'b Cell<BorrowFlag>,
1405}
1406
1407impl<'b> BorrowRef<'b> {
1408    #[inline]
1409    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1410        let b = borrow.get().wrapping_add(1);
1411        if !is_reading(b) {
1412            // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1413            // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1414            //    due to Rust's reference aliasing rules
1415            // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1416            //    into isize::MIN (the max amount of writing borrows) so we can't allow
1417            //    an additional read borrow because isize can't represent so many read borrows
1418            //    (this can only happen if you mem::forget more than a small constant amount of
1419            //    `Ref`s, which is not good practice)
1420            None
1421        } else {
1422            // Incrementing borrow can result in a reading value (> 0) in these cases:
1423            // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1424            // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1425            //    is large enough to represent having one more read borrow
1426            borrow.set(b);
1427            Some(BorrowRef { borrow })
1428        }
1429    }
1430}
1431
1432impl Drop for BorrowRef<'_> {
1433    #[inline]
1434    fn drop(&mut self) {
1435        let borrow = self.borrow.get();
1436        debug_assert!(is_reading(borrow));
1437        self.borrow.set(borrow - 1);
1438    }
1439}
1440
1441impl Clone for BorrowRef<'_> {
1442    #[inline]
1443    fn clone(&self) -> Self {
1444        // Since this Ref exists, we know the borrow flag
1445        // is a reading borrow.
1446        let borrow = self.borrow.get();
1447        debug_assert!(is_reading(borrow));
1448        // Prevent the borrow counter from overflowing into
1449        // a writing borrow.
1450        assert!(borrow != BorrowFlag::MAX);
1451        self.borrow.set(borrow + 1);
1452        BorrowRef { borrow: self.borrow }
1453    }
1454}
1455
1456/// Wraps a borrowed reference to a value in a `RefCell` box.
1457/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1458///
1459/// See the [module-level documentation](self) for more.
1460#[stable(feature = "rust1", since = "1.0.0")]
1461#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1462#[rustc_diagnostic_item = "RefCellRef"]
1463pub struct Ref<'b, T: ?Sized + 'b> {
1464    // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1465    // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1466    // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1467    value: NonNull<T>,
1468    borrow: BorrowRef<'b>,
1469}
1470
1471#[stable(feature = "rust1", since = "1.0.0")]
1472impl<T: ?Sized> Deref for Ref<'_, T> {
1473    type Target = T;
1474
1475    #[inline]
1476    fn deref(&self) -> &T {
1477        // SAFETY: the value is accessible as long as we hold our borrow.
1478        unsafe { self.value.as_ref() }
1479    }
1480}
1481
1482#[unstable(feature = "deref_pure_trait", issue = "87121")]
1483unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1484
1485impl<'b, T: ?Sized> Ref<'b, T> {
1486    /// Copies a `Ref`.
1487    ///
1488    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1489    ///
1490    /// This is an associated function that needs to be used as
1491    /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1492    /// with the widespread use of `r.borrow().clone()` to clone the contents of
1493    /// a `RefCell`.
1494    #[stable(feature = "cell_extras", since = "1.15.0")]
1495    #[must_use]
1496    #[inline]
1497    pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1498        Ref { value: orig.value, borrow: orig.borrow.clone() }
1499    }
1500
1501    /// Makes a new `Ref` for a component of the borrowed data.
1502    ///
1503    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1504    ///
1505    /// This is an associated function that needs to be used as `Ref::map(...)`.
1506    /// A method would interfere with methods of the same name on the contents
1507    /// of a `RefCell` used through `Deref`.
1508    ///
1509    /// # Examples
1510    ///
1511    /// ```
1512    /// use std::cell::{RefCell, Ref};
1513    ///
1514    /// let c = RefCell::new((5, 'b'));
1515    /// let b1: Ref<'_, (u32, char)> = c.borrow();
1516    /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1517    /// assert_eq!(*b2, 5)
1518    /// ```
1519    #[stable(feature = "cell_map", since = "1.8.0")]
1520    #[inline]
1521    pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1522    where
1523        F: FnOnce(&T) -> &U,
1524    {
1525        Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1526    }
1527
1528    /// Makes a new `Ref` for an optional component of the borrowed data. The
1529    /// original guard is returned as an `Err(..)` if the closure returns
1530    /// `None`.
