compiler_builtins/math/libm_math/
pow.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
2/*
3 * ====================================================
4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12// pow(x,y) return x**y
13//
14//                    n
15// Method:  Let x =  2   * (1+f)
16//      1. Compute and return log2(x) in two pieces:
17//              log2(x) = w1 + w2,
18//         where w1 has 53-24 = 29 bit trailing zeros.
19//      2. Perform y*log2(x) = n+y' by simulating multi-precision
20//         arithmetic, where |y'|<=0.5.
21//      3. Return x**y = 2**n*exp(y'*log2)
22//
23// Special cases:
24//      1.  (anything) ** 0  is 1
25//      2.  1 ** (anything)  is 1
26//      3.  (anything except 1) ** NAN is NAN
27//      4.  NAN ** (anything except 0) is NAN
28//      5.  +-(|x| > 1) **  +INF is +INF
29//      6.  +-(|x| > 1) **  -INF is +0
30//      7.  +-(|x| < 1) **  +INF is +0
31//      8.  +-(|x| < 1) **  -INF is +INF
32//      9.  -1          ** +-INF is 1
33//      10. +0 ** (+anything except 0, NAN)               is +0
34//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
35//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
36//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
37//      14. -0 ** (+odd integer) is -0
38//      15. -0 ** (-odd integer) is -INF, raise divbyzero
39//      16. +INF ** (+anything except 0,NAN) is +INF
40//      17. +INF ** (-anything except 0,NAN) is +0
41//      18. -INF ** (+odd integer) is -INF
42//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
43//      20. (anything) ** 1 is (anything)
44//      21. (anything) ** -1 is 1/(anything)
45//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46//      23. (-anything except 0 and inf) ** (non-integer) is NAN
47//
48// Accuracy:
49//      pow(x,y) returns x**y nearly rounded. In particular
50//                      pow(integer,integer)
51//      always returns the correct integer provided it is
52//      representable.
53//
54// Constants :
55// The hexadecimal values are the intended ones for the following
56// constants. The decimal values may be used, provided that the
57// compiler will convert from decimal to binary accurately enough
58// to produce the hexadecimal values shown.
59//
60use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word};
61
62const BP: [f64; 2] = [1.0, 1.5];
63const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
64const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
65const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
66const HUGE: f64 = 1.0e300;
67const TINY: f64 = 1.0e-300;
68
69// poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
70const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
71const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
72const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
73const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
74const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
75const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
76const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
77const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
78const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
79const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
80const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
81const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
82const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
83const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
84const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
85const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
86const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
87const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
88const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
89const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
90const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
91
92/// Returns `x` to the power of `y` (f64).
93#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
94pub fn pow(x: f64, y: f64) -> f64 {
95    let t1: f64;
96    let t2: f64;
97
98    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
99    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
100
101    let mut ix: i32 = hx & 0x7fffffff_i32;
102    let iy: i32 = hy & 0x7fffffff_i32;
103
104    /* x**0 = 1, even if x is NaN */
105    if ((iy as u32) | ly) == 0 {
106        return 1.0;
107    }
108
109    /* 1**y = 1, even if y is NaN */
110    if hx == 0x3ff00000 && lx == 0 {
111        return 1.0;
112    }
113
114    /* NaN if either arg is NaN */
115    if ix > 0x7ff00000
116        || (ix == 0x7ff00000 && lx != 0)
117        || iy > 0x7ff00000
118        || (iy == 0x7ff00000 && ly != 0)
119    {
120        return x + y;
121    }
122
123    /* determine if y is an odd int when x < 0
124     * yisint = 0       ... y is not an integer
125     * yisint = 1       ... y is an odd int
126     * yisint = 2       ... y is an even int
127     */
128    let mut yisint: i32 = 0;
129    let mut k: i32;
130    let mut j: i32;
131    if hx < 0 {
132        if iy >= 0x43400000 {
133            yisint = 2; /* even integer y */
134        } else if iy >= 0x3ff00000 {
135            k = (iy >> 20) - 0x3ff; /* exponent */
136
137            if k > 20 {
138                j = (ly >> (52 - k)) as i32;
139
140                if (j << (52 - k)) == (ly as i32) {
141                    yisint = 2 - (j & 1);
142                }
