compiler_builtins/int/specialized_div_rem/
trifecta.rs

1/// Creates an unsigned division function optimized for division of integers with bitwidths
2/// larger than the largest hardware integer division supported. These functions use large radix
3/// division algorithms that require both fast division and very fast widening multiplication on the
4/// target microarchitecture. Otherwise, `impl_delegate` should be used instead.
5#[allow(unused_macros)]
6macro_rules! impl_trifecta {
7    (
8        $fn:ident, // name of the unsigned division function
9        $zero_div_fn:ident, // function called when division by zero is attempted
10        $half_division:ident, // function for division of a $uX by a $uX
11        $n_h:expr, // the number of bits in $iH or $uH
12        $uH:ident, // unsigned integer with half the bit width of $uX
13        $uX:ident, // unsigned integer with half the bit width of $uD
14        $uD:ident // unsigned integer type for the inputs and outputs of `$unsigned_name`
15    ) => {
16        /// Computes the quotient and remainder of `duo` divided by `div` and returns them as a
17        /// tuple.
18        pub fn $fn(duo: $uD, div: $uD) -> ($uD, $uD) {
19            // This is called the trifecta algorithm because it uses three main algorithms: short
20            // division for small divisors, the two possibility algorithm for large divisors, and an
21            // undersubtracting long division algorithm for intermediate cases.
22
23            // This replicates `carrying_mul` (rust-lang rfc #2417). LLVM correctly optimizes this
24            // to use a widening multiply to 128 bits on the relevant architectures.
25            fn carrying_mul(lhs: $uX, rhs: $uX) -> ($uX, $uX) {
26                let tmp = (lhs as $uD).wrapping_mul(rhs as $uD);
27                (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
28            }
29            fn carrying_mul_add(lhs: $uX, mul: $uX, add: $uX) -> ($uX, $uX) {
30                let tmp = (lhs as $uD)
31                    .wrapping_mul(mul as $uD)
32                    .wrapping_add(add as $uD);
33                (tmp as $uX, (tmp >> ($n_h * 2)) as $uX)
34            }
35
36            // the number of bits in a $uX
37            let n = $n_h * 2;
38
39            if div == 0 {
40                $zero_div_fn()
41            }
42
43            // Trying to use a normalization shift function will cause inelegancies in the code and
44            // inefficiencies for architectures with a native count leading zeros instruction. The
45            // undersubtracting algorithm needs both values (keeping the original `div_lz` but
46            // updating `duo_lz` multiple times), so we assume hardware support for fast
47            // `leading_zeros` calculation.
48            let div_lz = div.leading_zeros();
49            let mut duo_lz = duo.leading_zeros();
50
51            // the possible ranges of `duo` and `div` at this point:
52            // `0 <= duo < 2^n_d`
53            // `1 <= div < 2^n_d`
54
55            // quotient is 0 or 1 branch
56            if div_lz <= duo_lz {
57                // The quotient cannot be more than 1. The highest set bit of `duo` needs to be at
58                // least one place higher than `div` for the quotient to be more than 1.
59                if duo >= div {
60                    return (1, duo - div);
61                } else {
62                    return (0, duo);
63                }
64            }
65
66            // `_sb` is the number of significant bits (from the ones place to the highest set bit)
67            // `{2, 2^div_sb} <= duo < 2^n_d`
68            // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
69            // smaller division branch
70            if duo_lz >= n {
71                // `duo < 2^n` so it will fit in a $uX. `div` will also fit in a $uX (because of the
72                // `div_lz <= duo_lz` branch) so no numerical error.
73                let (quo, rem) = $half_division(duo as $uX, div as $uX);
74                return (quo as $uD, rem as $uD);
75            }
76
77            // `{2^n, 2^div_sb} <= duo < 2^n_d`
78            // `1 <= div < {2^duo_sb, 2^(n_d - 1)}`
79            // short division branch
80            if div_lz >= (n + $n_h) {
81                // `1 <= div < {2^duo_sb, 2^n_h}`
82
83                // It is barely possible to improve the performance of this by calculating the
84                // reciprocal and removing one `$half_division`, but only if the CPU can do fast
85                // multiplications in parallel. Other reciprocal based methods can remove two
86                // `$half_division`s, but have multiplications that cannot be done in parallel and
87                // reduce performance. I have decided to use this trivial short division method and
88                // rely on the CPU having quick divisions.