1531    ///
1532    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1533    ///
1534    /// This is an associated function that needs to be used as
1535    /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1536    /// name on the contents of a `RefCell` used through `Deref`.
1537    ///
1538    /// # Examples
1539    ///
1540    /// ```
1541    /// use std::cell::{RefCell, Ref};
1542    ///
1543    /// let c = RefCell::new(vec![1, 2, 3]);
1544    /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1545    /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1546    /// assert_eq!(*b2.unwrap(), 2);
1547    /// ```
1548    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1549    #[inline]
1550    pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1551    where
1552        F: FnOnce(&T) -> Option<&U>,
1553    {
1554        match f(&*orig) {
1555            Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1556            None => Err(orig),
1557        }
1558    }
1559
1560    /// Splits a `Ref` into multiple `Ref`s for different components of the
1561    /// borrowed data.
1562    ///
1563    /// The `RefCell` is already immutably borrowed, so this cannot fail.
1564    ///
1565    /// This is an associated function that needs to be used as
1566    /// `Ref::map_split(...)`. A method would interfere with methods of the same
1567    /// name on the contents of a `RefCell` used through `Deref`.
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// use std::cell::{Ref, RefCell};
1573    ///
1574    /// let cell = RefCell::new([1, 2, 3, 4]);
1575    /// let borrow = cell.borrow();
1576    /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1577    /// assert_eq!(*begin, [1, 2]);
1578    /// assert_eq!(*end, [3, 4]);
1579    /// ```
1580    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1581    #[inline]
1582    pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1583    where
1584        F: FnOnce(&T) -> (&U, &V),
1585    {
1586        let (a, b) = f(&*orig);
1587        let borrow = orig.borrow.clone();
1588        (
1589            Ref { value: NonNull::from(a), borrow },
1590            Ref { value: NonNull::from(b), borrow: orig.borrow },
1591        )
1592    }
1593
1594    /// Converts into a reference to the underlying data.
1595    ///
1596    /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1597    /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1598    /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1599    /// have occurred in total.
1600    ///
1601    /// This is an associated function that needs to be used as
1602    /// `Ref::leak(...)`. A method would interfere with methods of the
1603    /// same name on the contents of a `RefCell` used through `Deref`.
1604    ///
1605    /// # Examples
1606    ///
1607    /// ```
1608    /// #![feature(cell_leak)]
1609    /// use std::cell::{RefCell, Ref};
1610    /// let cell = RefCell::new(0);
1611    ///
1612    /// let value = Ref::leak(cell.borrow());
1613    /// assert_eq!(*value, 0);
1614    ///
1615    /// assert!(cell.try_borrow().is_ok());
1616    /// assert!(cell.try_borrow_mut().is_err());
1617    /// ```
1618    #[unstable(feature = "cell_leak", issue = "69099")]
1619    pub fn leak(orig: Ref<'b, T>) -> &'b T {
1620        // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1621        // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1622        // unique reference to the borrowed RefCell. No further mutable references can be created
1623        // from the original cell.
1624        mem::forget(orig.borrow);
1625        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1626        unsafe { orig.value.as_ref() }
1627    }
1628}
1629
1630#[unstable(feature = "coerce_unsized", issue = "18598")]
1631impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1632
1633#[stable(feature = "std_guard_impls", since = "1.20.0")]
1634impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1635    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1636        (**self).fmt(f)
1637    }
1638}
1639
1640impl<'b, T: ?Sized> RefMut<'b, T> {
1641    /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1642    /// variant.
1643    ///
1644    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1645    ///
1646    /// This is an associated function that needs to be used as
1647    /// `RefMut::map(...)`. A method would interfere with methods of the same
1648    /// name on the contents of a `RefCell` used through `Deref`.
1649    ///
1650    /// # Examples
1651    ///
1652    /// ```
1653    /// use std::cell::{RefCell, RefMut};
1654    ///
1655    /// let c = RefCell::new((5, 'b'));
1656    /// {
1657    ///     let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1658    ///     let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1659    ///     assert_eq!(*b2, 5);
1660    ///     *b2 = 42;
1661    /// }
1662    /// assert_eq!(*c.borrow(), (42, 'b'));
1663    /// ```
1664    #[stable(feature = "cell_map", since = "1.8.0")]
1665    #[inline]
1666    pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1667    where
1668        F: FnOnce(&mut T) -> &mut U,
1669    {
1670        let value = NonNull::from(f(&mut *orig));
1671        RefMut { value, borrow: orig.borrow, marker: PhantomData }
1672    }
1673
1674    /// Makes a new `RefMut` for an optional component of the borrowed data. The
1675    /// original guard is returned as an `Err(..)` if the closure returns
1676    /// `None`.