143            } else if ly == 0 {
144                j = iy >> (20 - k);
145
146                if (j << (20 - k)) == iy {
147                    yisint = 2 - (j & 1);
148                }
149            }
150        }
151    }
152
153    if ly == 0 {
154        /* special value of y */
155        if iy == 0x7ff00000 {
156            /* y is +-inf */
157
158            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
159                /* (-1)**+-inf is 1 */
160                1.0
161            } else if ix >= 0x3ff00000 {
162                /* (|x|>1)**+-inf = inf,0 */
163                if hy >= 0 { y } else { 0.0 }
164            } else {
165                /* (|x|<1)**+-inf = 0,inf */
166                if hy >= 0 { 0.0 } else { -y }
167            };
168        }
169
170        if iy == 0x3ff00000 {
171            /* y is +-1 */
172            return if hy >= 0 { x } else { 1.0 / x };
173        }
174
175        if hy == 0x40000000 {
176            /* y is 2 */
177            return x * x;
178        }
179
180        if hy == 0x3fe00000 {
181            /* y is 0.5 */
182            if hx >= 0 {
183                /* x >= +0 */
184                return sqrt(x);
185            }
186        }
187    }
188
189    let mut ax: f64 = fabs(x);
190    if lx == 0 {
191        /* special value of x */
192        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
193            /* x is +-0,+-inf,+-1 */
194            let mut z: f64 = ax;
195
196            if hy < 0 {
197                /* z = (1/|x|) */
198                z = 1.0 / z;
199            }
200
201            if hx < 0 {
202                if ((ix - 0x3ff00000) | yisint) == 0 {
203                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
204                } else if yisint == 1 {
205                    z = -z; /* (x<0)**odd = -(|x|**odd) */
206                }
207            }
208
209            return z;
210        }
211    }
212
213    let mut s: f64 = 1.0; /* sign of result */
214    if hx < 0 {
215        if yisint == 0 {
216            /* (x<0)**(non-int) is NaN */
217            return (x - x) / (x - x);
218        }
219
220        if yisint == 1 {
221            /* (x<0)**(odd int) */
222            s = -1.0;
223        }
224    }
225
226    /* |y| is HUGE */
227    if iy > 0x41e00000 {
228        /* if |y| > 2**31 */
229        if iy > 0x43f00000 {
230            /* if |y| > 2**64, must o/uflow */
231            if ix <= 0x3fefffff {
232                return if hy < 0 { HUGE * HUGE } else { TINY * TINY };
233            }
234
235            if ix >= 0x3ff00000 {
236                return if hy > 0 { HUGE * HUGE } else { TINY * TINY };
237            }
238        }
239
240        /* over/underflow if x is not close to one */
241        if ix < 0x3fefffff {
242            return if hy < 0 {
243                s * HUGE * HUGE
244            } else {
245                s * TINY * TINY
246            };
247        }
248        if ix > 0x3ff00000 {
249            return if hy > 0 {
250                s * HUGE * HUGE
251            } else {
252                s * TINY * TINY
253            };
254        }
255
256        /* now |1-x| is TINY <= 2**-20, suffice to compute
257        log(x) by x-x^2/2+x^3/3-x^4/4 */
258        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
259        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
260        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
261        let v: f64 = t * IVLN2_L - w * IVLN2;
262        t1 = with_set_low_word(u + v, 0);
263        t2 = v - (t1 - u);
264    } else {
265        // double ss,s2,s_h,s_l,t_h,t_l;
266        let mut n: i32 = 0;
267
268        if ix < 0x00100000 {
269            /* take care subnormal number */
270            ax *= TWO53;
271            n -= 53;
272            ix = get_high_word(ax) as i32;
273        }
274
275        n += (ix >> 20) - 0x3ff;
276        j = ix & 0x000fffff;
277
278        /* determine interval */
279        let k: i32;
280        ix = j | 0x3ff00000; /* normalize ix */
281        if j <= 0x3988E {
282            /* |x|<sqrt(3/2) */
283            k = 0;
284        } else if j < 0xBB67A {
285            /* |x|<sqrt(3)   */
286            k = 1;
287        } else {
288            k = 0;
289            n += 1;
290            ix -= 0x00100000;
291        }
292        ax = with_set_high_word(ax, ix as u32);
293
294        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
295        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
296        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
297        let ss: f64 = u * v;
298        let s_h = with_set_low_word(ss, 0);
299
300        /* t_h=ax+bp[k] High */
301        let t_h: f64 = with_set_high_word(
302            0.0,
303            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
304        );
305        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
306        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
307
308        /* compute log(ax) */
309        let s2: f64 = ss * ss;
310        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
311        r += s_l * (s_h + ss);
312        let s2: f64 = s_h * s_h;
313        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
314        let t_l: f64 = r - ((t_h - 3.0) - s2);
315
316        /* u+v = ss*(1+...) */
317        let u: f64 = s_h * t_h;
318        let v: f64 = s_l * t_h + t_l * ss;
319
320        /* 2/(3log2)*(ss+...) */
321        let p_h: f64 = with_set_low_word(u + v, 0);