89
90                let duo_hi = (duo >> n) as $uX;
91                let div_0 = div as $uH as $uX;
92                let (quo_hi, rem_3) = $half_division(duo_hi, div_0);
93
94                let duo_mid = ((duo >> $n_h) as $uH as $uX) | (rem_3 << $n_h);
95                let (quo_1, rem_2) = $half_division(duo_mid, div_0);
96
97                let duo_lo = (duo as $uH as $uX) | (rem_2 << $n_h);
98                let (quo_0, rem_1) = $half_division(duo_lo, div_0);
99
100                return (
101                    (quo_0 as $uD) | ((quo_1 as $uD) << $n_h) | ((quo_hi as $uD) << n),
102                    rem_1 as $uD,
103                );
104            }
105
106            // relative leading significant bits, cannot overflow because of above branches
107            let lz_diff = div_lz - duo_lz;
108
109            // `{2^n, 2^div_sb} <= duo < 2^n_d`
110            // `2^n_h <= div < {2^duo_sb, 2^(n_d - 1)}`
111            // `mul` or `mul - 1` branch
112            if lz_diff < $n_h {
113                // Two possibility division algorithm
114
115                // The most significant bits of `duo` and `div` are within `$n_h` bits of each
116                // other. If we take the `n` most significant bits of `duo` and divide them by the
117                // corresponding bits in `div`, it produces a quotient value `quo`. It happens that
118                // `quo` or `quo - 1` will always be the correct quotient for the whole number. In
119                // other words, the bits less significant than the `n` most significant bits of
120                // `duo` and `div` can only influence the quotient to be one of two values.
121                // Because there are only two possibilities, there only needs to be one `$uH` sized
122                // division, a `$uH` by `$uD` multiplication, and only one branch with a few simple
123                // operations.
124                //
125                // Proof that the true quotient can only be `quo` or `quo - 1`.
126                // All `/` operators here are floored divisions.
127                //
128                // `shift` is the number of bits not in the higher `n` significant bits of `duo`.
129                // (definitions)
130                // 0. shift = n - duo_lz
131                // 1. duo_sig_n == duo / 2^shift
132                // 2. div_sig_n == div / 2^shift
133                // 3. quo == duo_sig_n / div_sig_n
134                //
135                //
136                // We are trying to find the true quotient, `true_quo`.
137                // 4. true_quo = duo / div. (definition)
138                //
139                // This is true because of the bits that are cut off during the bit shift.
140                // 5. duo_sig_n * 2^shift <= duo < (duo_sig_n + 1) * 2^shift.
141                // 6. div_sig_n * 2^shift <= div < (div_sig_n + 1) * 2^shift.
142                //
143                // Dividing each bound of (5) by each bound of (6) gives 4 possibilities for what
144                // `true_quo == duo / div` is bounded by:
145                // (duo_sig_n * 2^shift) / (div_sig_n * 2^shift)
146                // (duo_sig_n * 2^shift) / ((div_sig_n + 1) * 2^shift)
147                // ((duo_sig_n + 1) * 2^shift) / (div_sig_n * 2^shift)
148                // ((duo_sig_n + 1) * 2^shift) / ((div_sig_n + 1) * 2^shift)
149                //
150                // Simplifying each of these four:
151                // duo_sig_n / div_sig_n
152                // duo_sig_n / (div_sig_n + 1)
153                // (duo_sig_n + 1) / div_sig_n
154                // (duo_sig_n + 1) / (div_sig_n + 1)
155                //
156                // Taking the smallest and the largest of these as the low and high bounds
157                // and replacing `duo / div` with `true_quo`:
158                // 7. duo_sig_n / (div_sig_n + 1) <= true_quo < (duo_sig_n + 1) / div_sig_n
159                //
160                // The `lz_diff < n_h` conditional on this branch makes sure that `div_sig_n` is at
161                // least `2^n_h`, and the `div_lz <= duo_lz` branch makes sure that the highest bit
162                // of `div_sig_n` is not the `2^(n - 1)` bit.
163                // 8. `2^(n - 1) <= duo_sig_n < 2^n`
164                // 9. `2^n_h <= div_sig_n < 2^(n - 1)`
165                //
166                // We want to prove that either
167                // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1)` or that
168                // `(duo_sig_n + 1) / div_sig_n == duo_sig_n / (div_sig_n + 1) + 1`.
169                //
170                // We also want to prove that `quo` is one of these:
171                // `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
172                // `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n`.
173                //
174                // When 1 is added to the numerator of `duo_sig_n / div_sig_n` to produce
175                // `(duo_sig_n + 1) / div_sig_n`, it is not possible that the value increases by
176                // more than 1 with floored integer arithmetic and `div_sig_n != 0`. Consider
177                // `x/y + 1 < (x + 1)/y` <=> `x/y + 1 < x/y + 1/y` <=> `1 < 1/y` <=> `y < 1`.
178                // `div_sig_n` is a nonzero integer. Thus,
179                // 10. `duo_sig_n / div_sig_n == (duo_sig_n + 1) / div_sig_n` or
180                //     `(duo_sig_n / div_sig_n) + 1 == (duo_sig_n + 1) / div_sig_n.