1677    ///
1678    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1679    ///
1680    /// This is an associated function that needs to be used as
1681    /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1682    /// same name on the contents of a `RefCell` used through `Deref`.
1683    ///
1684    /// # Examples
1685    ///
1686    /// ```
1687    /// use std::cell::{RefCell, RefMut};
1688    ///
1689    /// let c = RefCell::new(vec![1, 2, 3]);
1690    ///
1691    /// {
1692    ///     let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1693    ///     let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1694    ///
1695    ///     if let Ok(mut b2) = b2 {
1696    ///         *b2 += 2;
1697    ///     }
1698    /// }
1699    ///
1700    /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1701    /// ```
1702    #[stable(feature = "cell_filter_map", since = "1.63.0")]
1703    #[inline]
1704    pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1705    where
1706        F: FnOnce(&mut T) -> Option<&mut U>,
1707    {
1708        // SAFETY: function holds onto an exclusive reference for the duration
1709        // of its call through `orig`, and the pointer is only de-referenced
1710        // inside of the function call never allowing the exclusive reference to
1711        // escape.
1712        match f(&mut *orig) {
1713            Some(value) => {
1714                Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1715            }
1716            None => Err(orig),
1717        }
1718    }
1719
1720    /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1721    /// borrowed data.
1722    ///
1723    /// The underlying `RefCell` will remain mutably borrowed until both
1724    /// returned `RefMut`s go out of scope.
1725    ///
1726    /// The `RefCell` is already mutably borrowed, so this cannot fail.
1727    ///
1728    /// This is an associated function that needs to be used as
1729    /// `RefMut::map_split(...)`. A method would interfere with methods of the
1730    /// same name on the contents of a `RefCell` used through `Deref`.
1731    ///
1732    /// # Examples
1733    ///
1734    /// ```
1735    /// use std::cell::{RefCell, RefMut};
1736    ///
1737    /// let cell = RefCell::new([1, 2, 3, 4]);
1738    /// let borrow = cell.borrow_mut();
1739    /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1740    /// assert_eq!(*begin, [1, 2]);
1741    /// assert_eq!(*end, [3, 4]);
1742    /// begin.copy_from_slice(&[4, 3]);
1743    /// end.copy_from_slice(&[2, 1]);
1744    /// ```
1745    #[stable(feature = "refcell_map_split", since = "1.35.0")]
1746    #[inline]
1747    pub fn map_split<U: ?Sized, V: ?Sized, F>(
1748        mut orig: RefMut<'b, T>,
1749        f: F,
1750    ) -> (RefMut<'b, U>, RefMut<'b, V>)
1751    where
1752        F: FnOnce(&mut T) -> (&mut U, &mut V),
1753    {
1754        let borrow = orig.borrow.clone();
1755        let (a, b) = f(&mut *orig);
1756        (
1757            RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1758            RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1759        )
1760    }
1761
1762    /// Converts into a mutable reference to the underlying data.
1763    ///
1764    /// The underlying `RefCell` can not be borrowed from again and will always appear already
1765    /// mutably borrowed, making the returned reference the only to the interior.
1766    ///
1767    /// This is an associated function that needs to be used as
1768    /// `RefMut::leak(...)`. A method would interfere with methods of the
1769    /// same name on the contents of a `RefCell` used through `Deref`.
1770    ///
1771    /// # Examples
1772    ///
1773    /// ```
1774    /// #![feature(cell_leak)]
1775    /// use std::cell::{RefCell, RefMut};
1776    /// let cell = RefCell::new(0);
1777    ///
1778    /// let value = RefMut::leak(cell.borrow_mut());
1779    /// assert_eq!(*value, 0);
1780    /// *value = 1;
1781    ///
1782    /// assert!(cell.try_borrow_mut().is_err());
1783    /// ```
1784    #[unstable(feature = "cell_leak", issue = "69099")]
1785    pub fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1786        // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1787        // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1788        // require a unique reference to the borrowed RefCell. No further references can be created
1789        // from the original cell within that lifetime, making the current borrow the only
1790        // reference for the remaining lifetime.
