compiler_builtins/math/libm_math/
jnf.rs

1/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2/*
3 * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
4 */
5/*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16use super::{fabsf, j0f, j1f, logf, y0f, y1f};
17
18/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
19#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
20pub fn jnf(n: i32, mut x: f32) -> f32 {
21    let mut ix: u32;
22    let mut nm1: i32;
23    let mut sign: bool;
24    let mut i: i32;
25    let mut a: f32;
26    let mut b: f32;
27    let mut temp: f32;
28
29    ix = x.to_bits();
30    sign = (ix >> 31) != 0;
31    ix &= 0x7fffffff;
32    if ix > 0x7f800000 {
33        /* nan */
34        return x;
35    }
36
37    /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
38    if n == 0 {
39        return j0f(x);
40    }
41    if n < 0 {
42        nm1 = -(n + 1);
43        x = -x;
44        sign = !sign;
45    } else {
46        nm1 = n - 1;
47    }
48    if nm1 == 0 {
49        return j1f(x);
50    }
51
52    sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
53    x = fabsf(x);
54    if ix == 0 || ix == 0x7f800000 {
55        /* if x is 0 or inf */
56        b = 0.0;
57    } else if (nm1 as f32) < x {
58        /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
59        a = j0f(x);
60        b = j1f(x);
61        i = 0;
62        while i < nm1 {
63            i += 1;
64            temp = b;
65            b = b * (2.0 * (i as f32) / x) - a;
66            a = temp;
67        }
68    } else if ix < 0x35800000 {
69        /* x < 2**-20 */
70        /* x is tiny, return the first Taylor expansion of J(n,x)
71         * J(n,x) = 1/n!*(x/2)^n  - ...
72         */
73        if nm1 > 8 {
74            /* underflow */
75            nm1 = 8;
76        }
77        temp = 0.5 * x;
78        b = temp;
79        a = 1.0;
80        i = 2;
81        while i <= nm1 + 1 {
82            a *= i as f32; /* a = n! */
83            b *= temp; /* b = (x/2)^n */
84            i += 1;
85        }
86        b = b / a;
87    } else {
88        /* use backward recurrence */
89        /*                      x      x^2      x^2
90         *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
91         *                      2n  - 2(n+1) - 2(n+2)
92         *
93         *                      1      1        1
94         *  (for large x)   =  ----  ------   ------   .....
95         *                      2n   2(n+1)   2(n+2)
96         *                      -- - ------ - ------ -
97         *                       x     x         x
98         *
99         * Let w = 2n/x and h=2/x, then the above quotient
100         * is equal to the continued fraction:
101         *                  1
102         *      = -----------------------
103         *                     1
104         *         w - -----------------
105         *                        1
106         *              w+h - ---------
107         *                     w+2h - ...
108         *
109         * To determine how many terms needed, let
110         * Q(0) = w, Q(1) = w(w+h) - 1,
111         * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
112         * When Q(k) > 1e4      good for single
113         * When Q(k) > 1e9      good for double
114         * When Q(k) > 1e17     good for quadruple
115         */
116        /* determine k */
117        let mut t: f32;
118        let mut q0: f32;
119        let mut q1: f32;
120        let mut w: f32;
121        let h: f32;
122        let mut z: f32;
123        let mut tmp: f32;
124        let nf: f32;
125        let mut k: i32;
126
127        nf = (nm1 as f32) + 1.0;
128        w = 2.0 * nf / x;
129        h = 2.0 / x;
130        z = w + h;
131        q0 = w;
132        q1 = w * z - 1.0;
133        k = 1;
134        while q1 < 1.0e4 {
135            k += 1;
136            z += h;
137            tmp = z * q1 - q0;
138            q0 = q1;
139            q1 = tmp;
140        }
141        t = 0.0;
142        i = k;
143        while i >= 0 {
144            t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
145            i -= 1;
146        }
147        a = t;
148        b = 1.0;
149        /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
150         *  Hence, if n*(log(2n/x)) > ...
151         *  single 8.8722839355e+01
152         *  double 7.09782712893383973096e+02
153         *  long double 1.1356523406294143949491931077970765006170e+04
154         *  then recurrent value may overflow and the result is
155         *  likely underflow to zero
156         */
157        tmp = nf * logf(fabsf(w));
158        if tmp < 88.721679688 {
159            i = nm1;
160            while i > 0 {
161                temp = b;
162                b = 2.0 * (i as f32) * b / x - a;
163                a = temp;
164                i -= 1;
165            }
166        } else {
167            i = nm1;
168            while i > 0 {
169                temp = b;
170                b = 2.0 * (i as f32) * b / x - a;
171                a = temp;
172                /* scale b to avoid spurious overflow */
173                let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
174                if b > x1p60 {
175                    a /= b;
176                    t /= b;
177                    b = 1.0;
178                }
179                i -= 1;
180            }
181        }
182        z = j0f(x);
183        w = j1f(x);
184        if fabsf(z) >= fabsf(w) {
185            b = t * z / b;
186        } else {
187            b = t * w / a;
188        }
189    }
190
191    if sign { -b } else { b }
192}
193
194/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
195#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
196pub fn ynf(n: i32, x: f32) -> f32 {
197    let mut ix: u32;
198    let mut ib: u32;
199    let nm1: i32;
200    let mut sign: bool;
201    let mut i: i32;
202    let mut a: f32;
203    let mut b: f32;
204    let mut temp: f32;
205
206    ix = x.to_bits();
207    sign = (ix >> 31) != 0;
208    ix &= 0x7fffffff;
209    if ix > 0x7f800000 {
210        /* nan */
211        return x;
212    }
213    if sign && ix != 0 {
214        /* x < 0 */
215        return 0.0 / 0.0;
216    }
217    if ix == 0x7f800000 {
218        return 0.0;
219    }
220
221    if n == 0 {
222        return y0f(x);
223    }
224    if n < 0 {
225        nm1 = -(n + 1);
226        sign = (n & 1) != 0;
227    } else {
228        nm1 = n - 1;
229        sign = false;
230    }
231    if nm1 == 0 {
232        if sign {
233            return -y1f(x);
234        } else {
235            return y1f(x);
236        }
237    }
238
239    a = y0f(x);
240    b = y1f(x);
241    /* quit if b is -inf */
242    ib = b.to_bits();
243    i = 0;
244    while i < nm1 && ib != 0xff800000 {
245        i += 1;
246        temp = b;
247        b = (2.0 * (i as f32) / x) * b - a;
248        ib = b.to_bits();
249        a = temp;
250    }
251
252    if sign { -b } else { b }
253}