compiler_builtins/math/libm_math/generic/fma.rs
1/* SPDX-License-Identifier: MIT */
2/* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */
3
4use crate::support::{
5 CastFrom, CastInto, DInt, Float, FpResult, HInt, Int, IntTy, MinInt, Round, Status,
6};
7
8/// Fused multiply-add that works when there is not a larger float size available. Computes
9/// `(x * y) + z`.
10#[inline]
11pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F>
12where
13 F: Float,
14 F: CastFrom<F::SignedInt>,
15 F: CastFrom<i8>,
16 F::Int: HInt,
17 u32: CastInto<F::Int>,
18{
19 let one = IntTy::<F>::ONE;
20 let zero = IntTy::<F>::ZERO;
21
22 // Normalize such that the top of the mantissa is zero and we have a guard bit.
23 let nx = Norm::from_float(x);
24 let ny = Norm::from_float(y);
25 let nz = Norm::from_float(z);
26
27 if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() {
28 // Value will overflow, defer to non-fused operations.
29 return FpResult::ok(x * y + z);
30 }
31
32 if nz.is_zero_nan_inf() {
33 if nz.is_zero() {
34 // Empty add component means we only need to multiply.
35 return FpResult::ok(x * y);
36 }
37 // `z` is NaN or infinity, which sets the result.
38 return FpResult::ok(z);
39 }
40
41 // multiply: r = x * y
42 let zhi: F::Int;
43 let zlo: F::Int;
44 let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi();
45
46 // Exponent result of multiplication
47 let mut e: i32 = nx.e + ny.e;
48 // Needed shift to align `z` to the multiplication result
49 let mut d: i32 = nz.e - e;
50 let sbits = F::BITS as i32;
51
52 // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz)
53 if d > 0 {
54 // The magnitude of `z` is larger than `x * y`
55 if d < sbits {
56 // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift
57 // it into `(zhi, zlo)`. No exponent adjustment necessary.
58 zlo = nz.m << d;
59 zhi = nz.m >> (sbits - d);
60 } else {
61 // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts
62 // as a shift by `sbits`).
63 zlo = zero;
64 zhi = nz.m;
65 d -= sbits;
66
67 // `z`'s exponent is large enough that it now needs to be taken into account.
68 e = nz.e - sbits;
69
70 if d == 0 {
71 // Exactly `sbits`, nothing to do
72 } else if d < sbits {
73 // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y`
74 rlo = (rhi << (sbits - d)) | (rlo >> d);
75 // Set the sticky bit
76 rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero);
77 rhi = rhi >> d;
78 } else {
79 // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set
80 // the sticky bit.
81 rlo = one;
82 rhi = zero;
83 }
84 }
85 } else {
86 // `z`'s magnitude once shifted fits entirely within `zlo`
87 zhi = zero;
88 d = -d;
89 if d == 0 {
90 // No shift needed
91 zlo = nz.m;
92 } else if d < sbits {
93 // Shift s.t. `nz.m` fits into `zlo`
94 let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero);
95 zlo = (nz.m >> d) | sticky;
96 } else {
97 // Would be entirely shifted out, only set the sticky bit
98 zlo = one;
99 }
100 }
101
102 /* addition */
103
104 let mut neg = nx.neg ^ ny.neg;
105 let samesign: bool = !neg ^ nz.neg;
106 let mut rhi_nonzero = true;
107
108 if samesign {
109 // r += z
110 rlo = rlo.wrapping_add(zlo);
111 rhi += zhi + IntTy::<F>::from(rlo < zlo);
112 } else {
113 // r -= z
114 let (res, borrow) = rlo.overflowing_sub(zlo);
115 rlo = res;
116 rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow)));
117 if (rhi >> (F::BITS - 1)) != zero {
118 rlo = rlo.signed().wrapping_neg().unsigned();
119 rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero);
120 neg = !neg;
121 }
122 rhi_nonzero = rhi != zero;
123 }
124
125 /* Construct result */
126
127 // Shift result into `rhi`, left-aligned. Last bit is sticky
128 if rhi_nonzero {
129 // `d` > 0, need to shift both `rhi` and `rlo` into result
130 e += sbits;
131 d = rhi.leading_zeros() as i32 - 1;
132 rhi = (rhi << d) | (rlo >> (sbits - d));
133 // Update sticky
134 rhi |= IntTy::<F>::from((rlo << d) != zero);
135 } else if rlo != zero {
136 // `rhi` is zero, `rlo` is the entire result and needs to be shifted
137 d = rlo.leading_zeros() as i32 - 1;
138 if d < 0 {
139 // Shift and set sticky
140 rhi = (rlo >> 1) | (rlo & one);
141 } else {
142 rhi = rlo << d;
143 }
144 } else {
145 // exact +/- 0.0
146 return FpResult::ok(x * y + z);
147 }
148
149 e -= d;
150
151 // Use int->float conversion to populate the significand.