1791        mem::forget(orig.borrow);
1792        // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1793        unsafe { orig.value.as_mut() }
1794    }
1795}
1796
1797struct BorrowRefMut<'b> {
1798    borrow: &'b Cell<BorrowFlag>,
1799}
1800
1801impl Drop for BorrowRefMut<'_> {
1802    #[inline]
1803    fn drop(&mut self) {
1804        let borrow = self.borrow.get();
1805        debug_assert!(is_writing(borrow));
1806        self.borrow.set(borrow + 1);
1807    }
1808}
1809
1810impl<'b> BorrowRefMut<'b> {
1811    #[inline]
1812    fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1813        // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1814        // mutable reference, and so there must currently be no existing
1815        // references. Thus, while clone increments the mutable refcount, here
1816        // we explicitly only allow going from UNUSED to UNUSED - 1.
1817        match borrow.get() {
1818            UNUSED => {
1819                borrow.set(UNUSED - 1);
1820                Some(BorrowRefMut { borrow })
1821            }
1822            _ => None,
1823        }
1824    }
1825
1826    // Clones a `BorrowRefMut`.
1827    //
1828    // This is only valid if each `BorrowRefMut` is used to track a mutable
1829    // reference to a distinct, nonoverlapping range of the original object.
1830    // This isn't in a Clone impl so that code doesn't call this implicitly.
1831    #[inline]
1832    fn clone(&self) -> BorrowRefMut<'b> {
1833        let borrow = self.borrow.get();
1834        debug_assert!(is_writing(borrow));
1835        // Prevent the borrow counter from underflowing.
1836        assert!(borrow != BorrowFlag::MIN);
1837        self.borrow.set(borrow - 1);
1838        BorrowRefMut { borrow: self.borrow }
1839    }
1840}
1841
1842/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1843///
1844/// See the [module-level documentation](self) for more.
1845#[stable(feature = "rust1", since = "1.0.0")]
1846#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1847#[rustc_diagnostic_item = "RefCellRefMut"]
1848pub struct RefMut<'b, T: ?Sized + 'b> {
1849    // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1850    // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1851    value: NonNull<T>,
1852    borrow: BorrowRefMut<'b>,
1853    // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1854    marker: PhantomData<&'b mut T>,
1855}
1856
1857#[stable(feature = "rust1", since = "1.0.0")]
1858impl<T: ?Sized> Deref for RefMut<'_, T> {
1859    type Target = T;
1860
1861    #[inline]
1862    fn deref(&self) -> &T {
1863        // SAFETY: the value is accessible as long as we hold our borrow.
1864        unsafe { self.value.as_ref() }
1865    }
1866}
1867
1868#[stable(feature = "rust1", since = "1.0.0")]
1869impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1870    #[inline]
1871    fn deref_mut(&mut self) -> &mut T {
1872        // SAFETY: the value is accessible as long as we hold our borrow.
1873        unsafe { self.value.as_mut() }
1874    }
1875}
1876
1877#[unstable(feature = "deref_pure_trait", issue = "87121")]
1878unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1879
1880#[unstable(feature = "coerce_unsized", issue = "18598")]
1881impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1882
1883#[stable(feature = "std_guard_impls", since = "1.20.0")]
1884impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1885    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1886        (**self).fmt(f)
1887    }
1888}
1889
1890/// The core primitive for interior mutability in Rust.
1891///
1892/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1893/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1894/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1895/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1896/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1897///
1898/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1899/// use `UnsafeCell` to wrap their data.
1900///
1901/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1902/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1903/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1904///
1905/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
1906/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
1907/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
1908/// [`core::sync::atomic`].
1909///
1910/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1911/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1912/// correctly.
1913///
1914/// [`.get()`]: `UnsafeCell::get`
1915/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
1916///
1917/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1918///
1919/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1920/// you must not access the data in any way that contradicts that reference for the remainder of
1921/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1922/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1923/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1924/// T` reference that is released to safe code, then you must not access the data within the
1925/// `UnsafeCell` until that reference expires.
1926///
1927/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1928/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1929/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1930/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1931/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
1932/// *every part of it* (including padding) is inside an `UnsafeCell`.
1933///
1934///     However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1935/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1936/// memory has not yet been deallocated.
