compiler_builtins/float/
mul.rs

1use crate::float::Float;
2use crate::int::{CastInto, DInt, HInt, Int, MinInt};
3
4fn mul<F: Float>(a: F, b: F) -> F
5where
6    u32: CastInto<F::Int>,
7    F::Int: CastInto<u32>,
8    i32: CastInto<F::Int>,
9    F::Int: CastInto<i32>,
10    F::Int: HInt,
11{
12    let one = F::Int::ONE;
13    let zero = F::Int::ZERO;
14
15    let bits = F::BITS;
16    let significand_bits = F::SIG_BITS;
17    let max_exponent = F::EXP_SAT;
18
19    let exponent_bias = F::EXP_BIAS;
20
21    let implicit_bit = F::IMPLICIT_BIT;
22    let significand_mask = F::SIG_MASK;
23    let sign_bit = F::SIGN_MASK;
24    let abs_mask = sign_bit - one;
25    let exponent_mask = F::EXP_MASK;
26    let inf_rep = exponent_mask;
27    let quiet_bit = implicit_bit >> 1;
28    let qnan_rep = exponent_mask | quiet_bit;
29    let exponent_bits = F::EXP_BITS;
30
31    let a_rep = a.to_bits();
32    let b_rep = b.to_bits();
33
34    let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
35    let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
36    let product_sign = (a_rep ^ b_rep) & sign_bit;
37
38    let mut a_significand = a_rep & significand_mask;
39    let mut b_significand = b_rep & significand_mask;
40    let mut scale = 0;
41
42    // Detect if a or b is zero, denormal, infinity, or NaN.
43    if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
44        || b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
45    {
46        let a_abs = a_rep & abs_mask;
47        let b_abs = b_rep & abs_mask;
48
49        // NaN + anything = qNaN
50        if a_abs > inf_rep {
51            return F::from_bits(a_rep | quiet_bit);
52        }
53        // anything + NaN = qNaN
54        if b_abs > inf_rep {
55            return F::from_bits(b_rep | quiet_bit);
56        }
57
58        if a_abs == inf_rep {
59            if b_abs != zero {
60                // infinity * non-zero = +/- infinity
61                return F::from_bits(a_abs | product_sign);
62            } else {
63                // infinity * zero = NaN
64                return F::from_bits(qnan_rep);
65            }
66        }
67
68        if b_abs == inf_rep {
69            if a_abs != zero {
70                // infinity * non-zero = +/- infinity
71                return F::from_bits(b_abs | product_sign);
72            } else {
73                // infinity * zero = NaN
74                return F::from_bits(qnan_rep);
75            }
76        }
77
78        // zero * anything = +/- zero
79        if a_abs == zero {
80            return F::from_bits(product_sign);
81        }
82
83        // anything * zero = +/- zero
84        if b_abs == zero {
85            return F::from_bits(product_sign);
86        }
87
88        // one or both of a or b is denormal, the other (if applicable) is a
89        // normal number.  Renormalize one or both of a and b, and set scale to
90        // include the necessary exponent adjustment.
91        if a_abs < implicit_bit {
92            let (exponent, significand) = F::normalize(a_significand);
93            scale += exponent;
94            a_significand = significand;
95        }
96
97        if b_abs < implicit_bit {
98            let (exponent, significand) = F::normalize(b_significand);
99            scale += exponent;
100            b_significand = significand;
101        }
102    }
103
104    // Or in the implicit significand bit.  (If we fell through from the
105    // denormal path it was already set by normalize( ), but setting it twice
106    // won't hurt anything.)
107    a_significand |= implicit_bit;
108    b_significand |= implicit_bit;
109
110    // Get the significand of a*b.  Before multiplying the significands, shift
111    // one of them left to left-align it in the field.  Thus, the product will
112    // have (exponentBits + 2) integral digits, all but two of which must be
113    // zero.  Normalizing this result is just a conditional left-shift by one
114    // and bumping the exponent accordingly.
115    let (mut product_low, mut product_high) = a_significand
116        .widen_mul(b_significand << exponent_bits)
117        .lo_hi();
118
119    let a_exponent_i32: i32 = a_exponent.cast();
120    let b_exponent_i32: i32 = b_exponent.cast();
121    let mut product_exponent: i32 = a_exponent_i32
122        .wrapping_add(b_exponent_i32)
123        .wrapping_add(scale)
124        .wrapping_sub(exponent_bias as i32);
125
126    // Normalize the significand, adjust exponent if needed.
127    if (product_high & implicit_bit) != zero {
128        product_exponent = product_exponent.wrapping_add(1);
129    } else {
130        product_high = (product_high << 1) | (product_low >> (bits - 1));
131        product_low <<= 1;
132    }
133
134    // If we have overflowed the type, return +/- infinity.
135    if product_exponent >= max_exponent as i32 {
136        return F::from_bits(inf_rep | product_sign);
137    }
138
139    if product_exponent <= 0 {
140        // Result is denormal before rounding
141        //
142        // If the result is so small that it just underflows to zero, return
143        // a zero of the appropriate sign.  Mathematically there is no need to
144        // handle this case separately, but we make it a special case to
145        // simplify the shift logic.
146        let shift = one.wrapping_sub(product_exponent.cast()).cast();
147        if shift >= bits {
148            return F::from_bits(product_sign);
149        }
150
151        // Otherwise, shift the significand of the result so that the round
152        // bit is the high bit of `product_low`.
153        // Ensure one of the non-highest bits in `product_low` is set if the shifted out bit are
154        // not all zero so that the result is correctly rounded below.
155        let sticky = product_low << (bits - shift) != zero;
156        product_low =
157            (product_high << (bits - shift)) | (product_low >> shift) | (sticky as u32).cast();
158        product_high >>= shift;
159    } else {
160        // Result is normal before rounding; insert the exponent.
161        product_high &= significand_mask;
162        product_high |= product_exponent.cast() << significand_bits;
163    }
164
165    // Insert the sign of the result:
166    product_high |= product_sign;
167
168    // Final rounding.  The final result may overflow to infinity, or underflow
169    // to zero, but those are the correct results in those cases.  We use the
170    // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
171    if product_low > sign_bit {
172        product_high += one;
173    }
174
175    if product_low == sign_bit {
176        product_high += product_high & one;
177    }
178
179    F::from_bits(product_high)
180}
181
182intrinsics! {
183    #[aapcs_on_arm]
184    #[arm_aeabi_alias = __aeabi_fmul]
185    pub extern "C" fn __mulsf3(a: f32, b: f32) -> f32 {
186        mul(a, b)
187    }
188
189    #[aapcs_on_arm]
190    #[arm_aeabi_alias = __aeabi_dmul]
191    pub extern "C" fn __muldf3(a: f64, b: f64) -> f64 {
192        mul(a, b)
193    }
194
195    #[ppc_alias = __mulkf3]
196    #[cfg(f128_enabled)]
197    pub extern "C" fn __multf3(a: f128, b: f128) -> f128 {
198        mul(a, b)
199    }
200}