322        let p_l = v - (p_h - u);
323        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
324        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
325
326        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
327        let t: f64 = n as f64;
328        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
329        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
330    }
331
332    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
333    let y1: f64 = with_set_low_word(y, 0);
334    let p_l: f64 = (y - y1) * t1 + y * t2;
335    let mut p_h: f64 = y1 * t1;
336    let z: f64 = p_l + p_h;
337    let mut j: i32 = (z.to_bits() >> 32) as i32;
338    let i: i32 = z.to_bits() as i32;
339    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
340
341    if j >= 0x40900000 {
342        /* z >= 1024 */
343        if (j - 0x40900000) | i != 0 {
344            /* if z > 1024 */
345            return s * HUGE * HUGE; /* overflow */
346        }
347
348        if p_l + OVT > z - p_h {
349            return s * HUGE * HUGE; /* overflow */
350        }
351    } else if (j & 0x7fffffff) >= 0x4090cc00 {
352        /* z <= -1075 */
353        // FIXME: instead of abs(j) use unsigned j
354
355        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
356            /* z < -1075 */
357            return s * TINY * TINY; /* underflow */
358        }
359
360        if p_l <= z - p_h {
361            return s * TINY * TINY; /* underflow */
362        }
363    }
364
365    /* compute 2**(p_h+p_l) */
366    let i: i32 = j & 0x7fffffff_i32;
367    k = (i >> 20) - 0x3ff;
368    let mut n: i32 = 0;
369
370    if i > 0x3fe00000 {
371        /* if |z| > 0.5, set n = [z+0.5] */
372        n = j + (0x00100000 >> (k + 1));
373        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
374        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
375        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
376        if j < 0 {
377            n = -n;
378        }
379        p_h -= t;
380    }
381
382    let t: f64 = with_set_low_word(p_l + p_h, 0);
383    let u: f64 = t * LG2_H;
384    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
385    let mut z: f64 = u + v;
386    let w: f64 = v - (z - u);
387    let t: f64 = z * z;
388    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
389    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
390    z = 1.0 - (r - z);
391    j = get_high_word(z) as i32;
392    j += n << 20;
393
394    if (j >> 20) <= 0 {
395        /* subnormal output */
396        z = scalbn(z, n);
397    } else {
398        z = with_set_high_word(z, j as u32);
399    }
400
401    s * z
402}
403
404#[cfg(test)]
405mod tests {
406    extern crate core;
407
408    use self::core::f64::consts::{E, PI};
409    use super::pow;
410
411    const POS_ZERO: &[f64] = &[0.0];
412    const NEG_ZERO: &[f64] = &[-0.0];
413    const POS_ONE: &[f64] = &[1.0];
414    const NEG_ONE: &[f64] = &[-1.0];
415    const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI];
416    const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI];
417    const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON];
418    const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON];
419    const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX];
420    const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
421    const POS_ODDS: &[f64] = &[3.0, 7.0];
422    const NEG_ODDS: &[f64] = &[-7.0, -3.0];
423    const NANS: &[f64] = &[f64::NAN];
424    const POS_INF: &[f64] = &[f64::INFINITY];
425    const NEG_INF: &[f64] = &[f64::NEG_INFINITY];
426
427    const ALL: &[&[f64]] = &[
428        POS_ZERO,
429        NEG_ZERO,
430        NANS,
431        NEG_SMALL_FLOATS,
432        POS_SMALL_FLOATS,
433        NEG_FLOATS,
434        POS_FLOATS,
435        NEG_EVENS,
436        POS_EVENS,
437        NEG_ODDS,
438        POS_ODDS,
439        NEG_INF,
440        POS_INF,
441        NEG_ONE,
442        POS_ONE,
443    ];
444    const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
445    const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
446
447    fn pow_test(base: f64, exponent: f64, expected: f64) {
448        let res = pow(base, exponent);
449        assert!(
450            if expected.is_nan() {
451                res.is_nan()
452            } else {
453                pow(base, exponent) == expected
454            },
455            "{base} ** {exponent} was {res} instead of {expected}",
456        );
457    }
458
459    fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
460        sets.iter()
461            .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected)));
462    }
463
464    fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
465        sets.iter()
466            .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected)));
467    }
468
469    fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
470        sets.iter().for_each(|s| {
471            s.iter().for_each(|val| {
472                let exp = expected(*val);
473                let res = computed(*val);
474
475                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
476                let exp = force_eval!(exp);
477                #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
478                let res = force_eval!(res);
479                assert!(
480                    if exp.is_nan() {
481                        res.is_nan()