1937///
1938/// To assist with proper design, the following scenarios are explicitly declared legal
1939/// for single-threaded code:
1940///
1941/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1942/// references, but not with a `&mut T`
1943///
1944/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1945/// co-exist with it. A `&mut T` must always be unique.
1946///
1947/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1948/// `&UnsafeCell<T>` references alias the cell) is
1949/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1950/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1951/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1952/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1953/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1954/// may be aliased for the duration of that `&mut` borrow.
1955/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1956/// a `&mut T`.
1957///
1958/// [`.get_mut()`]: `UnsafeCell::get_mut`
1959///
1960/// # Memory layout
1961///
1962/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1963/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1964/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1965/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1966/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1967/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1968/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1969/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1970/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1971/// thus this can cause distortions in the type size in these cases.
1972///
1973/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1974/// _shared_ `UnsafeCell<T>` is through [`.get()`]  or [`.raw_get()`]. A `&mut T` reference
1975/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1976/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
1977/// same memory layout, the following is not allowed and undefined behavior:
1978///
1979/// ```rust,compile_fail
1980/// # use std::cell::UnsafeCell;
1981/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
1982///   let t = ptr as *const UnsafeCell<T> as *mut T;
1983///   // This is undefined behavior, because the `*mut T` pointer
1984///   // was not obtained through `.get()` nor `.raw_get()`:
1985///   unsafe { &mut *t }
1986/// }
1987/// ```
1988///
1989/// Instead, do this:
1990///
1991/// ```rust
1992/// # use std::cell::UnsafeCell;
1993/// // Safety: the caller must ensure that there are no references that
1994/// // point to the *contents* of the `UnsafeCell`.
1995/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
1996///   unsafe { &mut *ptr.get() }
1997/// }
1998/// ```
1999///
2000/// Converting in the other direction from a `&mut T`
2001/// to an `&UnsafeCell<T>` is allowed:
2002///
2003/// ```rust
2004/// # use std::cell::UnsafeCell;
2005/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2006///   let t = ptr as *mut T as *const UnsafeCell<T>;
2007///   // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2008///   unsafe { &*t }
2009/// }
2010/// ```
2011///
2012/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2013/// [`.raw_get()`]: `UnsafeCell::raw_get`
2014///
2015/// # Examples
2016///
2017/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2018/// there being multiple references aliasing the cell:
2019///
2020/// ```
2021/// use std::cell::UnsafeCell;
2022///
2023/// let x: UnsafeCell<i32> = 42.into();
2024/// // Get multiple / concurrent / shared references to the same `x`.
2025/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2026///
2027/// unsafe {
2028///     // SAFETY: within this scope there are no other references to `x`'s contents,
2029///     // so ours is effectively unique.
2030///     let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2031///     *p1_exclusive += 27; //                                     |
2032/// } // <---------- cannot go beyond this point -------------------+
2033///
2034/// unsafe {
2035///     // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2036///     // so we can have multiple shared accesses concurrently.
2037///     let p2_shared: &i32 = &*p2.get();
2038///     assert_eq!(*p2_shared, 42 + 27);
2039///     let p1_shared: &i32 = &*p1.get();
2040///     assert_eq!(*p1_shared, *p2_shared);
2041/// }
2042/// ```
2043///
2044/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2045/// implies exclusive access to its `T`:
2046///
2047/// ```rust
2048/// #![forbid(unsafe_code)] // with exclusive accesses,
2049///                         // `UnsafeCell` is a transparent no-op wrapper,
2050///                         // so no need for `unsafe` here.
2051/// use std::cell::UnsafeCell;
2052///
2053/// let mut x: UnsafeCell<i32> = 42.into();
2054///
2055/// // Get a compile-time-checked unique reference to `x`.
2056/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2057/// // With an exclusive reference, we can mutate the contents for free.
2058/// *p_unique.get_mut() = 0;
2059/// // Or, equivalently:
2060/// x = UnsafeCell::new(0);
2061///
2062/// // When we own the value, we can extract the contents for free.
2063/// let contents: i32 = x.into_inner();
2064/// assert_eq!(contents, 0);
2065/// ```
2066#[lang = "unsafe_cell"]
2067#[stable(feature = "rust1", since = "1.0.0")]
2068#[repr(transparent)]
2069#[rustc_pub_transparent]
2070pub struct UnsafeCell<T: ?Sized> {
2071    value: T,
2072}
2073
2074#[stable(feature = "rust1", since = "1.0.0")]
2075impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2076
2077impl<T> UnsafeCell<T> {
2078    /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2079    /// value.