181                //
182                // When 1 is added to the denominator of `duo_sig_n / div_sig_n` to produce
183                // `duo_sig_n / (div_sig_n + 1)`, it is not possible that the value decreases by
184                // more than 1 with the bounds (8) and (9). Consider `x/y - 1 <= x/(y + 1)` <=>
185                // `(x - y)/y < x/(y + 1)` <=> `(y + 1)*(x - y) < x*y` <=> `x*y - y*y + x - y < x*y`
186                // <=> `x < y*y + y`. The smallest value of `div_sig_n` is `2^n_h` and the largest
187                // value of `duo_sig_n` is `2^n - 1`. Substituting reveals `2^n - 1 < 2^n + 2^n_h`.
188                // Thus,
189                // 11. `duo_sig_n / div_sig_n == duo_sig_n / (div_sig_n + 1)` or
190                //     `(duo_sig_n / div_sig_n) - 1` == duo_sig_n / (div_sig_n + 1)`
191                //
192                // Combining both (10) and (11), we know that
193                // `quo - 1 <= duo_sig_n / (div_sig_n + 1) <= true_quo
194                // < (duo_sig_n + 1) / div_sig_n <= quo + 1` and therefore:
195                // 12. quo - 1 <= true_quo < quo + 1
196                //
197                // In a lot of division algorithms using smaller divisions to construct a larger
198                // division, we often encounter a situation where the approximate `quo` value
199                // calculated from a smaller division is multiple increments away from the true
200                // `quo` value. In those algorithms, multiple correction steps have to be applied.
201                // Those correction steps may need more multiplications to test `duo - (quo*div)`
202                // again. Because of the fact that our `quo` can only be one of two values, we can
203                // see if `duo - (quo*div)` overflows. If it did overflow, then we know that we have
204                // the larger of the two values (since the true quotient is unique, and any larger
205                // quotient will cause `duo - (quo*div)` to be negative). Also because there is only
206                // one correction needed, we can calculate the remainder `duo - (true_quo*div) ==
207                // duo - ((quo - 1)*div) == duo - (quo*div - div) == duo + div - quo*div`.
208                // If `duo - (quo*div)` did not overflow, then we have the correct answer.
209                let shift = n - duo_lz;
210                let duo_sig_n = (duo >> shift) as $uX;
211                let div_sig_n = (div >> shift) as $uX;
212                let quo = $half_division(duo_sig_n, div_sig_n).0;
213
214                // The larger `quo` value can overflow `$uD` in the right circumstances. This is a
215                // manual `carrying_mul_add` with overflow checking.
216                let div_lo = div as $uX;
217                let div_hi = (div >> n) as $uX;
218                let (tmp_lo, carry) = carrying_mul(quo, div_lo);
219                let (tmp_hi, overflow) = carrying_mul_add(quo, div_hi, carry);
220                let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
221                if (overflow != 0) || (duo < tmp) {
222                    return (
223                        (quo - 1) as $uD,
224                        // Both the addition and subtraction can overflow, but when combined end up
225                        // as a correct positive number.
226                        duo.wrapping_add(div).wrapping_sub(tmp),
227                    );
228                } else {
229                    return (quo as $uD, duo - tmp);
230                }
231            }
232
233            // Undersubtracting long division algorithm.
234            // Instead of clearing a minimum of 1 bit from `duo` per iteration via binary long
235            // division, `n_h - 1` bits are cleared per iteration with this algorithm. It is a more
236            // complicated version of regular long division. Most integer division algorithms tend
237            // to guess a part of the quotient, and may have a larger quotient than the true
238            // quotient (which when multiplied by `div` will "oversubtract" the original dividend).
239            // They then check if the quotient was in fact too large and then have to correct it.
240            // This long division algorithm has been carefully constructed to always underguess the
241            // quotient by slim margins. This allows different subalgorithms to be blindly jumped to
242            // without needing an extra correction step.
243            //
244            // The only problem is that this subalgorithm will not work for many ranges of `duo` and
245            // `div`. Fortunately, the short division, two possibility algorithm, and other simple
246            // cases happen to exactly fill these gaps.
247            //
248            // For an example, consider the division of 76543210 by 213 and assume that `n_h` is
249            // equal to two decimal digits (note: we are working with base 10 here for readability).
250            // The first `sig_n_h` part of the divisor (21) is taken and is incremented by 1 to
251            // prevent oversubtraction. We also record the number of extra places not a part of
252            // the `sig_n` or `sig_n_h` parts.
253            //
254            // sig_n_h == 2 digits, sig_n == 4 digits
255            //
256            // vvvv     <- `duo_sig_n`
257            // 76543210
258            //     ^^^^ <- extra places in duo, `duo_extra == 4`
259            //
260            // vv  <- `div_sig_n_h`
261            // 213
262            //   ^ <- extra places in div, `div_extra == 1`
263            //
264            // The difference in extra places, `duo_extra - div_extra == extra_shl == 3`, is used
265            // for shifting partial sums in the long division.
