compiler_builtins/float/
mul.rs1use crate::float::Float;
2use crate::int::{CastInto, DInt, HInt, Int, MinInt};
3
4fn mul<F: Float>(a: F, b: F) -> F
5where
6 u32: CastInto<F::Int>,
7 F::Int: CastInto<u32>,
8 i32: CastInto<F::Int>,
9 F::Int: CastInto<i32>,
10 F::Int: HInt,
11{
12 let one = F::Int::ONE;
13 let zero = F::Int::ZERO;
14
15 let bits = F::BITS;
16 let significand_bits = F::SIG_BITS;
17 let max_exponent = F::EXP_SAT;
18
19 let exponent_bias = F::EXP_BIAS;
20
21 let implicit_bit = F::IMPLICIT_BIT;
22 let significand_mask = F::SIG_MASK;
23 let sign_bit = F::SIGN_MASK;
24 let abs_mask = sign_bit - one;
25 let exponent_mask = F::EXP_MASK;
26 let inf_rep = exponent_mask;
27 let quiet_bit = implicit_bit >> 1;
28 let qnan_rep = exponent_mask | quiet_bit;
29 let exponent_bits = F::EXP_BITS;
30
31 let a_rep = a.to_bits();
32 let b_rep = b.to_bits();
33
34 let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
35 let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
36 let product_sign = (a_rep ^ b_rep) & sign_bit;
37
38 let mut a_significand = a_rep & significand_mask;
39 let mut b_significand = b_rep & significand_mask;
40 let mut scale = 0;
41
42 if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
44 || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
45 {
46 let a_abs = a_rep & abs_mask;
47 let b_abs = b_rep & abs_mask;
48
49 if a_abs > inf_rep {
51 return F::from_bits(a_rep | quiet_bit);
52 }
53 if b_abs > inf_rep {
55 return F::from_bits(b_rep | quiet_bit);
56 }
57
58 if a_abs == inf_rep {
59 if b_abs != zero {
60 return F::from_bits(a_abs | product_sign);
62 } else {
63 return F::from_bits(qnan_rep);
65 }
66 }
67
68 if b_abs == inf_rep {
69 if a_abs != zero {
70 return F::from_bits(b_abs | product_sign);
72 } else {
73 return F::from_bits(qnan_rep);
75 }
76 }
77
78 if a_abs == zero {
80 return F::from_bits(product_sign);
81 }
82
83 if b_abs == zero {
85 return F::from_bits(product_sign);
86 }
87
88 if a_abs < implicit_bit {
92 let (exponent, significand) = F::normalize(a_significand);
93 scale += exponent;
94 a_significand = significand;
95 }
96
97 if b_abs < implicit_bit {
98 let (exponent, significand) = F::normalize(b_significand);
99 scale += exponent;
100 b_significand = significand;
101 }
102 }
103
104 a_significand |= implicit_bit;
108 b_significand |= implicit_bit;
109
110 let (mut product_low, mut product_high) = a_significand
116 .widen_mul(b_significand << exponent_bits)
117 .lo_hi();
118
119 let a_exponent_i32: i32 = a_exponent.cast();
120 let b_exponent_i32: i32 = b_exponent.cast();
121 let mut product_exponent: i32 = a_exponent_i32
122 .wrapping_add(b_exponent_i32)
123 .wrapping_add(scale)
124 .wrapping_sub(exponent_bias as i32);
125
126 if (product_high & implicit_bit) != zero {
128 product_exponent = product_exponent.wrapping_add(1);
129 } else {
130 product_high = (product_high << 1) | (product_low >> (bits - 1));
131 product_low <<= 1;
132 }
133
134 if product_exponent >= max_exponent as i32 {
136 return F::from_bits(inf_rep | product_sign);
137 }
138
139 if product_exponent <= 0 {
140 let shift = one.wrapping_sub(product_exponent.cast()).cast();
147 if shift >= bits {
148 return F::from_bits(product_sign);
149 }
150
151 let sticky = product_low << (bits - shift) != zero;
156 product_low =
157 (product_high << (bits - shift)) | (product_low >> shift) | (sticky as u32).cast();
158 product_high >>= shift;
159 } else {
160 product_high &= significand_mask;
162 product_high |= product_exponent.cast() << significand_bits;
163 }
164
165 product_high |= product_sign;
167
168 if product_low > sign_bit {
172 product_high += one;
173 }
174
175 if product_low == sign_bit {
176 product_high += product_high & one;
177 }
178
179 F::from_bits(product_high)
180}
181
182intrinsics! {
183 #[aapcs_on_arm]
184 #[arm_aeabi_alias = __aeabi_fmul]
185 pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
186 mul(a, b)
187 }
188
189 #[aapcs_on_arm]
190 #[arm_aeabi_alias = __aeabi_dmul]
191 pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
192 mul(a, b)
193 }
194
195 #[ppc_alias = __mulkf3]
196 #[cfg(f128_enabled)]
197 pub extern "C" fn __multf3(a: f128, b: f128) -> f128 {
198 mul(a, b)
199 }
200}