2080    ///
2081    /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2082    ///
2083    /// # Examples
2084    ///
2085    /// ```
2086    /// use std::cell::UnsafeCell;
2087    ///
2088    /// let uc = UnsafeCell::new(5);
2089    /// ```
2090    #[stable(feature = "rust1", since = "1.0.0")]
2091    #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2092    #[inline(always)]
2093    pub const fn new(value: T) -> UnsafeCell<T> {
2094        UnsafeCell { value }
2095    }
2096
2097    /// Unwraps the value, consuming the cell.
2098    ///
2099    /// # Examples
2100    ///
2101    /// ```
2102    /// use std::cell::UnsafeCell;
2103    ///
2104    /// let uc = UnsafeCell::new(5);
2105    ///
2106    /// let five = uc.into_inner();
2107    /// ```
2108    #[inline(always)]
2109    #[stable(feature = "rust1", since = "1.0.0")]
2110    #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2111    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2112    pub const fn into_inner(self) -> T {
2113        self.value
2114    }
2115
2116    /// Replace the value in this `UnsafeCell` and return the old value.
2117    ///
2118    /// # Safety
2119    ///
2120    /// The caller must take care to avoid aliasing and data races.
2121    ///
2122    /// - It is Undefined Behavior to allow calls to race with
2123    ///   any other access to the wrapped value.
2124    /// - It is Undefined Behavior to call this while any other
2125    ///   reference(s) to the wrapped value are alive.
2126    ///
2127    /// # Examples
2128    ///
2129    /// ```
2130    /// #![feature(unsafe_cell_access)]
2131    /// use std::cell::UnsafeCell;
2132    ///
2133    /// let uc = UnsafeCell::new(5);
2134    ///
2135    /// let old = unsafe { uc.replace(10) };
2136    /// assert_eq!(old, 5);
2137    /// ```
2138    #[inline]
2139    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2140    pub const unsafe fn replace(&self, value: T) -> T {
2141        // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2142        unsafe { ptr::replace(self.get(), value) }
2143    }
2144}
2145
2146impl<T: ?Sized> UnsafeCell<T> {
2147    /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2148    ///
2149    /// # Examples
2150    ///
2151    /// ```
2152    /// use std::cell::UnsafeCell;
2153    ///
2154    /// let mut val = 42;
2155    /// let uc = UnsafeCell::from_mut(&mut val);
2156    ///
2157    /// *uc.get_mut() -= 1;
2158    /// assert_eq!(*uc.get_mut(), 41);
2159    /// ```
2160    #[inline(always)]
2161    #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2162    #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2163    pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2164        // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2165        unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2166    }
2167
2168    /// Gets a mutable pointer to the wrapped value.
2169    ///
2170    /// This can be cast to a pointer of any kind.
2171    /// Ensure that the access is unique (no active references, mutable or not)
2172    /// when casting to `&mut T`, and ensure that there are no mutations
2173    /// or mutable aliases going on when casting to `&T`
2174    ///
2175    /// # Examples
2176    ///
2177    /// ```
2178    /// use std::cell::UnsafeCell;
2179    ///
2180    /// let uc = UnsafeCell::new(5);
2181    ///
2182    /// let five = uc.get();
2183    /// ```
2184    #[inline(always)]
2185    #[stable(feature = "rust1", since = "1.0.0")]
2186    #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2187    #[rustc_as_ptr]
2188    #[rustc_never_returns_null_ptr]
2189    pub const fn get(&self) -> *mut T {
2190        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2191        // #[repr(transparent)]. This exploits std's special status, there is
2192        // no guarantee for user code that this will work in future versions of the compiler!
2193        self as *const UnsafeCell<T> as *const T as *mut T
2194    }
2195
2196    /// Returns a mutable reference to the underlying data.
2197    ///
2198    /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2199    /// guarantees that we possess the only reference.
2200    ///
2201    /// # Examples
2202    ///
2203    /// ```
2204    /// use std::cell::UnsafeCell;
2205    ///
2206    /// let mut c = UnsafeCell::new(5);
2207    /// *c.get_mut() += 1;
2208    ///
2209    /// assert_eq!(*c.get_mut(), 6);
2210    /// ```
2211    #[inline(always)]
2212    #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2213    #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2214    pub const fn get_mut(&mut self) -> &mut T {
2215        &mut self.value
2216    }
2217
2218    /// Gets a mutable pointer to the wrapped value.