152 // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1]
153 let mut i: F::SignedInt = rhi.signed();
154
155 if neg {
156 i = -i;
157 }
158
159 // `|r|` is in `[0x1p62,0x1p63]` for `f64`
160 let mut r: F = F::cast_from_lossy(i);
161
162 /* Account for subnormal and rounding */
163
164 // Unbiased exponent for the maximum value of `r`
165 let max_pow = F::BITS - 1 + F::EXP_BIAS;
166
167 let mut status = Status::OK;
168
169 if e < -(max_pow as i32 - 2) {
170 // Result is subnormal before rounding
171 if e == -(max_pow as i32 - 1) {
172 let mut c = F::from_parts(false, max_pow, zero);
173 if neg {
174 c = -c;
175 }
176
177 if r == c {
178 // Min normal after rounding,
179 status.set_underflow(true);
180 r = F::MIN_POSITIVE_NORMAL.copysign(r);
181 return FpResult::new(r, status);
182 }
183
184 if (rhi << (F::SIG_BITS + 1)) != zero {
185 // Account for truncated bits. One bit will be lost in the `scalbn` call, add
186 // another top bit to avoid double rounding if inexact.
187 let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2));
188 i = iu.signed();
189
190 if neg {
191 i = -i;
192 }
193
194 r = F::cast_from_lossy(i);
195
196 // Remove the top bit
197 r = F::cast_from(2i8) * r - c;
198 status.set_underflow(true);
199 }
200 } else {
201 // Only round once when scaled
202 d = F::EXP_BITS as i32 - 1;
203 let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero);
204 i = (((rhi >> d) | sticky) << d).signed();
205
206 if neg {
207 i = -i;
208 }
209
210 r = F::cast_from_lossy(i);
211 }
212 }
213
214 // Use our exponent to scale the final value.
215 FpResult::new(super::scalbn(r, e), status)
216}
217
218/// Representation of `F` that has handled subnormals.
219#[derive(Clone, Copy, Debug)]
220struct Norm<F: Float> {
221 /// Normalized significand with one guard bit, unsigned.
222 m: F::Int,
223 /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa
224 /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`.
225 e: i32,
226 neg: bool,
227}
228
229impl<F: Float> Norm<F> {
230 /// Unbias the exponent and account for the mantissa's precision, including the guard bit.
231 const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1;
232
233 /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we
234 /// adjusted the exponent such that it exceeds this threashold.
235 const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS;
236
237 fn from_float(x: F) -> Self {
238 let mut ix = x.to_bits();
239 let mut e = x.ex() as i32;
240 let neg = x.is_sign_negative();
241 if e == 0 {
242 // Normalize subnormals by multiplication
243 let scale_i = F::BITS - 1;
244 let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO);
245 let scaled = x * scale_f;
246 ix = scaled.to_bits();
247 e = scaled.ex() as i32;
248 e = if e == 0 {
249 // If the exponent is still zero, the input was zero. Artifically set this value
250 // such that the final `e` will exceed `ZERO_INF_NAN`.
251 1 << F::EXP_BITS
252 } else {
253 // Otherwise, account for the scaling we just did.
254 e - scale_i as i32
255 };
256 }
257
258 e -= Self::EXP_UNBIAS as i32;
259
260 // Absolute value, set the implicit bit, and shift to create a guard bit
261 ix &= F::SIG_MASK;
262 ix |= F::IMPLICIT_BIT;
263 ix <<= 1;
264
265 Self { m: ix, e, neg }
266 }
267
268 /// True if the value was zero, infinity, or NaN.
269 fn is_zero_nan_inf(self) -> bool {
270 self.e >= Self::ZERO_INF_NAN as i32
271 }
272
273 /// The only value we have
274 fn is_zero(self) -> bool {
275 // The only exponent that strictly exceeds this value is our sentinel value for zero.
276 self.e > Self::ZERO_INF_NAN as i32
277 }
278}