266            //
267            // In the first step, the first `sig_n` part of duo (7654) is divided by
268            // `div_sig_n_h_add_1` (22), which results in a partial quotient of 347. This is
269            // multiplied by the whole divisor to make 73911, which is shifted left by `extra_shl`
270            // and subtracted from duo. The partial quotient is also shifted left by `extra_shl` to
271            // be added to `quo`.
272            //
273            //    347
274            //  ________
275            // |76543210
276            // -73911
277            //   2632210
278            //
279            // Variables dependent on duo have to be updated:
280            //
281            // vvvv    <- `duo_sig_n == 2632`
282            // 2632210
283            //     ^^^ <- `duo_extra == 3`
284            //
285            // `extra_shl == 2`
286            //
287            // Two more steps are taken after this and then duo fits into `n` bits, and then a final
288            // normal long division step is made. The partial quotients are all progressively added
289            // to each other in the actual algorithm, but here I have left them all in a tower that
290            // can be added together to produce the quotient, 359357.
291            //
292            //        14
293            //       443
294            //     119
295            //    347
296            //  ________
297            // |76543210
298            // -73911
299            //   2632210
300            //  -25347
301            //     97510
302            //    -94359
303            //      3151
304            //     -2982
305            //       169 <- the remainder
306
307            let mut duo = duo;
308            let mut quo: $uD = 0;
309
310            // The number of lesser significant bits not a part of `div_sig_n_h`
311            let div_extra = (n + $n_h) - div_lz;
312
313            // The most significant `n_h` bits of div
314            let div_sig_n_h = (div >> div_extra) as $uH;
315
316            // This needs to be a `$uX` in case of overflow from the increment
317            let div_sig_n_h_add1 = (div_sig_n_h as $uX) + 1;
318
319            // `{2^n, 2^(div_sb + n_h)} <= duo < 2^n_d`
320            // `2^n_h <= div < {2^(duo_sb - n_h), 2^n}`
321            loop {
322                // The number of lesser significant bits not a part of `duo_sig_n`
323                let duo_extra = n - duo_lz;
324
325                // The most significant `n` bits of `duo`
326                let duo_sig_n = (duo >> duo_extra) as $uX;
327
328                // the two possibility algorithm requires that the difference between msbs is less
329                // than `n_h`, so the comparison is `<=` here.
330                if div_extra <= duo_extra {
331                    // Undersubtracting long division step
332                    let quo_part = $half_division(duo_sig_n, div_sig_n_h_add1).0 as $uD;
333                    let extra_shl = duo_extra - div_extra;
334
335                    // Addition to the quotient.
336                    quo += (quo_part << extra_shl);
337
338                    // Subtraction from `duo`. At least `n_h - 1` bits are cleared from `duo` here.
339                    duo -= (div.wrapping_mul(quo_part) << extra_shl);
340                } else {
341                    // Two possibility algorithm
342                    let shift = n - duo_lz;
343                    let duo_sig_n = (duo >> shift) as $uX;
344                    let div_sig_n = (div >> shift) as $uX;
345                    let quo_part = $half_division(duo_sig_n, div_sig_n).0;
346                    let div_lo = div as $uX;
347                    let div_hi = (div >> n) as $uX;
348
349                    let (tmp_lo, carry) = carrying_mul(quo_part, div_lo);
350                    // The undersubtracting long division algorithm has already run once, so
351                    // overflow beyond `$uD` bits is not possible here
352                    let (tmp_hi, _) = carrying_mul_add(quo_part, div_hi, carry);
353                    let tmp = (tmp_lo as $uD) | ((tmp_hi as $uD) << n);
354
355                    if duo < tmp {
356                        return (
357                            quo + ((quo_part - 1) as $uD),
358                            duo.wrapping_add(div).wrapping_sub(tmp),
359                        );
360                    } else {
361                        return (quo + (quo_part as $uD), duo - tmp);
362                    }
363                }
364
365                duo_lz = duo.leading_zeros();
366
367                if div_lz <= duo_lz {
368                    // quotient can have 0 or 1 added to it
369                    if div <= duo {
370                        return (quo + 1, duo - div);
371                    } else {
372                        return (quo, duo);
373                    }
374                }
375
376                // This can only happen if `div_sd < n` (because of previous "quo = 0 or 1"
377                // branches), but it is not worth it to unroll further.
378                if n <= duo_lz {
379                    // simple division and addition
380                    let tmp = $half_division(duo as $uX, div as $uX);
381                    return (quo + (tmp.0 as $uD), tmp.1 as $uD);
382                }
383            }
384        }
385    };
386}