482                    } else {
483                        exp == res
484                    },
485                    "test for {val} was {res} instead of {exp}",
486                );
487            })
488        });
489    }
490
491    #[test]
492    fn zero_as_exponent() {
493        test_sets_as_base(ALL, 0.0, 1.0);
494        test_sets_as_base(ALL, -0.0, 1.0);
495    }
496
497    #[test]
498    fn one_as_base() {
499        test_sets_as_exponent(1.0, ALL, 1.0);
500    }
501
502    #[test]
503    fn nan_inputs() {
504        // NAN as the base:
505        // (f64::NAN ^ anything *but 0* should be f64::NAN)
506        test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN);
507
508        // f64::NAN as the exponent:
509        // (anything *but 1* ^ f64::NAN should be f64::NAN)
510        test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN);
511    }
512
513    #[test]
514    fn infinity_as_base() {
515        // Positive Infinity as the base:
516        // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity)
517        test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY);
518
519        // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0)
520        test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0);
521
522        // Negative Infinity as the base:
523        // (-Infinity ^ positive odd ints should be -Infinity)
524        test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY);
525
526        // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
527        // We can lump in pos/neg odd ints here because they don't seem to
528        // cause panics (div by zero) in release mode (I think).
529        test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| {
530            pow(-0.0, -v)
531        });
532    }
533
534    #[test]
535    fn infinity_as_exponent() {
536        // Positive/Negative base greater than 1:
537        // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base)
538        test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY);
539
540        // (pos/neg > 1 ^ -Infinity should be 0.0)
541        test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0);
542
543        // Positive/Negative base less than 1:
544        let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
545
546        // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base)
547        test_sets_as_base(base_below_one, f64::INFINITY, 0.0);
548
549        // (pos/neg < 1 ^ -Infinity should be Infinity)
550        test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY);
551
552        // Positive/Negative 1 as the base:
553        // (pos/neg 1 ^ Infinity should be 1)
554        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0);
555
556        // (pos/neg 1 ^ -Infinity should be 1)
557        test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0);
558    }
559
560    #[test]
561    fn zero_as_base() {
562        // Positive Zero as the base:
563        // (+0 ^ anything positive but 0 and f64::NAN should be +0)
564        test_sets_as_exponent(0.0, &POS[1..], 0.0);
565
566        // (+0 ^ anything negative but 0 and f64::NAN should be Infinity)
567        // (this should panic because we're dividing by zero)
568        test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY);
569
570        // Negative Zero as the base:
571        // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0)
572        test_sets_as_exponent(-0.0, &POS[3..], 0.0);
573
574        // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity)
575        // (should panic because of divide by zero)
576        test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY);
577
578        // (-0 ^ positive odd ints should be -0)
579        test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
580
581        // (-0 ^ negative odd ints should be -Infinity)
582        // (should panic because of divide by zero)
583        test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY);
584    }
585
586    #[test]
587    fn special_cases() {
588        // One as the exponent:
589        // (anything ^ 1 should be anything - i.e. the base)
590        test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v);
591
592        // Negative One as the exponent:
593        // (anything ^ -1 should be 1/anything)
594        test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v);
595
596        // Factoring -1 out:
597        // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
598        [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]
599            .iter()
600            .for_each(|int_set| {
601                int_set.iter().for_each(|int| {
602                    test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| {
603                        pow(-1.0, *int) * pow(v, *int)
604                    });
605                })
606            });
607
608        // Negative base (imaginary results):
609        // (-anything except 0 and Infinity ^ non-integer should be NAN)
610        NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
611            set.iter().for_each(|val| {
612                test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN);
613            })
614        });
615    }
616
617    #[test]
618    fn normal_cases() {
619        assert_eq!(pow(2.0, 20.0), (1 << 20) as f64);
620        assert_eq!(pow(-1.0, 9.0), -1.0);
621        assert!(pow(-1.0, 2.2).is_nan());
622        assert!(pow(-1.0, -1.14).is_nan());
623    }
624}