2219    /// The difference from [`get`] is that this function accepts a raw pointer,
2220    /// which is useful to avoid the creation of temporary references.
2221    ///
2222    /// The result can be cast to a pointer of any kind.
2223    /// Ensure that the access is unique (no active references, mutable or not)
2224    /// when casting to `&mut T`, and ensure that there are no mutations
2225    /// or mutable aliases going on when casting to `&T`.
2226    ///
2227    /// [`get`]: UnsafeCell::get()
2228    ///
2229    /// # Examples
2230    ///
2231    /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2232    /// calling `get` would require creating a reference to uninitialized data:
2233    ///
2234    /// ```
2235    /// use std::cell::UnsafeCell;
2236    /// use std::mem::MaybeUninit;
2237    ///
2238    /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2239    /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2240    /// // avoid below which references to uninitialized data
2241    /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2242    /// let uc = unsafe { m.assume_init() };
2243    ///
2244    /// assert_eq!(uc.into_inner(), 5);
2245    /// ```
2246    #[inline(always)]
2247    #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2248    #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2249    #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2250    pub const fn raw_get(this: *const Self) -> *mut T {
2251        // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2252        // #[repr(transparent)]. This exploits std's special status, there is
2253        // no guarantee for user code that this will work in future versions of the compiler!
2254        this as *const T as *mut T
2255    }
2256
2257    /// Get a shared reference to the value within the `UnsafeCell`.
2258    ///
2259    /// # Safety
2260    ///
2261    /// - It is Undefined Behavior to call this while any mutable
2262    ///   reference to the wrapped value is alive.
2263    /// - Mutating the wrapped value while the returned
2264    ///   reference is alive is Undefined Behavior.
2265    ///
2266    /// # Examples
2267    ///
2268    /// ```
2269    /// #![feature(unsafe_cell_access)]
2270    /// use std::cell::UnsafeCell;
2271    ///
2272    /// let uc = UnsafeCell::new(5);
2273    ///
2274    /// let val = unsafe { uc.as_ref_unchecked() };
2275    /// assert_eq!(val, &5);
2276    /// ```
2277    #[inline]
2278    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2279    pub const unsafe fn as_ref_unchecked(&self) -> &T {
2280        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2281        unsafe { self.get().as_ref_unchecked() }
2282    }
2283
2284    /// Get an exclusive reference to the value within the `UnsafeCell`.
2285    ///
2286    /// # Safety
2287    ///
2288    /// - It is Undefined Behavior to call this while any other
2289    ///   reference(s) to the wrapped value are alive.
2290    /// - Mutating the wrapped value through other means while the
2291    ///   returned reference is alive is Undefined Behavior.
2292    ///
2293    /// # Examples
2294    ///
2295    /// ```
2296    /// #![feature(unsafe_cell_access)]
2297    /// use std::cell::UnsafeCell;
2298    ///
2299    /// let uc = UnsafeCell::new(5);
2300    ///
2301    /// unsafe { *uc.as_mut_unchecked() += 1; }
2302    /// assert_eq!(uc.into_inner(), 6);
2303    /// ```
2304    #[inline]
2305    #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2306    #[allow(clippy::mut_from_ref)]
2307    pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2308        // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2309        unsafe { self.get().as_mut_unchecked() }
2310    }
2311}
2312
2313#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2314impl<T: Default> Default for UnsafeCell<T> {
2315    /// Creates an `UnsafeCell`, with the `Default` value for T.
2316    fn default() -> UnsafeCell<T> {
2317        UnsafeCell::new(Default::default())
2318    }
2319}
2320
2321#[stable(feature = "cell_from", since = "1.12.0")]
2322impl<T> From<T> for UnsafeCell<T> {
2323    /// Creates a new `UnsafeCell<T>` containing the given value.
2324    fn from(t: T) -> UnsafeCell<T> {
2325        UnsafeCell::new(t)
2326    }
2327}
2328
2329#[unstable(feature = "coerce_unsized", issue = "18598")]
2330impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2331
2332// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2333// and become dyn-compatible method receivers.
2334// Note that currently `UnsafeCell` itself cannot be a method receiver
2335// because it does not implement Deref.
2336// In other words:
2337// `self: UnsafeCell<&Self>` won't work
2338// `self: UnsafeCellWrapper<Self>` becomes possible
2339#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2340impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2341
2342#[unstable(feature = "pointer_like_trait", issue = "none")]
2343impl<T: PointerLike> PointerLike for UnsafeCell<T> {}
2344
2345/// [`UnsafeCell`], but [`Sync`].
2346///
2347/// This is just an `UnsafeCell`, except it implements `Sync`
2348/// if `T` implements `Sync`.
2349///
2350/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2351/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2352/// shared between threads, if that's intentional.
2353/// Providing proper synchronization is still the task of the user,
2354/// making this type just as unsafe to use.
2355///
2356/// See [`UnsafeCell`] for details.
2357#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2358#[repr(transparent)]
2359#[rustc_diagnostic_item = "SyncUnsafeCell"]
2360#[rustc_pub_transparent]
2361pub struct SyncUnsafeCell<T: ?Sized> {
2362    value: UnsafeCell<T>,
2363}
2364
2365#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2366unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2367
2368#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2369impl<T> SyncUnsafeCell<T> {
2370    /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2371    #[inline]
2372    pub const fn new(value: T) -> Self {
2373        Self { value: UnsafeCell { value } }
2374    }
2375
2376    /// Unwraps the value, consuming the cell.
2377    #[inline]
2378    #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2379    pub const fn into_inner(self) -> T {
2380        self.value.into_inner()
2381    }
2382}
2383
2384#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2385impl<T: ?Sized> SyncUnsafeCell<T> {
2386    /// Gets a mutable pointer to the wrapped value.
2387    ///
2388    /// This can be cast to a pointer of any kind.
2389    /// Ensure that the access is unique (no active references, mutable or not)
2390    /// when casting to `&mut T`, and ensure that there are no mutations
2391    /// or mutable aliases going on when casting to `&T`
2392    #[inline]
2393    #[rustc_as_ptr]
2394    #[rustc_never_returns_null_ptr]
2395    pub const fn get(&self) -> *mut T {
2396        self.value.get()
2397    }
2398
2399    /// Returns a mutable reference to the underlying data.
2400    ///
2401    /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2402    /// guarantees that we possess the only reference.
2403    #[inline]
2404    pub const fn get_mut(&mut self) -> &mut T {
2405        self.value.get_mut()
2406    }
2407
2408    /// Gets a mutable pointer to the wrapped value.
2409    ///
2410    /// See [`UnsafeCell::get`] for details.
2411    #[inline]
2412    pub const fn raw_get(this: *const Self) -> *mut T {
2413        // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2414        // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2415        // See UnsafeCell::raw_get.
2416        this as *const T as *mut T
2417    }
2418}
2419
2420#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2421impl<T: Default> Default for SyncUnsafeCell<T> {
2422    /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2423    fn default() -> SyncUnsafeCell<T> {
2424        SyncUnsafeCell::new(Default::default())
2425    }
2426}
2427
2428#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2429impl<T> From<T> for SyncUnsafeCell<T> {
2430    /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2431    fn from(t: T) -> SyncUnsafeCell<T> {
2432        SyncUnsafeCell::new(t)
2433    }
2434}
2435
2436#[unstable(feature = "coerce_unsized", issue = "18598")]
2437//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2438impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2439
2440// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2441// and become dyn-compatible method receivers.
2442// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2443// because it does not implement Deref.
2444// In other words:
2445// `self: SyncUnsafeCell<&Self>` won't work
2446// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2447#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2448//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2449impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2450
2451#[unstable(feature = "pointer_like_trait", issue = "none")]
2452impl<T: PointerLike> PointerLike for SyncUnsafeCell<T> {}
2453
2454#[allow(unused)]
2455fn assert_coerce_unsized(
2456    a: UnsafeCell<&i32>,
2457    b: SyncUnsafeCell<&i32>,
2458    c: Cell<&i32>,
2459    d: RefCell<&i32>,
2460) {
2461    let _: UnsafeCell<&dyn Send> = a;
2462    let _: SyncUnsafeCell<&dyn Send> = b;
2463    let _: Cell<&dyn Send> = c;
2464    let _: RefCell<&dyn Send> = d;
2465}
2466
2467#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2468unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2469
2470#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2471unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2472
2473#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2474unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2475
2476#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2477unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2478
2479#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2480unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2481
2482#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2483unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}